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1. Introduction

One of the major challenges in neurobiology is understanding the relationship
between spatially structured activity states and the underlying neural circuitry that
supports them.

From the geometrical point of view the first accurate models of the functional
architecture of the primary visual cortex (V1) is due to Hubel and Wiesel [26] (see
[25] for a review of their work). Hubel and Wiesel discovered that for every point
(x, y) of the retinal plane there is an entire set of cells, each one sensitive to a
particular instance of a specific feature of the image: position, orientation, scale,
color, curvature, velocity, stereo. They called this structure hypercolumnar orga-
nization. Horizontal connectivity is responsible for the cortico-cortical propagation
of the neural activity between hypercolumns. Further insights on the structure of
the connectivity and the spatial arrangements of cells were provided by [5], [6],
[7]. The association fields of Field, Hayes and Hess [23], discovered on a purely
psycho-physical basis, have been proposed as a phenomenological counterpart of
the cortical-cortical connectivity. Geometric frameworks for the description of the
functional architecture of V1 were proposed by W.C. Hoffmann in [24], Petitot and
Tondut [32], Bressloff an Cowan [8], Citti and Sarti [11], Zucker [45], Sarti, Citti,
Petitot [38]. Application to image processing can be found in [15], [16], [17].

From the dynamical point of veiw the first neural field models of the cortical
activity are due to Wilson and Cowan [42, 43] and Amari [1], and are expressed
in terms of integro-differential equations. Extensions of the models have been pro-
vided by Ermentrout and Cowan [18, 19]. These mean field equations describe the
activity on a 2D plane and formally express the interaction between cells through
as a convolution kernel. Bressloff and Cowan [8, 9] proposed new models taking
into account the high dimensional cortical structure, with orientation and scale as
eingrafted variables. In their models the connectivity kernel satisfies the symmetry
properties of the cortical space, namely SE(2) for rotation and translation and
the affine group for scale, rotation and translation. In absence of the external in-
put these models successfully account for hallucination patterns. More recently ,
Faugeras [22], Faye and Faugeras in [21] and Chossat, Faye, Faugeras [10] modified
the model in order to take into account delay and the tensorial structure of the
cortex.

Scope of this paper is to consider a mean field neural model which takes into
account the neurogeometry of the cortex introduced in [11] as well as the presence of
a visual input. It is known that when stationary solutions of the equation become
marginally stable, eigenmodes of the linearized operator can become stable. In
absence of a visual input the raising eigenmodes lead to the hallucination patterns
proposed by Bressloff and Cowan [8, 9]. The main result of our study consists
in showing that in presence of a visual input, these eigenmodes corresponds to
perceptual units. While in the case of hallucinations the emergence of eigenmodes
is due to the use of drugs, in the case of perceptual units it is due to physiological

1

ar
X

iv
:1

40
6.

02
89

v1
  [

cs
.C

V
] 

 2
 J

un
 2

01
4



2 ALESSANDRO SARTI AND GIOVANNA CITTI

variations of parameters during the perception process. The whole process can be
interpreted as a problem of data segregation and partitioning, strongly related to
the most recent results of dimensionality reduction. In particular our model can
justify on biological basis, the results of [31, 39, 44, 12, 13], who directly faced the
problem of perceptual grouping in the description of a scene by means of a kernel
PCA on an affinity matrix.

The paper starts with briefly recalling some results about the neurogeometry
of the primary visual cortex (section 2). The cortico-cortical interaction between
simple cells is represented by the fundamental solution of a Fokker Planck equation,
following [37] and [4]. In section 3 the classical mean field model of Ermentraut
and Cowan is adapted to the SE(2) cortical symmetry group with the previously
computed connectivity kernel. Stationary solutions are studied and a stability
analysis is performed, varying a suitable physiological parameter. In the classical
papers [8, 9] the variability of this parameter was due to the presence of drugs.
On the contrary in our model, the variability of the same parameter is due to the
physiological variability of the transfer function in different neural populations. In
addition, the geometry of the problem depends both on the invariance of SE(2)
and the presence of the input. In section 4 the mean field equation is discretized
and the connectivity kernel reduced to a matrix induced by the neurogeometry of
the cortex as well as by the visual input. Marginally stable solutions are computed
as eigenvectors of this matrix, and we show that they represent perceptual units
present in the image. The result is strictly related to the dimensionality reduction
and clustering problems of [31], and the connectivity matrix can be interpreted as
an affinity matrix. Finally in section 5 we present numerical simulation results.

2. The functional geometry of V1

In this section we briefly recall the structure of the functional geometry of the
visual cortex. As proved by Hubel and Wiesel [26] the visual cortex is organized in
hypercolumns of simple cells sensitive to the position (x, y) and eingrafted variables,
which describe different properties of the stimulus: orientation, curvature, speed,
velocity, scale, disparity. We will describe in detail the structure of the family of
simple cells, sensible to position and orientation.

2.1. The SE(2) symmetry of the visual cortex. Many authors [32, 11, 45] rep-
resented the hypercolumnar organization as a 3-dimensional space with coordinates
(x, y, θ) where each point corresponds to a specific population of cells sensitive to a
stimulus positioned in (x, y) and with orientation θ. This leads to the description
of the visual cortex in the special Euclidean group group SE(2) ≈ R2 × S1. This
is composed by the semi-direct product of the group of translations of the plane
R2 with the rotations and reflections group of the plane O(2). The action · of the
Euclidean group on every element (x, y, θ) of R2 × S1 is generated by:

• (x′, y′) · (x, y, θ) = (x+x′, y+ y′, θ), (x′, y′) ∈ R2is the translation vector;
• θ′ · (x, y, θ) = (Rθ′(x, y), θ′ + θ) , θ′ ∈ S1,
Rθ is the rotation matrix of an angle θ′;
• k · (x, y, θ) = (x,−y,−θ),

if k : (x, y) 7→ (x,−y) is the reflection transformation.

Consequently we will also denote

(x′, y′, θ′) · (x, y, θ) = (Rθ′(x, y) + (x′, y′), θ′ + θ) ,

which defines the composition law in the Euclidean group.
This 3-dimensional group is implemented in the two dimensional layer of the

visual cortex where the position-orientation features are coded simultaneously in
the pinwheel structure (see Figure 1).



THE CONSTITUTION OF VISUAL PERCEPTUAL UNITS 3

Figure 1. The pinwheel structure of the primary visual cortex
measured by in vivo optical imaging taken from [7]. Orientation
maps are coded with the colorbar on the right.

2.2. The output of simple cells as cortical lifting of the visual stimulus.
The receptive profile of a simple cell has been modelled as a Gabor filter or in
terms of derivatives of a Gaussian function ([14]). The whole set of simple cells
ψ(x,y,θ) can be obtained by rotation and translation from the mother filter ψ(0,0,0),
which amount to say that for every (x, y, θ) the cell at position (x, y) sensible to
the orientation θ can be represented as

(2.1) ψ(x,y,θ)(x
′, y′) = ψ(0,0,0)

(
Rθ(x

′ − x, y′ − y)
)
.

The response of simple cells to a visual stimulus I(x, y) can be obtained as an
integral of the RP with the image I:

(2.2) h(x, y, θ) =

∫
ψ(x,y,θ)(x

′, y′)I(x′, y′)dx′dy′.

Since the output depends on the (x, y, θ) variables of the Euclidean motion group,
the action of the cells is modeled as a lifting process of the retinal 2D image I(x, y)
to a function h(x, y, θ) defined on the Lie group manifold.

2.3. Geometry of the horizontal connectivity. Hypercolumns are connected
by means of the so called horizontal or cortico-cortical connectivity. Experimental
measures of this connectivity have been obtained by Bosking in [7] by injecting a
chemical tracer (biocytin) and observing its propagation in the cortical layer (see
Figure 2).

In [11] the connectivity between hypercolumns has been described in terms of
the Lie algebra of SE(2), and the following vector fields have been chosen as its
generators at a general point (x, y, θ):

(2.3) ~X1 = (cos θ, sin θ, 0), ~X2 = (0, 0, 1) .

The points of the structure are connected by integral curves of these two vector
fields:

c : R→ SE(2), c(s) = (x(s), y(s), θ(s))

such that

(2.4) c′(s) = (k1(s) ~X1 + k2(s) ~X2)(c(s)), c(0) = 0.
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Figure 2. Cortico-cortical connectivity measured by Bosking in
[7]. The tracer is propagated through the lateral connections to
points in black. These locations are plotted together with the
orientation maps.

The length of these curves is computed as

l(c) =

∫
||c′(s)||ds

where different norms can be defined, with different choice of exponents for the
components of k:

(2.5) ||c′(s)|| = (|k1(s)|n1 + |k2(s)|n2)1/2.

The choice n1 = 1, n2 = 2 is compatible with the Fokker Planck model proposed
by Mumford in [29] and Williams and Jacobs in [41]. With the choice of exponents
n1 = n2 = 2 we obtain a different norm, associated to the subriemannian Laplacian.
Since any couple of points (x, y, θ) (x′, y′, θ′) can be connected by such integral
curves, a Carnot Carathéodory distance can be defined:

(2.6) dc

(
(x , y , θ), (x ′, y ′, θ′)

)
= inf{l(c) : c connects (x , y , θ) and (x ′, y ′, θ′)}

(see for example Nagel Stein Wainger [30] or Mongomery [28]). Sanguinetti Citti
Sarti showed that this distance associated with the Fokker Planck choice fits very
well the statistics of co-occurrence of edges in natural images [37]. See also [35] for
some results on geodesics in this setting.

2.4. The connectivity kernel as fundamental solution. The cortical connec-
tivity can be modeled with the stochastic counterpart of the curves defined in (2.4):

(2.7) (x′, y′, θ′) = (cos(θ), sin(θ), N(0, σ2)) = ~X1 +N(0, σ2) ~X2

where N(0, σ2) is a normally distributed variable with zero mean and variance
equal to σ2. This approach, first introduced by Mumford in [29], has been further
discussed by August-Zucker [2, 3], Williams-Jacobs [41], and Sanguinetti-Citti-Sarti
[37], and we shortly recall it here.

Let’s denote u the transition probability that the stochastic solution starting
from the point (x′, y′) with orientation θ′ at the initial time reaches the point (x, y)
with orientation θ at the time s. This probability density satisfies a deterministic
equation known in literature as the Kolmogorov Forward Equation or Fokker-Planck
equation (FP):

(2.8) ∂tv = X1v + σ2X22v
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where X1 is the directional derivative cos(θ)∂x + sin(θ)∂y and X2 = ∂θ, while
X22 = ∂θθ is the second order derivative.

This equation has been largely used in computer vision and applied to percep-
tual completion related problems. It was first used by Williams and Jacobs [41]
to compute stochastic completion field, by August and Zucker [2, 3] to define the
curve indicator random field, and more recently by R. Duits and Franken in [15, 16]
to perform contour completion, de-noising and contour enhancement. Its station-
ary counterpart was proposed in [36] to model the probability of co-occurence of
contours in natural images:

(2.9) FP = X1 + σ2X22

This operator has a nonnegative fundamental solution Γ satisfying:

(2.10) X1Γ((x, y, θ), (x′, y′, θ′)) + σ2X22Γ((x, y, θ), (x′, y′, θ′)) = δ(x, y, θ),

The kernel is strongly biased in direction X1 and not symmetric. Its symmetrization
can be obtained as:

(2.11) ω((x, y, θ), (x′, y′, θ′)) =
1

2

(
Γ((x, y, θ), (x′, y′, θ′)) + Γ((x′, y′, θ′), (x, y, θ))

)
.

We explicitly recall that the general results of [34] and [30] provide a local es-
timate of the fundamental solution (and consequently also of ω) in terms of the
distance defined in the previous section. The choice of exponents n1 = 2, n2 = 1
we made in equation (2.5) is compatible with the fact that in this equation we have
a first derivative in direction X1 and a second one in direction X2. Indeed the
kernel ω is estimated in terms of the distance dc , as follows:

(2.12) ω((x, y, θ), (x′, y′, θ′)) ' e−dc
2 ((x ,y,θ),(x ′,y′,θ′)),

Let’s also recall that this model closely matches the statistical distribution of edge
co-occurence in natural images as obtained in [36]. This argument strongly suggests
that horizontal connectivity modelled by the neurogeometry is deeply shaped by
the statistical distributions of features in the environment and that the very origin
of neurogeometry has to be discovered in the interaction between the embodied
subject and the world.

3. Mean field equation in the cortical space

The evolution of a state of a population of cells has been modelled by Wilson and
Cowan in [42], [43], by Ermentrout and Cowan [19], and subsequently by Bressloff
and Cowan in [8]. Recent results are due to Faye and Faugeras [21] and Chossat,
Faye, Faugeras [10]. The Ermentraut Cowan mean field equation rewritten in the
cortical space reads

(3.1)
da(ξ, t)

dt
= −αa(ξ, t) + σ

(∫
µω(ξ, ξ′)a(ξ′, t)dξ′ + h(ξ, t)

)
in M

where ξ = (x, y, θ) is a point of the cortical space M, the coefficient α represents
the decay of activity, h is the feedforward input which coincides with the response
of the simple cells in presence of a visual stimulus described by (2.2).

The function σ is the transfer function of the population, and has a piecewise
linear behavior, as proposed in [27] (see Figure 3).
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Figure 3. The piecewise linear transfer function, compared with
the classical sigmoid.

(3.2) σ(s) =


0, s ∈]−∞, c− 1

2γ [

γ(s− c) + 1
2 , s ∈ [c− 1

2γ , c+ 1
2γ ]

1, s ∈]c+ 1
2γ ,+∞[

,

where γ is a real number, which represents the slope of the linear regime and c is
the half height threshold.

The kernel µω(ξ, ξ′) is the contribution of cortico-cortical connectivity introduced
in (2.11). It is compatible with the model of Bressloff and Cowan who only assumed
that ω is invariant with respect to rotation and translations. The parameter µ is
a coefficient of short term synaptic facilitation and generally increasing during the
perceptual process.

We also outline the following existence result:

Remark 3.1. Existence of the solution. The solution is defined for all times
and satisfies

|a(ξ, t)| ≤ 1

α
for all ξ,∈M, t > 0.

See for example [20].

3.1. Restriction to the domain defined by the external input. The main
novelty of our model is to split the cortical domain M in a subdomain Ω charac-
terized by the presence of the input, and the complementary set. We will show in
the following that under suitable assumptions the activity in this complementary
set will be negligible and the domain of equation (3.1) reduces to Ω.

By simplicity we will assume that h can attain only two values: 0 and c, and we
call Ω the set of points in the visual cortex activated by the presence of an input

(3.3) Ω = {ξ : h(ξ) = c}.

We require that µω satisfies an assumption of weak connectivity, which means that
when the activity is around the points 0 and c, the dynamics does not change regime
due to the connectivity contribution.
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Remark 3.2. Formally we will require that the integral of µω is sufficiently small
to satisfy:

(3.4)

∫
M

µω(ξ, ξ′)dξ′ ≤ αmin
( 1

2γ
, c− 1

2γ

)
.

Under this assumption, if the activity a is identically 0 at the initial time, then
the activity remains identically 0 outside Ω for all t > t0:

a(ξ, t) = 0 for ξ ∈M\Ω.

On the other hand on the set Ω the argument of σ always remains in the linear
regime for all t > t0:

(3.5)

∫
µω(ξ, ξ′)a(ξ′)dξ′ + c ∈ [c− 1

2γ
, c+

1

2γ
], for ξ ∈ Ω.

Proof. Let us choose ξ in M\Ω. Using the boundness of a asserted in Remark 3.1,
and the assumption of weak connectivity (3.4) on ω we get

(3.6)

∫
µω(ξ, ξ′)a(ξ′)dξ′ ≤ αmax(a)

2γ
≤ 1

2γ
.

It follows that

σ
(∫

µω(ξ, ξ′)a(ξ′)dξ′
)

= 0,

if ξ ∈M\Ω. Inserting this in the right hand side of equation (3.1)

da

dt
(eαta(ξ, t)) = eαta′(ξ, t) + αeαta(ξ, t)

= eαtσ
(∫

µω(ξ, ξ′)a(ξ′)dξ′
)

= 0,

This implies that

eαta(ξ, t)

is constant, and since it vanishes for t = t0, it is identically 0 for all t > t0. From
(3.6) it also follows that ∫

µω(ξ, ξ′)a(ξ′)dξ′ + c ≤ c+
1

2γ

and ∫
µω(ξ, ξ′)a(ξ′)dξ′ + c ≥ c− 1

2γ
.

�

Hence the mean field activity equation reduces to

(3.7)
da(ξ, t)

dt
= −αa(ξ, t) + γ

(∫
µω(ξ, ξ′)a(ξ′, t)dξ′ + c

)
in Ω.

Note that the equation (3.9) is similar to the one in Bresslof Cowan model, but
the Bresslof Cowan model is defined in the whole cortical space, while equation
(3.9) is defined on the domain Ω.
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3.2. Stability analysis. The stationary states a1 of equation (3.7) satisfy

(3.8) − αa1(ξ) + γ
(∫

µω(ξ, ξ′)a1(ξ′)dξ′ + c
)

= 0 in Ω

and have been studied by [20].
In order to study their stability we need to study small perturbation around the

stationary state. Hence we will call u = a − a1 the perturbation, and obtain the
equation satisfied by u subtracting the equations for a and a1:

d(a− a1)(ξ, t)

dt
= −α(a− a1)(ξ, t) + γ

(∫
µω(ξ, ξ′)(a− a1)(ξ′, t)dξ′

)
in Ω. Note that the function u is a solution of the homogeneous equation asso-

ciated to (3.7):

(3.9)
du(ξ, t)

dt
= −αu(ξ, t) + γ

(∫
µω(ξ, ξ′)u(ξ′)dξ′

)
in Ω

The stability of the solution of this linear equation can be studied by means of
the eingenvalues of the associated linear operator:

(3.10) Lu = −αu+ µγ

∫
ω(ξ, ξ′)u(ξ′)dξ′ = λu.

Let us note that the parameter µ increases since it is a short term synaptic
facilitation. For this reason we now study this eigenvalue problem by varying µ.
The system will be stable if λ is negative. This condition depends on the value of µ
and on the eigenvalues of the convolution operator with µω. Indeed condition 3.10
is equivalent to ∫

ω(ξ, ξ′)u(ξ′)dξ′ =
1

γµ
(λ+ α)u.

and implies
λ+ α

γµ
= λ̃

for an eigenvalue λ̃ of ω. Imposing that λ is negative we get:

λ = −α+ µγλ̃ < 0

Hence

µ <
α

γλ̃

for every eigenvalue λ̃ of ω. Remember that the operator associated to ω has a
sequence λ̃k of eigenvalues. This is satisfied if

µ <
α

γλ̃1

,

for the largest eigenvalue λ̃1. The uniform solution becomes marginally stable
when µ increases beyond the critical value α

γλ̃1
. due the excitation of the linear

eigenfunctions, solutions of

(3.11)

∫
ω(ξ, ξ′)u(ξ′)dξ′ = λ̃ku.

The saturating nonlinearities of the system can stabilize the growing pattern of
activity.
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4. Patterns of activity and spectral clustering

4.1. The discrete mean field equation. Due to the discrete structure of the
cortex, the input configurations are constituted by a finite number N of position-
orientation elements, with coordinates ξi = (xi, yi, θi). On these points the input h
takes the value c. As a consequence, the set Ω, defined in (3.3) is discretized, and
becomes

(4.1) Ωd = {ξi : h(ξi) = c}.

Analogously the main field equation (3.9) reduces to:

(4.2)
da(ξi, t)

dt
= −αa(ξi, t) + γµ

N∑
j=1

ω(ξi, ξj)a(ξj , t) in Ωd.

The model of [8] has been developed in the whole cortical space without an
input and the activity patterns have the symmetry of SE(2). Here the symmetry is
lost due to the presence of the input, hence the activity patterns inherit geometric
properties of the domain Ωd. The eigenmodes will be defined precisely on that
geometry.

In particular the kernel ω is reduced to a matrix A, whose entries i, j are:

(4.3) Aij = γµω(ξi, ξj),

and the eigenvalue problem (3.11) becomes:

(4.4) Aa = λ̃ka.

This matrix can be considered as the equivalent of the affinity matrix introduced
by Perona in [31] to perform perceptual grouping. Perona proposed to model the
affinity matrix in term of an euristic distance d(ξ), facilitating collinear and cocir-
cular couple of elements. Indeed by (2.12) we see that

Aij ' e−dc
2 (ξi ,ξj ),

where dc is the Carnot Carathéodory distance defined in (2.6).

4.2. Spectral clustering and dimensionality reduction. In [31] the problem
of perceptual grouping has been faced in terms of reduction of the complexity in the
description of a scene. The visual scene is described in term of the affinity matrix
Aij with a complexity of order O(N2) if N discrete elements are present in the scene.
The idea of Perona and Freeman is to describe the scene approximating the matrix
Aij by the sum of matrices of rank 1 and complexity N , each of which will identify
a perceptual unit in the scene. If the number of the perceptual units present in
the scene is much smaller than N , this procedure reduces the dimensionality of the
description. A rank 1 matrix will be represented as the external product of a vector
p with itself.

The first one will be computed as the best approximation of Aij minimizing the
Frobenius norm as follows:

p1 = argminp̂

N∑
i,j=1

(Aij − p̂ip̂j)2

where the term ppT =
∑N
i,j=1 p̂ip̂j is the rank one matrix with complexity order

O(N).
Perona proved that the minimizer p1 is the first eigenvector v1 of the matrix A

with largest eigenvalue λ1: p1 = λ
1/2
1 v1.
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Then the problem is repeated on the vector space orthogonal to p1. The mini-
mizer will correspond to the second eigenvector, and iteratively the others eigenvec-
tors are recovered. The process ends when the associated eigenvalue is sufficiently
small. In this way in general only n eigenvectors are selected, with n < N , leading
to the dimensionality reduction.

Then the problem of grouping is reduced to the spectral analysis of the affinity
matrix Aij , where the salient objects in the scene correspond to the eigenvectors
with largest eigenvalues.

We just showed in the previous paragraphs that this spectral analysis can be
implemented by the neural population equation in the functional architecture of
the primary visual cortex. We can now interpret eigenvectors of equation (4.4) as
the gestalten segmenting the scene.

5. Numerical simulation and results

5.1. Numerical approximation of the kernel. We numerically evaluate the
connectivity kernel ω, defined by equation (2.11). The fundamental solution Γ of
equation (2.10) is numerically estimated with standard Markov Chain Monte Carlo
methods (MCMC) [33]. This is done by generating random paths obtained from
numerical solutions of the system (2.7). This system is discretized as follows

(5.1)


xs+∆s − xs = ∆s cos(θ)

ys+∆s − ys = ∆s sin(θ)

θs+∆s − θs = ∆sN(σ, 0)

, s ∈ {0, . . . ,H}

where H is the number of steps performed by the random path and N(σ, 0) is a
generator of numbers taken from a normal distribution with mean 0 and variance σ.
Solving this finite difference n times will give n different realizations of the stochastic
path: the estimated kernel Γd(ξi, ξ0), is computed averaging their passages over
discrete volume elements, and smoothing the results with local weighted means. In
Figure 4 a projection of the fundamental solution Γd is visualized with different
number of paths. In Figure 5 a level set of the connectivity kernel ω is represented.
Since the connectivity is implemented in the 2-dimensional cortical layer we provide
also a visualization of the kernel ω superimposed to the pinwheel structure. On
the left of Figure a pinwheel structure θ̃(x; y) is visualized, outcome of a simulation
following (BArbieri piwheel). On the right the connectivity kernel is superimposed
to the pinwheels structure. Particularly the kernel is visualized by means of black
points generated with a probability density proportional to the value of the kernel at
the point (x, y, θ̃(x, y)). The comparison of the image with the results of Bosking
presented in Figure 2 shows that the kernel ω provides a good estimate of the
measured cortical connectivity.

5.2. Results of grouping. In [23] Fields, Heyes and Hess experimented the ability
of the human visual system to detect perceptual units out of a random distribution
of oriented elements. In Figure 7 (left) it is shown the stimulus proposed to the
observer, from which the visual system is able to individuate the perceptual unit
shown in the right. In the following we will test our grouping model on similar
stimuli to individuate the perceptual units present in the images.

In the first experiment we considered 150 position-orientation patches, with co-
ordinates ξi. A subset of elements is organized in a coherent way and the large
majority is randomly chosen, in a way similar to the experiment of [23](see Figure
8, left). These points define a domain Ωd = {ξi : i = 1, · · ·n} as in equation (4.1),
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Figure 4. Estimate of the fundamental solution Γ of equation
(2.10) with the Markov Chain Monte Carlo method. It is visualized
the projection of Γd in the (x, y) plane. On the left with 6 random
paths and on the right with 3000 with σ = 0.08, and H = 100.

Figure 5. A level set of the kernel ω, obtained via the simmetri-
sation of the fundamental solution Γd

Figure 6. On the left the pinwheel structure θ̃(x, y) is visualized,
simulated as in []. On the right the connectivity kernel ω is super-
imposed to the pinwheels structure. The density of black points is
proportional to the value of ω(x, y, θ̃(x, y)).

and we will define the input stimulus h as a function defined on the whole cortical
space M , which attains value c on Ω and 0 outside.

The connectivity among these elements is defined as in equation (4.3), by means
of the connectivity kernel γµω(ξi, ξj). The entries of the associated matrix Aij are
visualized in Figure 9. It is evident the quasi block structure of the matrix with a
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Figure 7. The experiment of Fields, Heyes and Hess. The pro-
posed stimulus (on the left) and the perceptual unit present in it
(right) [23]

Figure 8. In the image on the left a random distribution of seg-
ments and a coherent structure are present. On the right the first
eigenvector of the affinity matrix is shown. In red are visualized the
segments on which the eigenvector is greater than a given thresh-
old.

principal block on the top left and small blocks on the quasidiagonal structure. The
principal block corresponds to the coherent object and the diagonal to the correlated
ones. The eigenvalue problem (4.4) is faced and eigenvalues of the associated affinity
matrix are computed.

Figure 9 right shows the ordered distributions of eigenvalues, where a dominant
eigenvalue is present. The corresponding eigenvector is visualized in Figure 8 (right)
and individuates the coherent perceptual unit.

In the second experiment a stimulus containing 2 perceptual units is present. As
before we compute the connectivity kernel γµω(ξi, ξj) and the associated matrix
Aij . The eigenvalue problem (4.4) is faced and eigenvalues of the associated affinity
matrix are computed. The first eigenvector of the affinity matrix is computed and
shown in Figure 10 (top right). After that the affinity matrix is updated removing
the detected perceptual unit. The first eigenvector of the updated affinity matrix
is visualized in Figure 10 (bottom left). The procedure is iterated for the next unit
which only contains two oriented element (bottom right).
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Figure 9. On the left is visualized the affinity matrix. On the
right its eigenvalues are shown.

Figure 10. A stimulus containing 2 perceptual units (top left) is
segmented. After that the first eigenvector of the affinity matrix
is computed (top right), the affinity matrix is updated removing
the detected perceptual unit. The first eigenvector of the updated
affinity matrix is visualized (bottom left). The procedure is iter-
ated for the next unit (bottom right).
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