Skip to main content

Advertisement

Log in

Granger causality-based synaptic weights estimation for analyzing neuronal networks

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Granger causality (GC) analysis has emerged as a powerful analytical method for estimating the causal relationship among various types of neural activity data. However, two problems remain not very clear and further researches are needed: (1) The GC measure is designed to be nonnegative in its original form, lacking of the trait for differentiating the effects of excitations and inhibitions between neurons. (2) How is the estimated causality related to the underlying synaptic weights? Based on the GC, we propose a computational algorithm under a best linear predictor assumption for analyzing neuronal networks by estimating the synaptic weights among them. Under this assumption, the GC analysis can be extended to measure both excitatory and inhibitory effects between neurons. The method was examined by three sorts of simulated networks: those with linear, almost linear, and nonlinear network structures. The method was also illustrated to analyze real spike train data from the anterior cingulate cortex (ACC) and the striatum (STR). The results showed, under the quinpirole administration, the significant existence of excitatory effects inside the ACC, excitatory effects from the ACC to the STR, and inhibitory effects inside the STR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The i − th equation of the reduced model reads \({x_{t}^{i}}=\sum \limits _{r=1}^{p}b_{r}^{i,1}x_{t-r}^{1}+\cdots +\sum \limits _{r=1}^{p}b_{r}^{i,j-1}x_{t-r}^{j-1}+ \sum \limits _{r=1}^{p}b_{r}^{i,j+1}x_{t-r}^{j+1}+\cdots +\sum \limits _{r=1}^{p}b_{r}^{i,n}x_{t-r}^{n}+ \eta ^{\textbf {i,j}}\), where the b’s are the corresponding projection coefficients.

  2. This means that the estimated weight vector \(\hat \alpha ^{i}=(\hat \alpha _{i_{1}},\hat \alpha _{i_{2}},\cdots ,\hat \alpha _{i_{k}})\) is normalized by its l 1 norm \(\|\hat \alpha ^{i}\|_{1}:=|\hat \alpha _{i_{1}}|+|\hat \alpha _{i_{2}}|+\cdots + |\hat \alpha _{i_{k}}|\). Then the normalized weight vector \(\hat \alpha ^{i}/\|\hat \alpha ^{i}\|_{1}\) will have unit l 1 vector norm.

References

  • Arnold, A., Liu, Y., & Abe, N. (2007). Temporal causal modeling with graphical Granger methods. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 7, 66–75.

    Article  Google Scholar 

  • Baccala, L.A., & Sameshima, K. (2001). Partial directed coherence : a new concept in neural stucture determination. Biological Cybernetics, 84, 463–474.

    Article  CAS  PubMed  Google Scholar 

  • Barnett, L., & Seth, A.K. (2014). The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of Neuroscience Methods, 223, 50–68.

    Article  PubMed  Google Scholar 

  • Barrett, A.B., & Barnett, L. (2013). Granger causality is designed to measure effect, not mechanism. Frontiers in Neuroinformatics, 7, 1–2.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300.

    Google Scholar 

  • Bressler, S.L., & Seth, A.K. (2011). Wiener-Granger Causality: A well established methodology. NeuroImage, 58, 323–329.

    Article  PubMed  Google Scholar 

  • Cadotte, A.J., DeMarse, T.B., He, P., & Ding, M. (2008). Causal measures of structure and plasticity in simulated and living neural networks. PLoS Computational Biology, 3, 1–14.

    Google Scholar 

  • Cadotte, A.J., DeMarse, T.B., Mareci, T.H., Parekh, M.B., Talathi, S.S., Hwang, D.U., Ditto, W.L., Ding, M., & Carney, P.R. (2010). Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. Journal of Neuroscience Methods, 189, 121–129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhamala, M., Rangarajan, G., & Ding, M. (2008). Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage, 41, 354–362.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding, M., Chen, Y., & Bressler, S.L. (2006). Granger Causality: Basic Theory and Application to Neuroscience. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, (pp. 437–460). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

    Chapter  Google Scholar 

  • Gomez, L., Budelli, R., Saa, R., Stiber, M., & Segundo, J.P. (2005). Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biological Cybernetics, 92, 110–127.

    Article  PubMed  Google Scholar 

  • Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.

    Article  Google Scholar 

  • Granger, C. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.

    Article  Google Scholar 

  • Greene, W.H. (2002). Econometric Analysis, fifth ed. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Guo, S., Seth, A.K., Kendrick, K.M., Zhou, C., & Feng, J. (2008). Partial Granger causality – Eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods, 172, 79–93.

    Article  PubMed  Google Scholar 

  • Hu, S., Dai, G., Worrel, G. A., Dai, Q., & Liang, H. (2011). Causality analysis of neural connectivity: critical examination of existing methods and advances of new methods. IEEE Transactions on Neural Networks, 22, 829–844.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang, J.J., Yen, C.T., Liu, T.L., Tsao, H.W., Hsu, J.W., & Tsai, M.L. (2013). Effects of dopamine D2 agonist quinpirole on neuronal activity of anterior cingulate cortex and striatum in rats. Psychopharmacology, 227, 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E.M. (2003). Simple models of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Putrino, D., Ghosh, S., & Brown, E.N. (2011). A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Computational Biology, 7, 3.

    Google Scholar 

  • Kitagawa, G. (2010). Introduction to Time Series Modeling: Chapman & Hall/CRC Monographs on Statistics & Applied Probability.

  • Krumin, M., & Shoham, S. (2010). Multivariate autoregressive modeling and Granger causality analysis of multiple spike trains. Computational Intelligence and Neuroscience, 752428.

  • Lehky, S.R. (2010). Decoding poisson spike trains by gaussian filtering. Neural Computation, 22, 1245–1271.

    Article  PubMed  Google Scholar 

  • Luo, Q., Lu, W., Cheng, W., Valdes-Sosa, P.A., Wen, X., Ding, M., & Feng, J. (2013). Spatio-temporal Granger causality: A new framework. NeuroImage, 79, 241–263.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis: Springer.

  • Marinazzo, D., Liao, W., Chen, H., & Stramaglia, S. (2011). Nonlinear connectivity by Granger causality. NeuroImage, 58, 330–338.

    Article  PubMed  Google Scholar 

  • Michailidis, G., & d’Alche-Buc, F. (2013). Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues. Mathematical Biosciences, 246, 326–334.

    Article  PubMed  Google Scholar 

  • Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., & Veidenbaum, A.V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22, 791–800.

    Article  PubMed  Google Scholar 

  • Nedungadi, A.G., Rangarajan, G., Jain, N., & Ding, M. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27, 55–64.

    Article  PubMed  Google Scholar 

  • Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M, Chichilnisky, E.J., & Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quinn, C.J., Coleman, T.P., Kiyavash, N., & Hatsopoulos, N.G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30, 17–44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum, R., Trousdale, J., & Josic, K. (2011). The effects of pooling on spike train correlations. Frontiers in Neuroscience, 5, 1–10.

    Article  Google Scholar 

  • Sameshima, K., & Baccala, L. A. (1999). Using partial directed coherence to describe neuronal ensemble interactions. Journal of Neuroscience Methods, 94, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Seth, A.K. (2005). Causal connectivity of evolved neural networks during behavior. Network, 16, 35–54.

    Article  PubMed  Google Scholar 

  • Seth, A.K., & Edelman, G.M. (2007). Distinguishing causal interactions in neural populations. Neural Computation, 19, 910–933.

    Article  PubMed  Google Scholar 

  • Seth, A.K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods, 186, 262–273.

    Article  PubMed  Google Scholar 

  • Shao, P.C., Tseng, W.T., Kuo, C.C., Shann, W.C., Tsai, M.L., & Yen, C.C. (2013). Effects of spike sorting error on the Granger causality index. Neural Networks, 46, 249–259.

    Article  PubMed  Google Scholar 

  • Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation, 19, 1503– 1527.

    Article  PubMed  Google Scholar 

  • Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., & Cai, D. (2014). Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems. PLoS ONE, 9, 2.

    Google Scholar 

  • Zhu, L., Lai, Y.C., Hoppensteadt, F.C., & He, J. (2003). Probing changes in neural interaction during adaptation. Neural Computation, 15, 2359–2377.

    Article  PubMed  Google Scholar 

  • Zou, C., Ladroue, C., Guo, S., & Feng, J. (2010). Identifying interactions in the time and frequency domains in local and global networks - A Granger causality approach. BMC Bioinformatics, 11, 337.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers and editors for their valuable comments, which led to a clearer presentation. This work was supported by the National Science Council of Taiwan under the grants NSC-101-2115-M-030-004, NSC-102-2313-B-197-001, NSC-102-2633-B-029-001, MOST 103-2633-B-029-001, and the Fu Jen Catholic University under the grant A0502004. The Matlab code used for this study is available to interested readers upon request.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng-Li Tsai or Chien-Chang Yen.

Additional information

Action Editor: Rob Kass

Appendix: Derivation of the NSI using simple network

Appendix: Derivation of the NSI using simple network

Here, we re-formulate the NSI using the simple network (Fig. 1). Let u = α x + β y + γ z form the BLP of w, then there exist p, {f r , r = 1, 2, ⋯, p}, and {d r , r = 1, 2, ⋯, p} such that \(w_{t}={\sum }_{r=1}^{p}[f_{r}u_{t-r}+d_{r}w_{t-r}]+\epsilon _{t}\), where 𝜖 is a stationary white noise possessing the smallest variance among \(\mathcal {G} =span(\{x,y,z,v_{1},v_{2},v_{3}\})\). Replacing u with the weighted trajectory, we obtain

$$ \begin{array}{lcl} w_{t} & = & \sum\limits_{r=1}^{p}[f_{r}u_{t-r}+d_{r}w_{t-r}]+\epsilon_{t} \\ & = & \sum\limits_{r=1}^{p}[f_{r}(\alpha x_{t-r}+\beta y_{t-r}+\gamma z_{t-r})+d_{r}w_{t-r}]+\epsilon_{t} \\ & = & \sum\limits_{r=1}^{p}[\alpha f_{r}x_{t-r}+\beta f_{r}y_{t-r}+\gamma f_{r}z_{t-r}+d_{r}w_{t-r}]+\epsilon_{t}. \end{array} $$
(A.1)

On the other hand, fitting to data the following empirical regression

$$ w_{t} = \sum\limits_{r=1}^{p}[a_{r}x_{t-r}+b_{r}y_{t-r}+c_{r}z_{t-r}+g_{r}v_{t-r}+d_{r}w_{t-r}]+\tilde{\epsilon_{t}}, $$
(A.2)

where \(g_{r}v_{t-r}:={\sum }_{k=1}^{3}g_{k,r}v_{k,t-r}\) for convenience.

  • If v is stochastically independent of x,y,z,w, then we have g r ≡ 0. Since {a r },{b r },{c r } can be obtained through Least-Squares method, comparing Eq. (A.2) with Eq. (A.1), we have

    $$ \sum\limits_{r=1}^{p}a_{r}=\alpha\sum\limits_{r=1}^{p} f_{r},\> \sum\limits_{r=1}^{p}b_{r}=\beta\sum\limits_{r=1}^{p} f_{r},\> \sum\limits_{r=1}^{p}c_{r}=\gamma\sum\limits_{r=1}^{p} f_{r}, $$
    (A.3)

    and get

    $$ \alpha:\beta:\gamma=\sum\limits_{r=1}^{p}a_{r}:\sum\limits_{r=1}^{p}b_{r}:\sum\limits_{r=1}^{p}c_{r},\> \text{provided}\> \sum\limits_{r=1}^{p}f_{r}> 0, $$
    (A.4)

    where \(sgn(\alpha )=sgn\left (\sum \limits _{r=1}^{p}a_{r}\right )\), \(sgn(\beta )=sgn\left (\sum \limits _{r=1}^{p}b_{r}\right )\), and \(sgn(\gamma )=sgn\left (\sum \limits _{r=1}^{p}c_{r}\right )\).

  • If v is linear dependent of x,y,z,w, then g r ≫0 and {a r },{b r },{c r } will be affected. However, since 𝜖 in Eq. (A.1) possessing the smallest variance among \(\mathcal {G}\), taking out v does not increase the variance of \(\tilde {\epsilon }\), therefore we still can correct the model coefficients by ruling out the useless information v.

Finally, the neuron synaptic index from x, y, z to w are defined respectively as

$$ \begin{array}{l} N_{x\to w}:=\frac{\alpha}{|\alpha|+|\beta|+|\gamma|}F_{u\to w},\\ N_{y\to w}:=\frac{\beta}{|\alpha|+|\beta|+|\gamma|}F_{u\to w}, \\ N_{z\to w}:=\frac{\gamma}{|\alpha|+|\beta|+|\gamma|}F_{u\to w}, \end{array} $$
(A.5)

where |N xw |+|N yw |+|N zw | = F uw is the GC index from the weighted trajectory u = α x + β y + γ z to the target trajectory w.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, PC., Huang, JJ., Shann, WC. et al. Granger causality-based synaptic weights estimation for analyzing neuronal networks. J Comput Neurosci 38, 483–497 (2015). https://doi.org/10.1007/s10827-015-0550-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0550-z

Keywords

Navigation