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Abstract

Gonadotropin-releasing hormone (GnRH) neurons exhibit at least two intrinsic modes of action 

potential burst firing, referred to as parabolic and irregular bursting. Parabolic bursting is 

characterized by a slow wave in membrane potential that can underlie periodic clusters of action 

potentials with increased interspike interval at the beginning and at the end of each cluster. 

Irregular bursting is characterized by clusters of action potentials that are separated by varying 

durations of interburst intervals and a relatively stable baseline potential. Based on recent studies 

of isolated ionic currents, a stochastic Hodgkin-Huxley (HH)-like model for the GnRH neuron is 

developed to reproduce each mode of burst firing with an appropriate set of conductances. Model 

outcomes for bursting are in agreement with the experimental recordings in terms of interburst 

interval, interspike interval, active phase duration, and other quantitative properties specific to each 

mode of bursting. The model also shows similar outcomes in membrane potential to those seen 

experimentally when tetrodotoxin (TTX) is used to block action potentials during bursting, and 

when estradiol transitions cells exhibiting slow oscillations to irregular bursting mode in vitro. 

Based on the parameter values used to reproduce each mode of bursting, the model suggests that 

GnRH neurons can switch between the two through changes in the maximum conductance of 

certain ionic currents, notably the slow inward Ca2+ current Is, and the Ca2+ -activated K+ current 

IKCa. Bifurcation analysis of the model shows that both modes of bursting are similar from a 

dynamical systems perspective despite differences in burst characteristics.
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1 Introduction

Gonadotropin-releasing hormone (GnRH) neurons are neurosecretory cells of the 

diencephalon that regulate fertility in vertebrates through the release of GnRH in the median 

eminence. GnRH stimulates the release of two gonadotropins from the anterior pituitary, 

making GnRH neurons the apex of the hypothalamo-pituitary-gonadal axis. A pulsatile 

profile of GnRH release is needed for the secretion of gonadotropins, which is regulated 

primarily by the frequency of GnRH pulses (Belchetz et al. 1978). The interval between 

peaks of GnRH ranges from minutes to hours, depending on reproductive state (Moenter 

2010), and differentially regulates the release of the two gonadotropins (Wildt et al. 1981).

Gonadal steroids play a role in the regulation of GnRH release. For example, estradiol is 

involved in the negative homeostatic feedback of GnRH in males and during much of the 

menstrual or estrous cycle in females, as well as in the positive feedback generation of the 

preovulatory GnRH surge in females (Herbison 1998; Moenter et al. 2009; Christian and 

Moenter 2010). Because GnRH neurons do not express detectable amounts of steroid 

receptors other than the beta isoform of the estradiol receptor, most steroid regulation is 

likely mediated via steroid-sensitive afferents (Wintermantel et al. 2006).

The mechanism(s) underlying pulsatile GnRH secretion is still an active area of research. 

Work on other neuroendocrine systems suggests that the electrical activity of GnRH neurons 

affects the profile of GnRH release (Dutton and Dyball 1979). Consistent with this, GnRH 

release in the median eminence is typically action potential-dependent (Glanowska and 

Moenter 2015). Studies of the electrophysiology of GnRH neurons have revealed sustained 

bursting activity with an interburst interval ranging from less than a minute (Nunemaker et 

al. 2002; Lee et al. 2010; Chu et al. 2012; Lee et al. 2012) to several minutes (Lee et al. 

2012), which is considerably shorter than the period of hormone release. However, spectral 

analysis of extracellular recordings, consisting mainly of these less than a minute “short-

bursting” events (Duan et al. 2011), showed a significant low frequency component with a 

period similar to that of hormone release (Nunemaker et al. 2003). Through long term 

measurement of action potential firing rate, it was suggested by this latter study that the low 

frequency component is attributable to slow modulation of the interburst interval.

Since bursts are a fundamental unit of activity contributing to mean firing rate, it is 

important to understand how they are generated in GnRH neurons. Whole-cell patch-clamp 

experiments have shown the existence of at least two distinct modes of bursting in GnRH 

neurons. The first mode is rarely observed (1–2% of cells) and referred to as “parabolic” 

because of its spike frequency profile during the active phase that resembles a downward-

opening parabola (Chu et al. 2012). This type of bursting is also characterized by slow 

oscillations (10–20s) that appear to underlie the fast spiking activity, and a significant 

correlation between next silent duration and active phase duration. The second and more 

frequently observed mode is referred to as “irregular”, due to its stochastic nature that is 

marked by variations in its interburst interval and burst duration, no significant correlation 

between its active phase duration and next silent phase duration, and the absence of small-

amplitude slow oscillations in membrane potential underlying its burst (Chu et al. 2012). 

Recordings show that irregular bursting can occur with quiescent periods on the order of 
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minutes (Lee et al. 2012), but in this study, we will only focus on “short-bursting” (Duan et 

al. 2011), in which interburst interval is typically less than one minute.

Experimental evidence revealed that bursting in GnRH neurons is an intrinsic feature of 

these cells; meaning that bursting persists even when synaptic connections are blocked 

(Nunemaker et al. 2002; Lee et al. 2012). This observation indicates that bursting can occur 

without external stimuli, and can be generated solely by the dynamics of voltage- and 

calcium-gated ion channels that control the influx and efflux of ionic currents. Many of these 

ionic currents including the hyperpolarization-activated current Ih, small conductance 

calcium-activated potassium current IKCa, transient potassium current IA, and sodium 

current INa are affected by estradiol via positive or negative feedback loops (Chu and 

Moenter 2006; Pielecka and Moenter 2006; Chu et al. 2009; Pielecka-Fortuna et al. 2011). 

Much work has been done to quantify these and other major ionic currents (Na+, K+, Ca2+) 

in GnRH neurons based on recordings obtained from extracellular and patch-clamp 

configurations. Equipped with these electrophysiological data, we can construct 

biophysically detailed models to help illustrate how these different intrinsic bursting 

activities are generated.

In this present study, we develop a Hodgkin-Huxley-like (HH) model to illustrate the 

contributions of various physiologically identified ionic currents in the formation of 

parabolic and irregular bursts in isolated GnRH neurons. To date, no other published models 

for the GnRH neuron have captured both modes of bursting, while keeping the set of kinetic 

parameters for ionic currents invariant. The model developed for this study extends previous 

bursting models (LeBeau et al. 2000; Fletcher and Li 2009; Duan et al. 2011; Csercsik et al. 

2012) by using an updated set of ionic currents that are based on more recent 

electrophysiological data. The new set of currents includes the previously excluded IA and 

Ih, as well as updates to the delayed rectifier potassium current IK, the high-voltage activated 

calcium current IHVA, and the fast and persistent sodium currents INaF/INaP. Using the 

updated model, we predict the ionic mechanisms required to generate both types of bursting 

in GnRH neurons. We demonstrate that the mode of bursting simulated by the model can be 

switched between the two types through minor changes in the maximum conductance of a 

few currents, suggesting that although the two modes of bursts have different characteristics, 

they possess the same underlying dynamics. In order to test the claim that the two types of 

bursting are similar mathematically, the dynamics of both are analyzed using bifurcation 

techniques. A model for the neuromodulatory effect of acutely applied estradiol is also 

proposed to predict the ionic currents that can be modulated for the GnRH neurons to 

transition between distinct electrical states under the effect of estradiol.

2 Materials and Methods

2.1 Mathematical model

A single compartment HH model (Fig. 1a) was used to describe the electrical behavior 

observed during whole-cell recordings of GFP-identified GnRH neurons in adult mice. The 

voltage equation is given by
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(1)

where Cm = 20 pF is an experimentally observed value of membrane capacitance (Pielecka-

Fortuna et al. 2011), V is the voltage in mV, and t is the time in ms. INaF and INaP are fast 

and persistent sodium currents, IA and IK are transient and delayed-rectifier potassium 

currents, ILVA and IHVA are low and high voltage activated calcium currents, Is is a slow 

inward calcium current, Ih is a hyperpolarization activated current, IKCa is a calcium-

activated potassium current, IL is a constant conductance leak current, and Iapp is the applied 

current (zero unless otherwise stated). The leak current was not active during bursting 

simulations as its inclusion suppressed the intrinsic excitability of the system. Each ionic 

current has the form Ij = G(V − Ej), where G (a function of the gating variables) is the 

conductance in nS, and Ej is the reversal potential in mV. Unless otherwise stated, the ionic 

current Ij is modeled using the HH formalism, given by

(2)

(3)

(4)

(5)

(6)

where g in Eq. (2) is the maximum membrane conductance in nS, m and h are activation and 

inactivation gating variables, and p represents the number of independent activation gates. 

Equations (4) and (5) describe the kinetics of the gating variables appearing in Eq. (2), 

where m∞, h∞ are the voltage-dependent steady-states of (in)activation given by Eq. (6), 

and τm, τhi are the voltage-dependent time constants of (in)activation in ms, assumed to 

follow various functional forms (see caption of Table 1 for more details). The inactivation 

variable h is a weighted sum of gating variables hi with weights 0 ≤ fi ≤ 1, for i = 1, …, n, 

satisfying . From Eq. (5), each hi has the same steady-state but different voltage-

dependent time constants. The weights fi represent the fraction of conducting channels that 

inactivate with time constant τhi (Willms et al. 1999). For some currents, we found that a 

value of n > 1 provided better fits of voltage-clamp traces, suggesting that these currents 

inactivate with multiple time constants. Table 1 provides values of kinetic parameters for 

currents that have gating dynamics described by Eqs. (4) and (5). The currents INaF and IKCa 
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are not included in this table because they are modeled using different gating schemes. 

Maximum conductance and reversal potentials for each current are provided in Table 2.

The dynamics of cytosolic Ca2+ concentration in μM, denoted by Ca, were also accounted 

for in the model. Some previous models of the GnRH neuron assume compartmental 

calcium dynamics (LeBeau et al. 2000; Duan et al. 2011; Csercsik et al. 2012) but in order to 

minimize the number of free parameters, a single compartment model was used here. The 

Ca2+ submodel assumes influx of Ca2+ through voltage-gated calcium channels and efflux 

of Ca2+ via membrane pumps. The governing equations are given by

(7a)

(7b)

(7c)

where f = 0.0025 is the fraction of free (unbound) Ca2+ in the cytosol, kp = 0.265 ms−1 is the 

pump rate, Kp = 1.2 μM and α = 1.85 × 10−3 μM/(pA·ms) is a current to flux conversion 

factor. The Hill function in Eq. (7a) is assumed to capture the overall effect of the plasma 

membrane Ca-ATPase (PMCA) pump and the Na+/Ca2+ exchanger. A Hill coefficient of 2 

was chosen based on its use in previous models to describe efflux of Ca2+ via the PMCA 

pump (LeBeau et al. 2000; Duan et al. 2011). The value of α was determined by Eq. (7c), 

where F is Faraday’s constant, the factor 2 is the valence of the Ca2+ cation, β=106 is a 

scaling factor that ensures the concentration is in μM, and Vcyt = 2.8 pL is the volume of the 

somatic compartment, estimated by digitizing a confocal image of a representative GnRH 

neuron (Hemond et al. 2012). The estimation of Vcyt was obtained by fitting the 2D 

coordinates of the soma to an ellipse and calculating the volume of the resulting ellipsoid by 

setting the length of the undetermined axis equal to that of ellipse’s minor axis.

2.1.1 Ionic currents—All ionic currents except for INaF, Is, and IKCa were fit to current 

traces from voltage-clamp experiments. For Ih, a published voltage-clamp recording was 

digitized to obtain estimates of its kinetic parameters using the software package 

NEUROFIT (Willms 2002), which implements the full-trace fitting method (Willms et al. 

1999). The experimentally measured model parameters, such as the reversal potential and 

V1/2 of activation, were used as initial guesses for the fitting routine. The full-trace method 

was not used in the case of ILVA, IHVA, IA, IK, INaF, INaP, and IL, because either these 

currents were not of the HH form (INaF), the voltage-clamp experiments to characterize them 

did not follow the protocol required by NEUROFIT (INaP, IL), or the data available was 

insufficient (ILVA, IHVA, IA, IK). For these currents, Eqs. (2)–(6) were used as a prototype 

model and parametrized manually to fit the voltage-clamp data that was available. In all 

figures, we use the convention that inward currents are negative.
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2.1.2 INaF and INaP—Two types of tetrodotoxin (TTX)-sensitive Na+ currents have been 

isolated experimentally in mouse GnRH neurons (Chu and Moenter 2006; Wang et al. 

2010); namely, (a) the fast Na+ current INaF, primarily responsible for the generation of 

action potentials (Wang et al. 2010), and (b) the low-amplitude persistent Na+ current INaP 

identified by Wang et al. (2010) using a slow (50 mV/s) depolarizing voltage ramp. Wang et 

al. (2010) showed that in voltage-clamp experiments, the amplitude of INaF during an action 

potential reaches above 1 nA, indicating a relatively large conductance. Meanwhile, INaP is 

characterized by its activation at more hyperpolarized membrane potentials than INaF and the 

large overlap between its steady-state activation and inactivation curves (Magistretti and 

Alonso 1999).

A three-state Markov model by Destexhe et al. (1994), depicted in Fig. 1b, was used to 

describe INaF. The equation for INaF with the three-state gating scheme is given by

(8)

where O represents the proportion of “open” or conducting fast Na+ channels. The cubic 

exponent in Eq. (8) represents the number of independent subunits, analogous to the 

parameter p in Eq. (2). The use of standard HH formalism for INaF was excluded because (i) 

it does not directly take into account recovery from inactivation (Kuo and Bean 1994), and 

(ii) it leads to additional inconsistencies with experimental data in the GT1 cell line (Van 

Goor et al. 2000). Both formalisms of fast sodium, however, were tested for compatibility 

with the combined model by fitting it to a 20 kHz recording of spontaneously generated 

action potentials in the  plane. This was accomplished by employing a genetic 

algorithm (GA) parameter search using the fitness function formulated by LeMasson and 

Maex (2001), which proved to be successful in parametrizing complex neuronal models 

(Achard and De Schutter 2006; Van Geit et al. 2007). The main advantage of this method is 

that by fitting to a trajectory density in the phase plane, the performance of the fitness 

function is not dependent on the phase between the model and observed signals. For the GA 

trials, we selected all parameters appearing in the INaF model to be free and assumed the 

presence of noise to ensure the formation of spontaneous action potentials. The conductance 

parameters for the other currents in the system were selected to be close to the girr-parameter 

values (see Table 2). For each GA iteration, the system was initially integrated for 2500 ms 

to eliminate transients, followed by another 6000 ms to obtain data points for evaluation of 

the fitness function. Overall, we found that the three-state Markov model was most 

successful in fitting the data because it captured more precisely the initiation and 

repolarization phases of the action potentials (see Online Resource 1a) when compared to 

that produced by the HH model. For both models, the best iteration generated by the GA 

consistently attained maximum voltages above the recorded value, but the AP amplitudes 

were still within the experimentally observed range (Chu and Moenter 2006). Based on these 

findings, we elected to incorporate the three-state Markov model into the combined model. 

Rate parameters for the three-state model are provided in the caption of Fig. 1b.

The model for INaP was based on the persistent sodium current model developed by 

Magistretti and Alonso (1999) for EC cells. However, the voltage-ramp simulations of INaP 
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obtained from their model showed a more hyperpolarized activation threshold and slower 

inactivation at depolarized potentials compared with the GnRH neuron data of Wang et al. 

(2010). To address these discrepancies, we assumed that the equation for INaP has the form

(9)

and used the GA to fit the conductance parameter gNaP and the gating parameters of mNaP 

and hNaP to the digitized voltage-ramp recording of Wang et al. (2010). In this case, the 

fitness function was the discrete L2-norm of the difference between the interpolated-

digitized recording and the voltage-ramp simulation generated by Eq. (9). The best iteration 

obtained from the GA produced a good fit to the digitized data (see Online Resource 2). The 

small time constant obtained for mNaP was consistent with the instantaneous activation term 

used by Magistretti and Alonso (1999).

2.1.3 ILVA and IHVA—Experimental work (Kato et al. 2003; Sun et al. 2010) has 

demonstrated that Ca2+ current in GnRH neurons is conducted by several types of voltage-

gated Ca2+ channels that can be classified into two groups: low-voltage activated (LVA) or 

high-voltage activated (HVA) channels. Sun et al. (2010) isolated a low amplitude (10 pA) 

Ca2+ current, likely carried by T-type Ca2+ channels (Zhang et al. 2009), and a larger 

amplitude HVA current (0.5 nA) carried by L, N, P/Q, and R-type channels in varying 

proportions. Three distinct Ca2+ currents were included in the model: ILVA, accounting for 

the contribution from LVA channels, IHVA, accounting for the contribution from HVA 

channels, and Is, a slow inward Ca2+ current required for generating bursting in the model.

We assumed that ILVA has the form

(10)

which is the same equation used to model the T-type Ca2+ current in (LeBeau et al. 2000). 

The values of the kinetics parameters for mLVA and hLVA were obtained from (LeBeau et al. 

2000), while the maximum conductance gLVA was allowed to vary. With this choice of 

parameters, we found that the voltage-clamp simulations of Eq. (10) agree qualitatively with 

the recordings in Fig. 7A,E of (Zhang et al. 2009). The maximum conductance of gLVA was 

then adjusted to make the simulation of ILVA evoke, under the voltage-clamp protocol 

consisting of a long pre-pulse to −100 mV followed by step to −50 mV, a current with 

amplitude less than 10 pA, consistent with the findings in Sun et al. (2010).

Since voltage-clamp data for isolated subtypes of HVA currents was not available, IHVA was 

modeled as a single current (Amini et al. 1999). The model for IHVA assumes that dominant 

HVA channels exhibit similar activation kinetics, but vary in their inactivation kinetics. A 

value of n = 2 in Eq. (3) with both fast and slow components yielded the best fit to voltage-

clamp data. Based on this, the resulting current equation is

(11)
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where fHVA = 0.2. The steady state (in)activation parameters were obtained from (Sun et al. 

2010), τm was adapted from the R-type model of Miyahso et al. (2001), and τh1 and τh2 
were assumed to be constant. Online Resource 3 shows the combined ILVA and IHVA model 

behavior when simulated under two voltage protocols used in (Sun et al. 2010) to quantify 

the combined LVA/HVA current. The combined model captured the rapid activation and 

slow inactivation of current (Online Resource 3a), reproduced the large amplitude tail-

currents (Online Resource 3b), and generated a peak I − V curve (data not shown) that 

agrees well with experimental results (Sun et al. 2010).

2.1.4 IA and IK—GnRH neurons have been shown to conduct at least two types of voltage-

gated K+ currents (DeFazio and Moenter 2002; Pielecka-Fortuna et al. 2011). The first has 

been identified as an A-type current (IA), because of its sensitivity only to high 

concentrations (mM) of the blocker 4-aminopyradine (4-AP) and its transient kinetics, 

whereas the second has been identified as a delayed rectifier current (IK), because of its 

sensitivity to tetra-ethyl-ammonium (TEA) and its very slow inactivation. Voltage-clamp 

recordings revealed that IA and IK have large maximum amplitudes, superseded only by the 

spike-generating INaF (Wang et al. 2010). Estimates for the steady-state (in)activation 

parameters for IA and IK were obtained from (DeFazio and Moenter 2002; Pielecka-Fortuna 

et al. 2011). Curves for the voltage-dependent time constants were adapted from existing 

models of IK and IA (Huguenard and McCormick 1992; Bekkers 2000). Maximum 

conductances and time constant parameters of these currents were estimated simultaneously 

by fitting their current-equations to the voltage-clamp recording of Fig. 1A in (Pielecka-

Fortuna et al. 2011). In these recordings, the combined IA and IK currents were isolated 

pharmacologically using TTX (which blocks Na+ channels) and cadmium (which blocks 

Ca2+ channels). The current equation used for the slow-inactivating IK current is

(12)

In order for Eq. (12) to be consistent with the empirical steady-state activation curve for IK 

(Pielecka-Fortuna et al. 2011), the equation for mK,∞ (Eq. (6)) was raised to the power 1/4. 

For the IA current, the best fit to voltage-clamp data was attained by setting n = 2 in Eq. (3), 

i.e., by assuming that IA has fast and slow inactivation components. The resulting equation 

for IA is then

(13)

where fA = 0.8. The resulting fit is plotted in Online Resource 4, which shows the two 

important features of the combined K+ currents; namely, (i) the isolation of IK during 

voltage steps from pre-pulses depolarized above −40 mV to −10 mV (which effectively 

inactivate IA), and (ii) the generation of large amplitude transients during voltage steps from 

pre-pulses hyperpolarized below −40 mV to −10 mV (which effectively removes the 

inactivation of IA).
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2.1.5 Ih and IL—The hyperpolarization-activated current Ih is an inward current generated 

by hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. It has been 

shown that this current decreases interspike interval during repetitive spiking in GnRH 

neurons (Chu et al. 2010). Following the formulation used by Dickson et al. (2000) to 

describe Ih in EC cells, we assumed that the activation of Ih has both fast and slow 

components (Chu et al. 2010) as follows

(14)

where fh = 0.364. The voltage-clamp fit obtained with NEUROFIT is shown in Online 

Resource 5a.

The inclusion of the leak current IL in Online Resource 5b was based on a result of Chu et 

al. (2010) showing that a hyperpolarizing voltage ramp from −50 mV to −130 mV evokes a 

linear current as a function of ramp voltage when Ih is blocked. Based on this result, we 

propose a leak current of the form

(15)

The parameters gL and VL were estimated by fitting to the current recorded from the 

voltage-ramp experiment mentioned above. The fitted reversal potential of −65 mV for IL 

suggests the presence of a background current that may be attributable to a combination of 

Cl− channels and non-selective cation channels (Lu et al. 2007). In Online Resource 6, we 

included the results from additional verification of the model for Ih.

2.1.6 Is, IKCa, and Ca—The subsystem consisting of the currents Is, IKCa, and the 

intracellular Ca2+ concentration Ca was essential for simulating slow membrane potential 

oscillations and bursting. The equations for these quantities were based on those describing 

the slow inward Ca2+ current, Ca2+-dependent K+ current and intracellular Ca2+ 

concentration in the Plant model of the R15 neuron in Aplysia (Plant 1981), which was used 

as a simplified model for parabolic bursting in GnRH neurons (Chu et al. 2012). The 

equation for Is is given by

(16)

Although Is has not been isolated experimentally in GnRH neurons, it was included in the 

present model to account for the slow depolarization of the membrane potential observed 

during parabolic bursting.

In the present model, IKCa accounts for the current conducted by small conductance Ca2+-

activated K+ (SK) channels, which have been shown to regulate excitability in GnRH 

neurons (Liu and Herbison 2008). Similar to other GnRH neuronal models (Fletcher and Li 

2009; Duan et al. 2011), IKCa was assumed to have instantaneous, calcium-dependent 

activation according to the equation
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(17)

where K = 1.0 μM. The expressions for Is, IKCa, and Ca were parametrized simultaneously 

by adjusting the values of their free parameters within their physiological ranges to capture 

two essential features: (i) the slow oscillations in membrane potential when gNaF = gNaP = 0, 

and (ii) parabolic bursting with the appropriate spike count, active phase duration, period, 

and interburst interval when gNaF, gNaP ≠ 0. The parametrization was further constrained by 

ensuring that intracellular Ca2+ levels remained within its physiological range (below 1 μM) 

at all times. In order for the model to exhibit slow oscillations and parabolic bursting with 

the same properties as observed in (Chu et al. 2012), the maximum conductances of certain 

ionic currents were adjusted from their fitted values (gvc), to those that produce parabolic 

bursting (gp) (see Table 2).

2.2 Noise

The results from stochastic simulations were obtained with an exponentially correlated noise 

term, η(t), added to Eq. (1), which is the same approach used by Longtin (1997) in a study of 

stochastic resonance in the Plant model. Following (Longtin 1997), η(t) was generated by an 

Ornstein-Uhlenbeck process of the form

(18)

where tc is the correlation time, D is the noise intensity, and gw(t) is a Gaussian white noise 

process. For stochastic simulations of both parabolic and irregular bursting, the noise 

parameters were assigned the values tc = 1500 ms and D = 1 pA2/ms. A large value of tc 

(equal to the time constant of ms) was chosen to account for noise in the system’s slow 

processes (Longtin et al. 2003). The noise intensity D was selected so that simulations of 

irregular bursting agree with experiment in terms of interburst interval and number of action 

potentials per burst. The same value of D was used for parabolic bursting to obtain regularity 

in the interburst interval and active phase duration, as observed experimentally.

Numerical integration of stochastic differential equations was carried out in XPPAUT 

(Ermentrout 2002) using the Euler-Maruyama method with a time-step of dt = 0.01 ms. The 

white noise process gw(t) was simulated in XPPAUT using the built-in functionality.

2.3 Time-dependent effect of pharmacological agents

The application of pharmacological agents, such as estradiol and TTX, can be described by 

altering the values of affected parameters within the model. Letting α represent these 

parameters, we can describe the gradual changes in their values using the following 

expression involving exponential decay

(19)
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where αi is the initial value of the parameter, Δα = αf − αi is the maximum change in 

parameter value due to the application of pharmacological agent, H(t) is the standard 

Heaviside function, t0 is the time of application, and τ is the characteristic time constant.

2.4 Afterdepolarization potentials (ADPs)

The contribution of an ionic current Ij to ADP formation was calculated using

(20)

where ΔIj = Ij(t) − Ij(t0), and t0 is the time at which ADPs begin to form. This formalism 

ensures that ADP-contribution increases positively during both an increase of an inward 

current or a decrease in an outward current relative to Ij(t0).

2.5 Software

Integration of differential equations was carried out using XPPAUT (Ermentrout 2002) with 

the adaptive Runge-Kutta or Gear solver. Bifurcation diagrams were computed with AUTO 

(Doedel and Oldeman 2007) and rendered using matplotlib (Hunter 2007). The genetic 

algorithm as implemented in MATLAB R2014b Optimization Toolbox (The MathWorks, 

USA) was used for the fittings of INaF and INaP. Source files for XPPAUT and AUTO are 

provided in Online Resource 8.

2.6 Slow-fast protocol

The protocol for conducting the slow-fast bifurcation analysis is adopted from previous 

studies (Rinzel and Lee 1987; Bertram et al. 1995; Izhikevich 2000) and is summarized as 

follows: (1) a set of slow variables are identified in the model through inspection of 

parameters; (2) a “fast” subsystem is formulated by treating the slow variables in the full 

system as quasistatic, i.e., slow variables are model parameters in the fast subsystem; (3) a 

single burst is simulated by the full model, and the values of the fast and slow variables are 

recorded; (4) at discrete time points along the burst, we compute a one-parameter bifurcation 

diagram for the fast subsystem with respect to one of the slow variables, and the other slow 

variables are set to their values obtained in step (3); and (5) for each bifurcation diagram, the 

phase plane solution of the full model is superimposed and the relationship between the 

phase trajectory and the bifurcation structure of the fast subsystem is examined.

3 Results

3.1 Parabolic Bursting

3.1.1 Burst Dynamics—It was demonstrated experimentally that 1–2% of GnRH neurons 

can spontaneously generate parabolic bursts of action potentials with slow oscillations 

underlying the bursts (Fig. 2a). This type of bursting can be generated by the model 

described by Eqs. (1)–(18) using the gp-conductance parameters listed in Table 2, as 

demonstrated by the simulation of membrane potential in Fig. 2b and the mean interspike 

interval (ISI) profile for a sample of 50 simulated parabolic bursts in Fig. 2c. Notice that in 

Fig. 2c, the mean ISI as a function of spike position has a discernable parabolic shape. While 
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parabolic bursts generated using the deterministic model always have approximately 30 

spikes, in the stochastic model, the active phase of the burst is occasionally prolonged due to 

noise, yielding additional spikes. This phenomenon is clearly demonstrated in the first burst 

of Fig. 2b (where we see a gap near the end of the burst), and it explains why we have data 

points in spike positions greater than 30 in Fig. 2c.

To capture this mode of oscillations, some of the current conductances, notably gK and gh, 

had to be adjusted from their fitted gvc-values. In particular, the value of gK was set so that 

simulations were consistent with recordings showing that spikes reach a minimum voltage of 

5–10 mV above the nadir of the underlying oscillation (Chu et al. 2012). Although, this 

behavior is compatible with the gvc-value of gK, it was still necessary to increase this 

conductance to its gp-value to ensure that the minimum interspike interval during the active 

phase of the burst is maintained close to the experimentally observed value of 100 ms. It was 

also necessary to decrease the conductance of Ih(gh) to make the underlying slow 

oscillations reach a nadir of approximately −70 mV. This phenomenon is explained in more 

detail later in this section. Finally, the contribution from the leak current IL was removed 

from model simulations since small values of gL (≥ 0.1 nS) blocked slow oscillations 

altogether. Using continuation methods, we investigated this phenomenon further, and found 

that by allowing gs and gKCa to vary, bursting (similar to that in Fig. 2b) can be still 

generated for gL < 0.4 nS, albeit with Ca2+-oscillations surpassing its physiological range. 

Similar to other conductances, the discrepancy between the fitted value of gL and that 

required for slow oscillations reflects a difference in the state of the cell between voltage-

clamp and current-clamp recording modes. The low value of gL required for parabolic 

bursting suggests that increasing the conductance of the leak current is a potential 

mechanism for stabilizing the membrane potential, either to trigger a resting state or an 

irregular bursting state.

In order to test the effect of noise on the parabolic bursting model, stochastic simulations 

were performed by coupling a stochastic process to Eq. (1) (see Section 2.2). Figure 2b 

shows that the addition of noise caused some variation in the duration of the active phase 

and the interburst interval, but the system still exhibited a regular pattern of parabolic 

bursting comparable to that observed experimentally, demonstrating robustness to stochastic 

fluctuations at the given noise intensity. Bursting can be still generated if the noise intensity 

is increased beyond D = 1 pA2/ms and up to D = 5 pA2/ms, but this will lead to wide 

variation in interburst interval and active phase duration, an outcome that is uncharacteristic 

of parabolic bursting observed in GnRH neurons.

It is important to point out that, although the simulation (Fig. 2b) appears to exhibit longer 

silent phase duration and higher peaks of action potentials relative the experimental 

recording (Fig. 2a), the period of underlying oscillations produced by the model is within the 

reported range (Chu et al. 2012), and the large amplitude spikes reaching +40 mV are 

consistent with those observed in irregular bursting cells (Chu et al. 2012) and cells excited 

by current injection (Chu et al. 2010). Nonetheless, the discrepancy in amplitude can be 

resolved in the model by setting gNaF = 175 nS, gNaP = 0.3 nS, and gK = 150 nS (results not 

shown), i.e., by enforcing a much lower density of active Na+ channels relative to the 

irregular burster (see girr in Table 2). Requiring such a drastic shift in Na+ conductances to 
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reduce spike amplitude suggests that cells capable of generating spikes reaching +40 mV or 

above in irregular bursting mode would also exhibit large amplitude spikes if triggered to 

burst in parabolic mode, under the assumption that the activation kinetics of the Na+ 

channels are invariant between the two modes of bursting.

3.1.2 Slow oscillations—It is hypothesized that slow oscillations in membrane potential 

are independent of Na+ current due to the observation that TTX is not effective at 

suppressing them (Chu et al. 2012). Therefore, to study the currents that are active in 

generating the slow oscillations underlying parabolic bursting, we simulated the effect of 

TTX using the parameter set gp with gNaF = gNaP = 0 Under these conditions, simulations 

revealed that the shape of the slow oscillations underlying parabolic bursting is determined 

by several ionic currents that are active close to the threshold for spiking, and by the 

dynamics of Ca2+ (Ca). Similar to experimental recordings of intracellular Ca2+ levels 

obtained from bursting GnRH neurons (Lee et al. 2010), the oscillations in Ca are close to 

π/2 out of phase with V, due to a delay in removal of intracellular Ca2+ (compare Figs. 

3a,b). As a result of the delay, intracellular Ca2+ continues to accumulate beyond the peak of 

the combined Ca2+ current (compare Figs. 3b–d). The latency in peak Ca2+ levels relative to 

V is important for the activation of IKCa, which contributes to the repolarization of the 

membrane potential to approximately −70 mV during the quiescent phase of parabolic 

bursting. In terms of absolute current amplitude, Is and IKCa are the largest during the slow 

oscillations (Fig. 3c), followed by IA, Ih, IK, and IHVA (Fig. 3d), suggesting that the Is, IKCa, 

Ca subsystem is primarily responsible for the generation of slow, oscillatory dynamics. 

Despite the relatively low amplitude of Ih, lowering the conductance of this current had the 

effect of increasing the amplitude of oscillations, because doing so attenuates its resonant 

behavior, i.e., the tendency of Ih to depolarize the membrane with increased 

hyperpolarization. Increasing the conductance of IA, on the other hand, lengthened the 

period of oscillations, but for high values of gA, oscillations were suppressed altogether. 

Furthermore, since the currents IK and IHVA activate at more depolarized potentials 

compared with IA and Ih, the effect of changing their maximum conductances is only 

apparent near oscillation peaks, as shown in Fig. 3d. In fact, simulations showed that an 

increase in gK lowers the maximum value of V obtained during oscillations, while an 

increase in gHVA leads to narrower peaks in the oscillations. Assuming that the currents 

underlying TTX-induced oscillations are a good approximation to those in the full bursting 

model, these observations indicate that IK and IHVA contribute most during the active phase 

of the burst rather than the quiescent phase.

3.1.3 Formation of afterdepolarization (ADP)—Another characteristic feature of 

parabolic bursting in GnRH neurons is the formation of an ADP after the final spike of the 

active phase, as seen in Fig. 4a. Current injection experiments by Chu et al. (2006) showed 

that ADPs in spontaneously firing (irregular bursting) cells were eliminated in the presence 

of TTX and modulated by the Ca2+ channel blocker cadmium. To investigate the potential 

role of Na+ and Ca2+ currents in the formation of ADPs during parabolic bursting, we 

analyzed the time course of individual ionic currents in a model-generated burst. Figure 4 

shows that Na+ and Ca2+ currents do indeed play a central role in defining ADPs that follow 

parabolic bursts produced by the model. More specifically, Fig. 4b shows the simulation of 
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an ADP after a parabolic burst, and Fig. 4c displays the contribution of Na+, Ca2+, and K+ 

currents (as defined in the Methods Section) to ADP-formation within the time interval [t0, 

t1], lying between the nadir of the last spike (t0) and some time point after the peak of the 

ADP (t1). The figure reveals that there is (i) a transient increase in Na+ current starting at t0, 

which contributes positively to ADP formation, (ii) a decrease in Ca2+ current, indicating a 

progressively declining positive contribution to ADPs, and (iii) a transient decrease 

(followed by transient increase) in K+ current starting at t0. The net effect is a small 

amplitude depolarization displayed in the inset of Fig. 4b. The decrease in Ca2+ current, 

starting at t0, is attributable to Is, whose slow activation allows the amplitude of the current 

to decrease as V approaches the Ca2+ reversal potential ECa = 82.5 mV. The decrease of Is in 

conjunction with activation of K+ currents (primarily IKCa), terminates the burst and 

repolarizes the membrane. The non-selective cation current Ih, on the other hand, has a 

negligible contribution to ADP formation because of its activation at hyperpolarized 

potentials and is not shown in Fig. 4c.

3.2 Irregular bursting

GnRH neurons also exhibit another mode of bursting behavior characterized by irregularity 

in interburst interval and active phase duration, a stable (non-oscillatory) baseline potential 

during quiescence, and APs undershooting the baseline (see Fig. 5a). The model was 

capable of reproducing this type of irregular bursting pattern by incorporating noise into the 

model (indicative of stochastic dynamics in both intracellular ionic concentrations and 

expression level of ionic channels) and by making maximum current conductances 

compatible with the set of parameters girr in Table 2. The increase in the value of gNaF 

allowed action potentials to reach +40–50 mV from a baseline potential of approximately 

−60 mV as recorded experimentally (Chu et al. 2012). Significant parameter shifts in gK, gs, 

and gKCa, relative to the set of parameters gp, were also required to transition the system to 

an irregular bursting mode from that of parabolic bursting. The decreases in gKCa and gs 

allowed the system to achieve a stable baseline potential of approximately −60 mV, which 

represents the average potential during quiescent phases of bursting. The increase in gK was 

needed for action potentials to achieve an afterhyperpolarization amplitude of approximately 

10 mV. In the absence of noise (i.e., when the model is not stochastic), the parameter set girr 

produced a quiescent neuronal model with a stable potential of V = −61 mV. Sustained 

irregular bursting was then initiated from this state by activating noise within the system. 

Simulations of noise-induced bursting initiated from the quiescent state showed variation in 

active phase duration, interburst interval, and a spike frequency profile that is not necessarily 

parabolic. A representative simulation (Fig. 5b) provides evidence for the variation in active 

phase duration and interburst interval. To provide statistical evidence that irregular bursts do 

not necessarily have a parabolic spike frequency profile, the mean ISI profile is plotted for a 

sample of 50 simulated irregular bursts in Fig. 5c. Comparing Fig. 5c to Fig. 2c, we see that 

irregular bursts exhibit more variation in ISI and do not produce a discernable parabolic ISI 

profile. As a further validation of the model, simulation of TTX-induced suppression of 

spiking during irregular bursting showed that the membrane stabilizes at a baseline potential 

close to that observed experimentally (Chu et al. 2012).
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The model also revealed that the duration of the interburst interval is dependent on the 

maximum conductance of IKCa. In fact, by lowering gKCa beyond a certain threshold, the 

deterministic model exhibits a tonic (or continuous) spiking behavior that can transition to 

bursting in the presence of noise. In other words, bursting can be initiated via noise applied 

to a deterministic quiescent or tonic spiking state, depending on the value of gKCa. 

Compared with irregular bursts initiated from a quiescent state (Fig. 6a), however, bursts 

initiated from a tonic spiking state (Fig. 6b) had, on average, an increased active phase 

duration (2.08 s vs 5.18 s), shorter interburst interval (11.89 s vs 6.12 s), and higher burst 

frequency (0.08 Hz vs 0.086 Hz). Therefore, a decrease in gKCa increases the firing rate in a 

manner similar to that observed by Liu and Herbison (Liu and Herbison 2008).

The values of intracellular Ca2+ and total ionic current predicted by the irregular bursting 

model were also analyzed for physiological consistency. Figure 7 shows the time series of 

Ca and total ionic current during an irregular bursting simulation. Similar to the Ca2+ 

oscillations plotted in Fig. 3b, transients in intracellular Ca2+ are aligned with the voltage 

and current spikes, with a delay in Ca2+ removal after the termination of each burst. 

Although Ca2+ removal was modeled as a Ca2+ pump in Eq. (7a), a mechanism that is 

different from the IP3R mechanism presented by Duan et al. (2011), the results are 

consistent with experimental recordings of action currents and intracellular Ca2+ in irregular 

bursting cells (Nunemaker et al. 2002; Lee et al. 2010). Indeed, our simulations of total ionic 

current show, as in (Lee et al. 2010; Lee et al. 2012), clusters of spikes separated by regions 

of approximately zero current.

3.3 Slow-fast bifurcation analysis

In order to understand the mathematical properties of parabolic bursting, a slow-fast 

subsystem analysis (Section 2.6) was performed. To conduct this analysis, we identified 

three slow variables within the deterministic “full” model defined by Eqs. (1)–(17): the 

gating variables of IHVA (h2,HVA) and Is (ms) along with Ca. The dynamic equations of these 

three variables constitute the “slow” subsystem, whereas the “fast” subsystem is obtained by 

treating the three slow variables as quasi-static. The fast subsystem has a three-dimensional 

critical or “slow” manifold (Bertram et al. 1995) defined in terms of the fast variable V by 

the surface V = V∞(ms, h2,HVA, Ca) of steady state solutions to Eq. (1). Therefore, to 

simplify the analysis, a series of critical manifold projections in the V − ms plane 

(representing a moving one-parameter bifurcation diagram) were computed for the values of 

Ca and h2,HVA attained along a parabolic bursting trajectory. For this series of one-parameter 

bifurcation diagrams, periodic solutions were extended from a subcritical Hopf bifurcation 

located on the upper branch of the critical manifold at a negative value of ms. By 

superimposing the burst solution of the full model onto the bifurcation diagrams, we found 

that the full model trajectory closely follows the branches of stable steady states and periodic 

solutions of the fast subsystem. For a representative burst (Fig. 8a), the traversal of the burst 

trajectory along the bifurcation structure is depicted in three bifurcation diagrams (Figs. 8b–

d), and is described next. During the quiescent, depolarizing phase of the burst, the full 

model trajectory follows the lower stable branch (solid black line, Figs. 8b–d) of the critical 

manifold. The active phase of the burst is initiated by a slow increase in ms that pushes the 

trajectory across a saddle node (SN) bifurcation and into the fast spiking regime delineated 
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by the stable periodic branches (thick solid gray lines, Figs. 8b–d). The trajectory moves 

away from the SN until reaching a turning point, that is, a point in the V − ms plane that 

depends on the other two slow variables, and that causes the motion of the trajectory to 

change directions relative to the SN. The burst is aborted when the burst solution assumes a 

value of ms to the left of the homoclinic bifurcation (HC), at which the stable periodic 

branches terminate. Once past the HC, the trajectory follows the lower branch of the critical 

manifold once again to repolarize the membrane. This cycle is then repeated for each 

subsequent parabolic burst. The phenomenon of moving back and forth relative to the 

SN/HC is also observed in the Chay-Cook model of parabolic bursting (Bertram et al. 1995), 

where the turning point for the full model trajectory depends on a single slow variable 

representing intracellular Ca2+ concentration. Although for our analysis, there is an 

additional slow variable h2.HVA, it does not add any complexity to the underlying dynamics 

of the burst.

We remark that during the active phase of the burst, the interspike interval changes 

biphasically as the trajectory moves along the branch of periodic solutions, away from the 

HC and back. As suggested by Fig. 9, the period along the branch of fast spiking solutions is 

a decreasing function of ms (when other slow variables are fixed), which explains why the 

forward and backward movement of the trajectory relative to the HC causes the interspike 

interval during the active phase to be biphasic. We also note that the analysis above could 

have been carried out using one of the other slow variables (h2,HVA or Ca) as the 

continuation parameter; however, for the purposes of visualizing the relationship between 

the burst trajectory and the bifurcation structure of the fast subsystem, we found that ms is 

the most suitable choice as a continuation parameter.

These numerical results show that the mechanism underlying this bursting behavior is 

similar to that of the canonical “Type II” parabolic burster, where the fast subsystem 

possesses a saddle-node on invariant circle (SNIC) bifurcation that defines a threshold for 

burst initiation and termination (Bertram et al. 1995). In the case of this bursting model, 

however, the fast subsystem is bistable rather than monostable in the parameter regime 

corresponding to the active phase of the burst. The implication of bistability is that a 

sufficiently strong perturbation to the system during the active phase of a burst could 

interrupt spiking to invoke a stable depolarized state. We did not observe any such 

interruptions during stochastic simulations of the model, suggesting that a large amplitude 

external stimulus is required to invoke the depolarized state. Note that the prediction of 

bistability could be tested experimentally as a means of model verification.

Mechanisms for irregular bursting were analyzed using the same bifurcation technique, but 

with the additional slow variable η (governed by Eq. (18)), which can be treated as quasi-

static in the fast subsystem (Longtin et al. 2003). Our analysis revealed that, although the 

fast subsystem possesses the same dynamic structure as the parabolic burster (see Figs. 8f–

h), the slow subsystem of the irregular burster causes the trajectory to repeatedly enter and 

exit the oscillatory regime of the fast subsystem by traversing a SNIC bifurcation in a non-

deterministic manner. Indeed, Figs. 8f–h show that the slow variable ms assumes a narrow 

range of values within the lower stable branch during quiescence, making the system close 

to the threshold for firing and sensitive to “perturbations”. Such perturbations are induced by 
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the compounding effect of noise through the variable η. This effect can be understood in the 

context of the full model, where the noise term η causes slow fluctuations in membrane 

potential directly via Eq. (1). These fluctuations then feed indirectly into the other voltage-

dependent variables, such as ms, h2,HVA, and Ca, causing the system to cross the threshold 

for spiking in a manner similar to the parabolic burster. The termination of the burst also 

resembles the parabolic case, where influx of Ca2+ from ICa triggers activation of IKCa to 

eventually suppress spiking. However, the presence of noise affects the timing of the 

termination process, leading to variation in the duration of spiking. Viewed more succinctly, 

noise randomly causes the slow subsystem to push the trajectory past the three-dimensional 

surface of SN/HC points in the fast subsystem, to initiate or terminate spiking. This means 

that, in the irregular bursting model, noise acts in conjunction with other slow variables to 

reproduce the wide variation in interburst interval and burst duration observed 

experimentally.

3.4 Simulating the effects of estradiol and TTX

It has been shown that TTX blocks open Na+ channels with an exponential time course and 

that in general, the binding affinity of TTX to the resting, inactivated, and open states varies 

(Carmeliet 1987). As a simplification, it was assumed that a spike-suppressing dose of TTX 

exerts its effects on gNaF and gNaP by following an exponentially decaying function given by 

Eq. (19). A similar simplification was used to model the effect of estradiol applied acutely in 
vitro. Estradiol has been shown to decrease the maximum current density of multiple ionic 

currents, notably IA, IK, INaF, INaP, and IHVA (Sun et al. 2010; Wang et al. 2010; Pielecka-

Fortuna et al. 2011). A reduction in the contribution of IKCa to afterhyperpolarization caused 

by acutely applied estradiol has also been documented (Chu et al. 2009). Estradiol also 

significantly affects the V1/2 of the steady state inactivation curve of IA (Pielecka-Fortuna et 

al. 2011). Therefore, we assume, based on the above, that acutely applied estradiol affects 

the dynamics of the model through time-dependent changes in the maximum conductances 

and parameters for the steady-state activation curves of certain currents.

The decay model given by Eq. (19) was applied to a subset of parameters in the model to 

simulate an experiment by Chu et al. (2012) showing that a cell undergoing endogenous 

(i.e., without TTX) “subthreshold” oscillations can transition to an irregular bursting state 

when acute estradiol takes effect. In this context, the term “subthreshold” refers to 

membrane oscillations that peak below the firing threshold at which action potentials can be 

initiated. Since the parameter set gp was used to generate oscillations that cross the threshold 

for action potential firing, a new parameter set was needed for the model to reproduce the 

endogenous oscillations observed prior to treatment with estradiol. This set included the 

maximum conductance parameters gsub, listed in Table 2, and the values Vh = −65 mV and k 
= −6 mV for the steady state activation curve ms,∞ (Eq. (6)). The post-treatment state was 

modeled using the “estradiol-affected” irregular bursting parameters, which include (i) the 

conductance parameters ge in Table 2, and (ii) the default values of Vh and k for ms,∞ from 

Table 1. Furthermore, we extended the experimental protocol of Chu et al. (2012) by 

simulating the effect of TTX subsequent to estradiol taking full effect, i.e., when model 

parameters were close to irregular bursting values. Figure 10 shows the voltage time series 

when simulating the application of estradiol followed by TTX. This was produced by setting 
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estradiol and TTX application times and their time constants, as defined by Eq. (19), to those 

listed in the caption of Fig. 10. Consistent with experiment, the slow transition from regular 

oscillations to irregular bursting is captured by the model, and bursting is suppressed once 

TTX takes full effect.

Comparing the pre- and post-treatment parameter sets used to simulate the estradiol-induced 

transition from subthreshold oscillations to bursting, we found that the main parameters 

affected by estradiol are gA, gKCa, gs, and the activation parameters Vh and k of ms,∞. These 

results indicate that acutely applied estradiol leads to a decrease in gs, which eliminates the 

slow oscillations underlying parabolic bursting neurons, and a decrease in the conductances 

of IA and IKCa, which depolarizes the baseline potential to approximately −65 mV. This 

baseline potential was maintained in the presence of TTX (Fig. 10). Decreases in gA and 

gKCa were consistent with the experimental observations that estradiol has a negative 

feedback effect on the amplitudes of IA and IKCa.

4 Discussion

In this study, a detailed ion channel model describing the electrical activities of GnRH 

neurons in mice is presented. The model captures the two modes of burst firing that these 

neurons intrinsically exhibit: parabolic and irregular bursting (Chu et al. 2012). The ionic 

currents described in this model were fitted to voltage- and current-clamp data from GFP-

identified GnRH neurons in mice, except for the two currents (Is, IKCa) which were 

described based on their role in generating parabolic bursting in the R15 neuron of Aplysia 
(Plant 1981; Canavier et al. 1991). The transition between the two bursting modes was 

achieved through a shift in maximum conductance parameters only, leaving the kinetic 

parameters of ionic currents and parameters of the Ca2+ submodel (Eq. (7)) intact. These 

results indicate that the bursting modes of GnRH neurons depend on the proportions (or 

density) of ion channel species expressed on the cell membrane. Physiologically speaking, 

these densities are dynamic quantities that can be altered by the action of various 

neuromodulators, such as estradiol and kisspeptin (Moenter 2010). For example, in Fig. 3c, 

we have shown that Is and IKCa play an active role in generating the oscillations underlying 

parabolic bursting. However, with a certain ratio of gs to gKCa, such as that obtained with the 

parameter set girr, we found that the oscillations can be suppressed. This suggests that the 

two modes of bursting are sensitive to changes in the conductances of Is and IKCa, and that 

the channels conducting these currents represent potential targets for neuromodulators in 

controlling the burst pattern. The results from Section 3.4 provide evidence of such a claim 

through the estradiol-induced transition of Fig. 10, similar to that seen experimentally (Chu 

et. al 2012). This transition from subthreshold oscillations to bursting was primarily due to 

changes in the parameters of Is and IKCa.

In addition to the major results concerning Is and IKCa, exploration of the model led to the 

following minor observations. First, reducing the value of gKCa led to a decrease in 

interspike interval and an increase in duration of the active phase of the burst. However, 

there was a threshold of gKCa below which the active phase could no longer be terminated, 

leading to a continuously firing or tonic spiking state. Second, increases in gKCa led to early 

termination of the active phase of the burst, and an increase in interburst interval. The model 
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showed that these effects can be counteracted by increasing the maximum conductance gs of 

Is.

For both parabolic and irregular bursting models, interburst interval, active phase duration, 

spike count, and interspike interval were within a reasonable range of the experimentally 

reported values (Chu et al. 2012), supporting the choice of parameter values incorporated 

into the model. Although each model reproduces a distinct type of bursting, a slow-fast 

subsystem analysis revealed that both models share the same topology in their fast 

subsystems. This topology is determined by a saddle node (SN) bifurcation that acts as a 

threshold for burst initiation and a homoclinic (HC) bifurcation that terminates it. However, 

despite the topological similarities, the two models differ in their slow subsystem dynamics: 

The parabolic burster has an oscillatory slow subsystem that is robust to noise and that 

causes the trajectory to move across the SN/HC in a periodic fashion. In contrast, the 

irregular burster has a slow subsystem that is non-oscillatory in the deterministic case, but in 

the presence of noise can randomly move the trajectory back and forth across the SN/HC 

when D (see Eq. (18)) is sufficiently large. The random movement across the SN/HC is not 

solely determined by the trajectory of η, but also by that of the variables ms, h2,HVA, and Ca, 

which depend on η through Eq. (1).

Exponentially-correlated noise with a long correlation time tc (see Eq. (18)), was required to 

generate irregular bursting in the model. Irregular burst patterns were also generated by the 

model using white noise applied to the slow gating variable ms, i.e., by using the subunit 

model for ion channel noise (Fox and Lu 1994) (data not shown). Therefore, it seems 

plausible that noise in one or more of the system’s slow processes can modulate bursting 

activity of the cell. Noisy slow processes may include (in)activation of voltage-dependent 

ion channels or intracellular Ca2+ handling. The latter would generate noise in the electrical 

subsystem through calcium-dependent currents such as IKCa. Note, however, that the 

exponentially correlated noise added to Eq. (1) can account for both scenarios and thus is a 

more general model for describing noise than the subunit model.

The term IKCa in Eq. (1) accounts for the current that is conducted by SK channels and that 

contributes to the “medium” and “slow” timescale afterhyperpolarization (AHP) (Liu and 

Herbison 2008; Lee et al. 2010). Two other types of Ca2+-activated K+ channels are 

expressed in GnRH neurons—large conductance (BK) channels that are likely active during 

action potential repolarization (Hiraizumi et al. 2008), and UCL2077 (UCL)-sensitive 

channels (Lee et al. 2010) that produce a slow AHP—but their corresponding ionic currents 

were not included in Eq. (1). A BK current was not included because one experimental study 

suggests that it is not crucial for rhythmic behavior (Chu et al. 2012), and also because there 

is no data quantifying its dependence on intracellular Ca2+. A UCL-sensitive current was not 

included because it was assumed that the SK current IKCa, which also contributes to the slow 

AHP (Lee et al. 2010), is sufficient for the model to reproduce the essential features of 

parabolic and irregular bursting. Moreover, the voltage and Ca2+ dependence of 

(in)activation for UCL-sensitive channels has not been confirmed, making the modeling of 

this current speculative.
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The Ca2+ current that interacts with IKCa to sustain a slow rhythm, denoted Is in Eq. (1), is a 

phenomenological current, and its existence in GnRH neurons remains a conjecture. 

However, a study of slow ADPs in GnRH neurons (Chu and Moenter 2006) revealed that 

IKCa can counteract the ADP current (IADP), consistent with the existence of a slow inward 

Ca2+ current that activates IKCa to terminate spiking. This is further supported by the fact 

that the canonical parabolic bursters, i.e., “Type II” bursters classified by Bertram et al. 

(1995), require two slow variables to interact through a feedback mechanism to produce 

oscillations. Given that Ca2+ (Ca) accounts for one slow variable in the model, and knowing 

that blocking IKCa affects the amplitude of slow oscillations in GnRH neurons (Chu et al. 

2012), it is reasonable to propose an inward Ca2+ current with slow voltage-dependent 

activation (ms) to account for the second slow variable.

It has been proposed that the low voltage-activated Ca2+ current (ILVA) may be active in 

pacemaking in GnRH neurons (Zhang et al. 2009; Sun et al. 2010). With the default 

parameter set gvc, the Ca2+ current ILVA had a small amplitude and negligible contribution to 

total ionic current during parabolic bursting. This was mainly due to its small maximum 

conductance gLVA compounded by the properties of the steady (in)activation curves for 

mLVA and hLVA. Interestingly, the model revealed that although the maximum conductance 

of ILVA can be adjusted to yield a larger amplitude current (5 pA), comparable to that of IA 

and Ih during slow oscillations, such an adjustment does not significantly alter burst 

dynamics. This suggests that ILVA is not essential for parabolic bursting as observed by 

Fletcher and Li (2009).

It is important to point out that the slow oscillations produced by the model, using the 

parameter values listed in the Methods Section, had a slower rate of depolarization and 

repolarization and a shorter plateau at the peak of oscillations when compared to 

experimental recordings (compare Fig. 3a and Online Resource 7a). To address these 

discrepancies, the parameter space of our model was further explored to determine if such 

oscillations, featured in Online Resource 7a and referred to as “square-wave” oscillations 

(Amini et al. 1999), can be reproduced by the model. Since the V1/2 for the steady state 

activation curve of ILVA is close to that of Is, it is plausible that the model can generate such 

square-wave oscillations if the conductance of Is is set to zero and the conductance of ILVA is 

increased. This hypothesis is motivated by the results of Zhang et al. (2009), showing the 

existence of a prominent ILVA current in 100% of GnRH neurons during voltage-clamp 

experiments, in contrast with the results of Sun et al. (2010). We tested this hypothesis by 

applying the proposed conditions and found that the slow oscillations obtained were still 

incompatible with the experimental recordings. However, by modifying the values of the 

conductance parameters of gsub and the parameters appearing in Eq. (7a) to those listed in 

the caption of Online Resource 7, the model was able to generate square-wave oscillations 

compatible with those observed experimentally (Online Resource 7b). Square-wave 

oscillations resembling the ones displayed in Online Resource 7a have been previously 

studied by Amini et al. (1999) and generated using a model of midbrain dopaminergic 

neurons where inactivation of HVA currents was assumed to be Ca2+-dependent. 

Interestingly, in a parabolic bursting model of Aplysia R15 developed by Canavier et al. 

(1991), a similar Ca2+-dependent inactivation term for the slow inward current, analogous to 

Is in our model, was also assumed. This suggests that Ca2+-dependent inactivation of 
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voltage-gated Ca2+ channels could be incorporated into the model to capture this 

phenomenon without losing other essential features of this system. On the other hand, given 

that the model was able to generate square-wave oscillations with the appropriate parameters 

suggests that the Ca2+ pump mechanism, responsible for the long plateaus at the peaks of the 

oscillation (Online Resource 7), can be used to generate mathematically equivalent 

dynamics to those obtained with the use of Ca2+-dependent inactivation terms in Is and 

IHVA. It thus remains to determine how the Ca2+ model, used to generate the oscillations in 

Online Resource 7b, can be coupled with the electrical model to recover the two types of 

bursting.

An existing biophysical HH model for irregular (but not parabolic) bursting GnRH neurons 

was developed by Duan et al. (2011) and used as a basis for future modeling studies (Chen 

et al. 2013; Chen and Sneyd 2014). This model, which produces burst patterns similar to 

those shown in Fig. 7a, did not include a slow inward current, and incorporated a more 

detailed Ca2+ handling than the one presented here. The Ca2+ handling subsystem was 

assumed to interact with the UCL-sensitive component of IKCa to regulate interburst interval. 

The slow-fast subsystem analysis performed on the model shows a critical manifold closely 

resembling those plotted in Fig. 8, suggesting that both models are similar mathematically. 

Aside from the UCL current and Is, the set of ionic currents used by Duan et al. (2011) 

differed from the one used here in that it did not include Ih or IA, but did include inward 

rectifier and M-type K+ currents (Iir and IM). Our model did not include Iir because its effect 

is most prominent at voltages more hyperpolarized than EK (Hibino et al. 2010), and 

because the studies carried out here were focused on electrical activities occurring at 

voltages more depolarized than this range. However, voltage-clamp experiments would still 

be useful for confirming the role of Iir at more depolarized potentials. As for the M-type K+ 

current, its effects were implicitly captured by IK.

The two models developed by Roberts et al. (2009) and Chen and Sneyd (2014) are more 

biophysically detailed in the morphological sense; they both take into account the length of 

dendrites, axons and/or dendrons to further examine the electrical activities of GnRH 

neurons. Ionic currents for these two models were adapted from Lebeau et al. (2000) and 

Duan et al. (2011), respectively. These models were able to predict how ADP amplitude 

depends on dendritic length and determine how stochastic synaptic input along the length of 

the dendron affects the initiation and propagation of action potentials. In order to provide 

similar insights about the role of cell morphology in defining the electrophysiological 

properties of these cells, extensions of the model presented here should follow similar 

approaches by relaxing the space-clamp assumption and assuming a multi-compartmental 

cell. The resulting model could then be used as a building block for making realistic 

predictions about the ability of GnRH neurons to synchronize through synaptic interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Schematic of the GnRH neuron model, indicating the components contributing to ion 

flux through the membrane. (b) Schematic diagram of the Markov model of INaF. The 

voltage-dependent transition rates α(V), β(V), r3(V) all have the functional form: ai · [1 + 

exp[(v + bi)/ci]]−1, where i = α, β, r3 and aα = 55 ms−1, aβ = 60 ms−1, ar3 = 30 ms−1, bα = 33 

mV, bβ = 32 mV, br3 = 77.5 mV, cα = −7 mV, cβ = 10 mV, and cr3 = 12 mV. The constant 

transition rates have the values r1 = 1.0 ms−1, r2 = 0.2 ms−1 and r4 = 0.05 ms−1
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Fig. 2. 
Parabolic bursting in GnRH neurons. (a) Experimental recording of a bursting GnRH 

neuron. (b) Stochastic simulation of the model, defined by Eqs. (1)–(18), showing parabolic 

bursting behavior. Notice the qualitative agreement between the experimental and numerical 

results. (c) Mean and standard error of ISI at each spike position for 50 parabolic bursts 

recorded from a single integration of Eqs. (1)–(18). Experimental recording obtained using 

the methods of Chu et al. (2012)
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Fig. 3. 
Simulation of various physical quantities involved in oscillations when spiking in the 

parabolic bursting model is suppressed. Oscillations are obtained using the parameter set gp 

with gNaF = gNaP = 0. The instances of maximum voltage are marked by vertical dashed 

lines to illustrate the phase shift of physical quantities relative to V. (a) Slow wave in 

membrane potential underlying parabolic bursting. (b) Intracellular Ca2+ concentration 

showing π/2 phase shift relative to V. (c) Competing slow-wave currents Is (inward) and 

IKCa (outward). (d) Remaining currents Ih (inward, solid line), IHVA (inward, dashed line), IA 

(outward, solid line), and IK (outward, dotted line) contribute to shaping the oscillations in 

V. The current ILVA is not shown since it is close to zero during oscillations
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Fig. 4. 
The role of various ionic currents in the formation of afterdepolarization (ADP) following a 

parabolic burst as determined by the model, Eqs. (1)–(18). (a) Magnification of the last burst 

in Fig. 2a reveals an ADP after the last spike. (b) Model simulation of membrane potential 

during a parabolic burst. The ADP occurs in the interval [t0, t1], defined as the time between 

the nadir of the last spike (t0) and some time after the ADP peak (t1). (c) Contribution of Na+ 

currents INa = INaF + INaP (solid line), Ca2+ currents ICa = ILVA + IHVA + Is (dashed line), 

and K+ currents IK+ = IK + IA + IKCa (dotted line) to afterdepolarization (IADP) within the 

interval [t0, t1], as defined by Eq. (20). Notice that while INa and ICa both contribute 

positively to the formation of ADPs, ICa diminishes progressively within the interval [t0, t1]. 

This causes the total inward current to decrease and the total outward current, led by IKCa, to 

dominate and terminate the burst
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Fig. 5. 
Irregular bursting in GnRH neurons. (a) Experimental recording of a bursting GnRH neuron. 

(b) Stochastic simulation of the model, defined by Eqs. (1)–(18), showing irregular bursting 

behavior in qualitative agreement with the recording in (a). (c) Mean and standard error of 

ISI at each spike position for 50 irregular bursts recorded from a single integration of Eqs. 

(1)–(18). Experimental recording obtained using the methods of Chu et al. (2012)
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Fig. 6. 
Effect of gKCa on the irregular bursting model. (a) Bursting initiated from a deterministic 

quiescent state with gKCa = 1.23 nS. (b) Bursting initiated from a deterministic tonic spiking 

state with gKCa = 0.95 nS. The quantities 〈AP〉, 〈IBI〉, and BF denote mean active phase 

duration, mean interburst interval, and burst frequency in the 300 s interval
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Fig. 7. 
Time series of action currents and intracellular Ca2+ concentration obtained through 

simulation of irregular bursting model. (a) Clusters of spikes in total ionic current separated 

by long periods of quiescence are indicative of bursting. (b) Oscillations in intracellular Ca2+ 

concentration showing transients that persist after the termination of bursts of action currents

Moran et al. Page 32

J Comput Neurosci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Slow-fast subsystem analysis of the parabolic and irregular bursters as determined by the 

bifurcation diagrams of membrane potential V with respect to slow variable ms (treated as a 

parameter). The subplots in each row from left to right are the voltage time series of one 

burst cycle ((a), (e)), and the bifurcation diagrams of the parabolic and stochastic bursting 

models ((b)–(d),(f)–(h)). The latter show branches of (un)stable steady states, represented by 

thick (dashed) solid black lines, and branches of (un)stable periodic orbits, represented by 

thick (dashed) solid gray lines that depict the peaks and nadirs of these orbits. Superimposed 

on the bifurcation diagrams are the full model trajectory in the V − ms plane of the selected 

burst cycle up to time t (thin solid gray line), along with the phase point (black dot) at time t 
(specified by the legend on top of (b)–(d),(f)–(h)). Other slow variables (h2,HVA and Ca) are 

treated as parameters and assigned the values they attain at the phase points t. In each row, 

the leftmost bifurcation diagrams ((b),(f)) are computed with values of the slow variables 

taken during the initiation phase of the burst (i.e., before the upstroke of the first spike), the 

middle diagrams ((c),(g)) during active phase, and rightmost diagrams ((d),(h)) during the 

termination phase (i.e., after the downstroke of the last spike)
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Fig. 9. 
Dependence of slow variable ms (treated as a parameter) on the period of limit cycles in the 

fast subsystem. The period of stable (solid) and unstable (dashed) limit cycles is plotted 

against ms. Stable limit cycles represent spiking solutions of the fast subsystem. The other 

slow variables (h2,HVA and Ca) are fixed at the values they attain at t = 3 s in the burst cycle 

of Fig. 8a. Notice that the period of the stable limit cycle is a decreasing function of ms, 

indicating a decrease in interspike interval as ms approaches its peak value during the burst. 

The blow-up in period shows the existence of a homoclinic (HC) bifurcation
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Fig. 10. 
Stochastic simulation of acute application of estradiol and TTX via Eq. (19). Effectiveness 

of pharmacological agents was assumed to have an exponential time course and is plotted on 

top of the figure as a grayscale color map for each agent. Effect of estradiol was simulated 

using t0 = 150 s, τ = 100 s, initial parameter set αi = {gsub, Vh,ms = −65 mV, kms = −6 mV}, 

and final parameter set αf = {ge, Vh,ms = −45 mV, kms = −12 mV}. Effect of TTX was 

simulated using t0 = 750 s, τ = 50 s, αi = {gNaF, gNaP}, and αf = {0,0}

Moran et al. Page 35

J Comput Neurosci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moran et al. Page 36

Ta
b

le
 1

Pa
ra

m
et

er
 v

al
ue

s 
of

 io
ni

c 
cu

rr
en

ts
 d

es
cr

ib
ed

 b
y 

E
qs

. (
2)

–(
6)

. U
ni

ts
 f

or
 ti

m
e 

co
ns

ta
nt

 p
ar

am
et

er
s 

a,
 b

, c
, d

, e
, f

 v
ar

y 
an

d 
ar

e 
in

fe
rr

ed
 f

ro
m

 th
e 

fu
nc

tio
ns

 τ
i, 

ea
ch

 o
f 

w
hi

ch
 is

 d
es

cr
ib

ed
 b

y 
 a

nd
 

.

I N
aP

I A
I K

I L
V

A
I H

V
A

I s
I h

m
h

m
h 1

h 2
m

m
h

m
h 1

h 2
m

h 1
h 2

V
h 

(m
V

)
−

41
.5

−
47

.4
−

15
−

69
−

69
15

−
56

.1
−

80
−

11
−

32
−

32
−

45
−

77
.4

−
77

.4

k 
(m

V
)

−
3.

0
8.

2
−

11
6

6
−

9
−

10
.7

4.
7

−
7

11
11

−
12

9.
2

9.
2

τ(
V

) 
(m

s)
0.

4
τ 2

τ 2
30

50
0

τ 2
τ 2

20
τ 2

45
95

0
15

00
τ 1

τ 1

a
—

67
.3

−
40

—
—

−
43

50
—

20
—

—
—

−
89

.8
−

82
.6

b
—

−
27

.5
26

.5
—

—
18

.5
9

—
−

10
—

—
—

11
.6

25
.7

c
—

67
.3

43
—

—
14

4
50

—
20

—
—

—
35

.8
37

0.
9

d
—

27
.5

−
8.

4
—

—
−

49
−

9
—

10
—

—
—

7.
6

54
.1

e
—

57
4.

5
1

—
—

0.
38

7
—

1
—

—
—

—
—

f
—

62
.6

0.
1

—
—

0
0.

5
—

0.
6

—
—

—
—

—

J Comput Neurosci. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moran et al. Page 37

Ta
b

le
 2

Pa
ra

m
et

er
 v

al
ue

s 
of

 io
ni

c 
cu

rr
en

ts
 a

pp
ea

ri
ng

 in
 E

q.
 (

1)
. E

 r
ep

re
se

nt
s 

th
e 

re
ve

rs
al

 p
ot

en
tia

ls
, g

vc
 th

e 
m

ax
im

um
 c

ur
re

nt
 c

on
du

ct
an

ce
s 

ob
ta

in
ed

 f
ro

m
 

vo
lta

ge
-c

la
m

p 
ex

pe
ri

m
en

ts
, w

he
ne

ve
r 

ap
pl

ic
ab

le
, a

nd
 g

p,
 g

ir
r, 

g s
ub

, a
nd

 g
e 

th
e 

m
ax

im
um

 c
ur

re
nt

 c
on

du
ct

an
ce

s 
us

ed
 f

or
 r

ep
ro

du
ci

ng
 p

ar
ab

ol
ic

 b
ur

st
in

g,
 

ir
re

gu
la

r 
bu

rs
tin

g,
 s

ub
th

re
sh

ol
d 

os
ci

lla
tio

n,
 a

nd
 e

st
ra

di
ol

-a
ff

ec
te

d 
ir

re
gu

la
r 

bu
rs

tin
g 

pr
of

ile
s,

 r
es

pe
ct

iv
el

y

I N
aF

I N
aP

I A
I K

I L
V

A
I H

V
A

I s
I h

I K
C

a
I L

E
 (

m
V

)
54

54
−

10
1

−
10

1
82

.5
82

.5
82

.5
−

40
−

10
1

−
65

g v
c 

(n
S)

—
0.

68
45

10
0

0.
2

8
—

1
—

1

g p
 (

nS
)

30
0

0.
68

45
11

5
0.

2
8

0.
58

0.
5

1.
96

0

g i
rr
 (

nS
)

50
0

0.
68

45
15

0
0.

2
8

0.
18

1
1.

18
0

g s
ub

 (
nS

)
50

0
0.

68
45

15
0

0.
2

8
0.

58
0.

5
3.

88
0

g e
 (

nS
)

50
0

0.
68

35
15

0
0.

2
8

0.
2

0.
5

1.
18

0

J Comput Neurosci. Author manuscript; available in PMC 2017 June 01.


	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Mathematical model
	2.1.1 Ionic currents
	2.1.2 INaF and INaP
	2.1.3 ILVA and IHVA
	2.1.4 IA and IK
	2.1.5 Ih and IL
	2.1.6 Is, IKCa, and Ca

	2.2 Noise
	2.3 Time-dependent effect of pharmacological agents
	2.4 Afterdepolarization potentials (ADPs)
	2.5 Software
	2.6 Slow-fast protocol

	3 Results
	3.1 Parabolic Bursting
	3.1.1 Burst Dynamics
	3.1.2 Slow oscillations
	3.1.3 Formation of afterdepolarization (ADP)

	3.2 Irregular bursting
	3.3 Slow-fast bifurcation analysis
	3.4 Simulating the effects of estradiol and TTX

	4 Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Table 1
	Table 2

