Skip to main content
Log in

AMPA/NMDA cooperativity and integration during a single synaptic event

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad, M., Polepalli, J.S., Goswami, D., Yang, X., Kaeser-Woo, Y.J., Südhof, T.C., & Malenka, R.C. (2012). Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron, 73(2), 260–267. doi:10.1016/j.neuron.2011.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger, C., & Martin, A. (2000). Quantal currents at single-site central synapse. The Journal of Physiology, 526, 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie, E.C., Carroll, R.C., Yu, X., Morishita, W., Yasuda, H., Von Zastrow, M., & Malenka, R.C. (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neuroscience, 3(12), 1291–1300. doi:10.1038/81823.

    Article  CAS  PubMed  Google Scholar 

  • Clements, J.D., Lester, R.A., Tong, J., Jahr, C.E., & Westbrook, G.L. (1992). The time course of glutamate in the synaptic cleft. Science, 258, 1498–1501.

    Article  CAS  PubMed  Google Scholar 

  • Di Maio, V. (2008). Regulation of information passing by synaptic transmission: a short review. Brain Research, 1225, 26–38.

    Article  CAS  PubMed  Google Scholar 

  • Di Maio, V., Ventriglia, F., & Santillo, S. (2015). A model of Dopamine modulated glutamatergic synaspe. Biosystems, 136, 59–65. doi:10.1002/0470841559.ch1.

    Article  CAS  PubMed  Google Scholar 

  • Di Maio, V., Ventriglia, F., & Santillo, S. (2016a). A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cognitive Neurodynamics. doi:10.1007/s11571-016-9383-3.

  • Di Maio, V., Ventriglia, F., & Santillo, S. (2016b). A model of Dopamine modulation of glutamatergic synapse on medium size spiny neurons. Biosystems. doi:10.1016/j.biosystems.2016.03.001.

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. (1999). The gutamate receptor ion channels. Pharmacological Reviews, 51, 7–61.

    CAS  PubMed  Google Scholar 

  • Forti, L., Bossi, M., Bergamaschi, A., Villa, A., & Malgaroli, A. (1997). Loose path recording of single quanta at individual hippocampal synapses. Nature, 388, 874–878.

    Article  CAS  PubMed  Google Scholar 

  • Greger, I.H., Ziff, E.B., & Penn, A.C. (2007). Molecular determinants of AMPA receptor subunit assembly. Trends in Neurosciences, 30(8), 407–416. doi:10.1016/j.tins.2007.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Harnett, M., Makara, J., Spruston, N., Kath, W., & JC, M. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491, 599–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahr, C., & Stevens, C. (1990). Voltage Dependence of NMDA-Activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.

    CAS  PubMed  Google Scholar 

  • Kokaia, M. (2000). Long-term potentiation of single subicular neurons in mice. Hippocampus, 10(6), 684–692. doi:10.1002/1098-1063(2000)10:6.

    Article  CAS  PubMed  Google Scholar 

  • Kupper, J., Ascher, P., & Neyton, J. (1998). Internal M g 2+ block of recombinant NMDA channels mutated within the selectivity filter and expressed in Xenopus oocytes. The Journal of Physiology, 507, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkman, A.U., & Jack, J.J. (1995). Synaptic plasticity: hippocampal LTP. Current Opinion in Neurobiology, 5(3), 324–334.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Man, H., Ju, W., Trimble, W.S., MacDonald, J.F., & Wang, Y.T. (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 29(1), 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Majewska, A., Tashiro, A., & Yuste, R. (2000). Regulation of spine calcium dynamics by rapid spine motility. The Journal of Neuroscience, 20, 8262–8268.

    CAS  PubMed  Google Scholar 

  • Malinow, R., & Malenka, R.C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126. doi:10.1146/annurev.neuro.25.112701.142758.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M.L. (2005). Glutamate receptor ion channels. Current Opinion in Neurobiology, 15, 282–288. doi:10.1016/j.conb.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Megias, M., Emri, Z., Freund, T.F., & Gulyas, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527– 540.

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi, J. (1995). Long-term potentiation. The cell biology connection. Current Biology, 5(9), 1006–1008.

    Article  CAS  PubMed  Google Scholar 

  • Molnár, E. (2011). Long-term potentiation in cultured hippocampal neurons. Seminars in Cell and Developmental Biology, 22(5), 506–513. doi:10.1016/j.semcdb.2011.07.017.

    Article  PubMed  Google Scholar 

  • Nicoll, R., & Schmitz, D. (2005). Synaptic plasticity at hippocampal mossy fibre synapses. Nature Reviews Neuroscience, 6, 863–876.

    Article  CAS  PubMed  Google Scholar 

  • Planert, H., Berger, T., & G S. (2013). Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. Plos One, 8, 1–14.

    Article  Google Scholar 

  • Rall, W., & Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical Journal, 13, 648–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, V.R., & Finkbeiner, S. (2007). NMDA and AMPA receptors: old channels, new tricks. Trends in Neurosciences, 30(6), 284–291. doi:10.1016/j.tins.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  • Raymond, C.R. (2007). LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends in Neurosciences, 30(4), 167–175. doi:10.1016/j.tins.2007.01.007.

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Clemente, A., Nicoll, R.A., & Roche, K.W. (2013). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 19(1), 62–75. doi:10.1177/1073858411435129.

    Article  CAS  PubMed  Google Scholar 

  • Schikorski, T., & Stevens, C.F. (1997). Quantitative ultrastructural analysis of hippocampal excitatory synapses. The Journal of Neuroscience, 17, 5858–5867.

    CAS  PubMed  Google Scholar 

  • Schikorski, T., & Stevens, C.F. (2001). Morphological correlates of functionally defined synaptic vesicle populations. Nature Neuroscience, 4, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Segev, I. (1998). Cable and compartmental models of dendritic trees. In Bower, J M, & Beeman, D (Eds.), The book of GENESIS: exploring realistic neural models with the general, neural, simulation systems (pp. 51–78). Whiley.

  • Tønnesen, J., Rózsa, G., Katona, B., & Nägerl, U. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 17, 678–685.

    Article  PubMed  Google Scholar 

  • Traynelis, S., Wollmuth, L., CJ, M., Menniti, F., Vance, K., Ogden, K., Hansen, K., Yuan, H., Myers, S., & Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62, 405–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Caballero, M.I., & Robinson, H. (2004). Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: The asymmetric trapping block model. The Journal of Neuroscience, 24, 6171–6180.

    Article  CAS  PubMed  Google Scholar 

  • Ventriglia, F. (2011). Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems, 104, 14–22.

    Article  PubMed  Google Scholar 

  • Ventriglia, F., & Di Maio, V. (2000a). A Brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biological Cybernetics, 83, 93–109.

  • Ventriglia, F., & Di Maio, V. (2000b). A Brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems, 58, 67–74.

  • Ventriglia, F., & Di Maio, V. (2002). Stochastic fluctuation of the synaptic function. Biosystems, 67, 287–294.

    Article  PubMed  Google Scholar 

  • Ventriglia, F., & Di Maio, V. (2003). Stochastic fluctuation of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems, 71, 195–204.

    Article  PubMed  Google Scholar 

  • Ventriglia, F., & Di Maio, V. (2013a). Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of EPSC. Biosystems, 112, 298–304.

  • Ventriglia, F., & Di Maio, V. (2013b). Glutamate-AMPA interaction in a model of synaptic transmission. Brain Research, 1536, 168–176.

  • Wickens, J. (1988). Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Progress in Neurobiology, 31, 507– 528.

    Article  CAS  PubMed  Google Scholar 

  • Zakharenko, S.S., Zablow, L., & Siegelbaum, S.A. (2001). Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neuroscience, 4, 711–717. doi:10.1038/89498.

    Article  CAS  PubMed  Google Scholar 

  • Zito, K., & Scheuss, V. (2009). NMDA receptor function and physiological modulation. In Squire, L (Ed.), Encyclopedia of neuroscience, (Vol. 6 pp. 1157–1164). Oxford: Academic Press.

  • Zuber, B., Nikonenko, I., Klauser, P., Muller, D., & Dobochet, J. (2005). The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Academy of Sciences of the United States of America, 102, 19,192–19,197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Di Maio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Alessandro Treves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Maio, V., Ventriglia, F. & Santillo, S. AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41, 127–142 (2016). https://doi.org/10.1007/s10827-016-0609-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0609-5

Keywords

Navigation