
Noname manuscript No.
(will be inserted by the editor)

Driving reservoir models with oscillations: a solution to the
extreme structural sensitivity of chaotic networks

Philippe Vincent-Lamarre 1 · Guillaume Lajoie 2 · Jean-Philippe

Thivierge 1

Received: May 8th 2016 / Accepted: June 28th 2016

Abstract A large body of experimental and theoreti-

cal work on neural coding suggests that the information

stored in brain circuits is represented by time-varying

patterns of neural activity. Reservoir computing, where

the activity of a recurrently connected pool of neurons

is read by one or more units that provide an output

response, successfully exploits this type of neural ac-

tivity. However, the question of system robustness to

small structural perturbations, such as failing neurons

and synapses, has been largely overlooked. This is in

contrast to well-studied dynamical perturbations that

lead to divergent network activity in the presence of

chaos, as is the case for many reservoir networks. Here,

we distinguish between two types of structural network

perturbations, namely local (e.g. individual synaptic or

neuronal death) and global (e.g. network-wide fluctua-
tions). Surprisingly, we show that while global pertur-

bations have a limited impact on the ability of reservoir

models to perform various tasks, local perturbations

can produce drastic effects. To address this limitation,

we introduce a new architecture where the reservoir is

driven by a layer of oscillators that generate stable and

repeatable trajectories. This model outperforms previ-

ous implementations while being resistant to relatively

large local and global perturbations. This finding has

implications for the design of reservoir models that cap-

ture the capacity of brain circuits to perform cognitively

and behaviorally relevant tasks while remaining robust

to various forms of perturbations. Further, our work

proposes a novel role for neuronal oscillations found in

1. School of Psychology and Center for Neural Dynamics,
University of Ottawa, Ottawa, Ontario, Canada

2. UW Institute for Neuroengineering, University of Wash-
ington, Seattle, Washington, US

cortical circuits, where they may serve as a collection

of inputs from which a network can robustly generate

complex dynamics and implement rich computations.

Keywords reservoir computing · recurrent neural net-

works · chaotic networks · oscillations · perturbations ·
robustness

1 Introduction

A fundamental building block of cognition and behav-

ior is the ability of brain circuits to maintain informa-

tion about objects beyond their time of appearance in

the environment. Experimental evidence suggests that

sustained patterns of neural activity may constitute

a simple correlate of this ability. Indeed, patterns of

sustained activity are well-known to guide behavior in

tasks including motor control (Churchland and Shenoy

2007; De Zeeuw et al 2011), interval timing (Goel and

Buonomano 2014) and delayed discrimination (Mazurek

et al 2003; Romo et al 1999). Going further, sustained

activity encompasses a broad range of neural phenom-

ena and is not limited to cases where neurons maintain a

fixed firing rate over time. In fact, patterns of sustained

activity may take the form of precise fluctuations in fir-

ing rate in time (Buonomano and Maass 2009) or the

timing of spike patterns (Mainen and Sejnowski 1995;

Tiesinga et al 2008). However, it is unclear how neu-

ral circuits generate reliable patterns of neural activ-

ity given that the spike train produced by a neuron

is highly dependent on its pre-stimulus history (Arieli

et al 1996; Banerjee et al 2008) and that the addition of

a single spike in a train of action potentials can cause

significant postsynaptic variations (London et al 2010)

(c.f. Lajoie et al (2013)).



2 Philippe Vincent-Lamarre 1 et al.

One framework that has been successful at captur-

ing patterns of temporal activity is reservoir computing

(Jaeger 2002; Maass et al 2002), and has been pro-

posed as a plausible theory of high-level cortical in-

formation processing. The core principle of reservoir

computing consists in mapping the states of neurons

through time (termed neural trajectory) in a recurrent

circuit to a specific output function by adjusting the

connection weights of one or many downstream units

(termed readout units). A body of work suggests that

reservoir computing can account for neural dynamics in

different regions of the brain (Barak et al 2013; Toledo-

Suárez et al 2014; Yamazaki and Tanaka 2007). Fur-

thermore, there is increasing evidence suggesting that

principles of reservoir computing could explain cogni-

tive and behavioral processes (Barak et al 2013; Bernac-

chia et al 2011; Enel 2014; Joshi and Maass 2005; Laje

and Buonomano 2013; Mante et al 2013; Sussillo and

Abbott 2009; Sussillo et al 2015)

One interesting characteristic of some reservoir mod-

els is their ability to generate activity as autonomous

systems (that is, systems whose ongoing dynamics are

not driven by fluctuating inputs (c.f. Lajoie et al (2013,

2014)). This is achieved by adjusting the parameters of

the reservoir to place it in a chaotic state where it gen-

erates rich spontaneous activity (see e.g. Sompolinsky

et al (1988)). This regime has been proposed as a pos-

sible mechanism underlying sustained irregular activity

observed in cortical areas (van Vreeswijk and Sompolin-

sky 1996). Such activity has been harnessed in some

models to create stable and repeatable trajectories in

the absence of ongoing external stimulation (Hoerzer

et al 2014; Laje and Buonomano 2013; Sussillo and Ab-

bott 2009; Sussillo et al 2015). In these models, chaos

is suppressed either through strong feedback from the

readout units in the reservoir or by stabilizing some

neural trajectories by adjusting connection weights of

the reservoir. These models are robust to the addition

of noise (Laje & Buonomano, 2013) as well as small al-

terations in network connectivity (Sussillo and Barak

2013; Sussillo et al 2015). Therefore, these reservoirs

models are attractive candidates to explain both the

origin of stable patterns of neural activity and how such

activity can be exploited by downstream neurons in a

meaningful way.

However, despite the large body of work laying par-

allels between neural networks in the brain and reser-

voir computing systems, an important biological con-

straint has been overlooked: the resistance to small struc-

tural perturbations such as failures in synaptic trans-

mission or neuronal death. Such perturbations occur

frequently in healthy circuits in the brain without lead-

ing to drastic functional changes (Fu et al 2015; Pakken-

berg et al 2003; Westlye et al 2009). This is what we

investigate in this work.

We begin by testing the resistance of different reser-

voir models (Laje and Buonomano 2013; Sussillo and

Abbott 2009) to post-training perturbations, while draw-

ing a distinction between structural (parameters alter-

ation, such as neuronal and synaptic loss) and state-

space (alteration of the firing rate of the neurons) per-

turbations. Further, we examine the impact of both lo-

cal and global forms of structural perturbations. On the

one hand, global perturbations are noisy fluctuations in

the activity of multiple neurons, or random variations

of synaptic strengths across the network that are analo-

gous to the changes that occur under synaptic plasticity

(Froemke and Schreiner 2015). On the other hand, local

perturbations consist of failure of individual synapses

or neurons. Here, we show that local and global pertur-

bations of similar magnitude have a markedly different

impact on the dynamic of recurrent neural circuits. Go-

ing further, some perturbations are more devastating

than previously reported (Laje and Buonomano 2013;

Sussillo and Barak 2013; Sussillo et al 2015). In fact, we

show that minimal perturbations can completely impair

the capacity of the network to execute some previously

learned tasks.

Several solutions may address the issue of instability

to structural perturbations in chaotic networks. For in-

stance, it is possible to suppress chaos in spontaneously

active networks of recurrent firing rate units by the in-

jection of white noise (Molgedey et al 1992) or time-

varying input signals (Bertschinger and Natschläger 2004;

Rajan et al 2010). However, these solutions assume that

such input is available alongside the network during the

execution of the task. As an alternative, we examined a

solution where a layer of input units to the network be-

have as oscillators. We show that this model can gener-

ate robust trajectories and exhibits resilience to pertur-

bations. This new framework is simpler, more efficient,

and less training intensive than previous models.

2 Methods

2.1 Architectures

In this work, we employ networks of firing rate units

connected according to five possible architectures. Ar-

chitectures A,B and C have been proposed in (Sussillo

and Abbott 2009) and we refer to their implementa-

tion as standard FORCE; architecture D is proposed in

(Laje and Buonomano 2013) and we refer to its imple-

mentation as innate training. We introduce architecture

E in this work and refer to its implementation as the



Driving reservoir models with oscillations 3

driven model. The various architectures (A to D, Fig.

1; E, Fig. 7(a)) can be summarized as follows:

(A) Only the synapses from the reservoir to the readout

unit are modified during training and there is direct

feedback from the readout unit to the reservoir.

(B) The feedback is provided by a control network in-

stead of the readout unit. The synapses from the

reservoir to the readout unit and to the control net-

work are modified during training.

(C) No external feedback is provided to the reservoir.

Rather, the reservoir is its only source of feedback

and is modified during the training phase. This is

achieved by applying the same learning rule to the

readout unit and to the neurons in the reservoir.

(D) A subset of the neurons in the reservoir is adjusted

to reinforce an innate trajectory of the network.

This trajectory is triggered by kicking the network

in a delimited state-space with an external input.

Once this process is complete, the synapses of the

readout unit are modified.

(E) A layer of oscillators controls the trajectory of the

reservoir based on their relative phase. Only the

synapses from the reservoir to the readout unit are

modified during training.

2.2 Neural activity and parameters

We kept the same parameters used in most simulations

of the original articles describing FORCE and innate

training. Both models are described by the following

equations:

τ
dxi
dt

= −xi +

NR∑
j=1

WR
ij rj +

NI∑
µ=1

WRI
iµ Iµ, (1)

z =

N∑
j=1

W zR
ij rj , (2)

where ri = tanh(xi) (i.e., hyperbolic tan function) is

the firing rate of the recurrent units xi(i = 1, ..., NR),

Iµ(µ = 1, ..., NI) represents the input units, z repre-

sents the readout unit and the time constant τ = 10ms.

The reservoirs’ weight matrices WR are of size NR×NR
where the non-zero values were drawn from a Gaussian

distribution with a mean of zero and standard devia-

tion equal to gR/
√
pRNR, where gR is the gain of the

synaptic weights and pR is the proportion of non-zero

values in the matrices. Weight matrices connecting the

input unit to the reservoir (WRI) and connecting the

reservoir to the readout units (W zR) were initialized

differently depending on the architecture.

a

b

c

d

Fig. 1 Schematic representation of network architectures.
Connections in black are randomly initialized and left un-
touched during training whereas connections in red are mod-
ified according to the training rule. a No external inputs are
used to control the activity of the reservoir (green). Instead,
the network relies on strong feedback from the readout unit
to the reservoir to control the chaotic activity. b This archi-
tecture uses a control network (blue) instead of the readout
unit to provide feedback to the reservoir. c Learning occurs
in the reservoir as well as on the connections of the readout
unit. The reservoir is its only source of feedback. d The reser-
voir displays chaotic spontaneous activity in the absence of
input. After a brief pulse is injected in the network, the reser-
voir follows a trajectory that has been previously stabilized
by training a subset of neurons.

Standard FORCE. The parameters used with archi-

tecture A, B and C can been found in Table 1. Readout

weights W zR were initially set to zero and when feed-

back from the readout unit z to the reservoir was used,

the values of WRz were drawn from a uniform distribu-

tion with values between -1 and 1. No external inputs

were used for our simulations so no weights WRI were

required.

Architectures A and B require the addition of some

components to equation 1:

+WRz
i z, (3)

+

NF∑
a

WRF
ia sa, (4)

τ
dya
dt

= −ya +

NF∑
b=1

WF
absb +

NG∑
i=1

WFR
ai ri, (5)

The activity of architecture C is described with equa-

tion 1. The addition of equation 3 to equation 1 results

in architecture A. The addition of equation 4 to equa-

tion 1 results in architecture B. Equation 5 provides the

dynamics of the control network where sa = tanh(ya)



4 Philippe Vincent-Lamarre 1 et al.

Table 1 Parameters used for the different architectures.

Architectures
A B C D

Reservoir size
(NR)

1000 2000 1000 1000

Number of in-
put units (NI)

0 0 0 1

Learning rate
(α)

1 1 1 1

pR 0.1 0.1 (PF = 1) 1 0.1
pzR 1 0.5 (PFR = 0.5) 1 1
pRz 1 0 (PRF = 0.5) 0 0
gR 1.5 1.5 (gF = 1.2) 1.5 1.5

is equal to the firing rate of ya(a = 1, ..., NF ). The con-

trol network’s weight matrix WF is of size NF × NF
where the non-zero values were drawn from a Gaussian

distribution with a mean of zero and standard devia-

tion equal to gF /
√
pFNF , where gF is the gain of the

synaptic weights and pF is the proportion of non-zero

values in the matrix. Connections from the reservoir to

the control network WFR were initially set to zero and

the non-zero values of WRF were drawn from a uniform

distribution with values between -1 and 1.

Innate training. This architecture is shown on Fig.

1(d) and is described by equations 1 and 2. The default

parameters used in architecture D can be found in Table

1. The input weights WRI were drawn from a Gaussian

distribution of mean zero and unit standard deviation

and the values of W zR were drawn from a Gaussian

distribution with mean of zero and standard deviation

of 1/
√
N . The value of the active input unit for a given

trial was held at zero except at the time of stimulation

where it had an amplitude of 5 (arbitrary units) for 50

ms.

Driven model. The architecture E is shown in Fig.

7(a) and the parameters of this model are the same used

for innate training (architecture D), except for a differ-

ent input pattern and the absence of training of the

reservoir’s connections. The input layer is made of dis-

tinct oscillating units of different frequencies and a con-

stant amplitude. The initial phase of the oscillators was

chosen randomly for all simulations, and unless speci-

fied, their frequencies where randomly selected from a

uniform distribution with a minimum of 1 Hz and a

maximum of 5 Hz. Non-zero values of the input weights

were drawn from a Gaussian distribution with a mean

of zero and standard deviation equal to gRI/(NIpRI),

where gRI is the gain of the input weights, NI is the

number of input units (oscillators) and pIR is the pro-

portion of non-zero values in the connection matrix.

The default values of gRI and pRI are of 1.5 and 0.5,

respectively.

2.3 Training tasks

Two different tasks were employed. In a first task, a

signal composed of four sinusoidal waves was used as

the target output. This signal was made of 12 cycles

generated with sinusoids of same period but different

amplitudes (Fig. 2(a)). We trained architectures A-C

on this task, and assessed the performance of networks

using the mean absolute error (MAE) between the out-

put and the target values.

In a second task, termed the timing task, the read-

out target was determined by f(t), set to a constant

value of 0.2 until the start of the Gaussian curve with a

peak centered at time tdelay of 1 second. The target tra-

jectory was collected from the activity of the network

from the end of the input pulse to the end of the Gaus-

sian curve of the target function (1,150 ms after the end

of the input pulse). Three different methods were used

to assess the performance of the networks. The mean

squared error (MSE) was used to compare the output

and the target of the readout unit. We also computed

the interval timing estimated by the network based on

the time where it crossed a threshold and compared it to

the actual peak of the target to obtain a timing lag. Fi-

nally, we computed the Pearson correlation coefficient

between the target and the output. Even though the

original model tolerates a rather large amount of exter-

nal noise, we kept noise off across all of our simulations

to isolate the effect of the perturbations under study.

All error bars reported in the results below represent

the standard error of the mean.

2.4 Learning algorithms

We used a powerful algorithm termed first-order re-

duced and controlled error (FORCE) learning (Sussillo

and Abbott 2009) that can train networks to reproduce

periodic patterns (e.g., a complex sinusoid) or chaotic

signals for limited time intervals (e.g., a Lorenz at-

tractor). This algorithm is based on the recursive least

squares method (Haykin 2002), and was used to train

all architectures, but the subset of synapses trained as

well as the target function differed between architec-

tures. All architectures had the following equation to

adjust the readout weights:

W zR(t) = W zR(t−∆t)− e(t)P (t)r(t), (6)

e(t) = W zRT

(t)r(t)− f(t). (7)

Where the error e(t) was determined by the difference

between the value of the readout unit obtained with

the multiplication of the reservoir’s activity with the

weights W zR, and the target function’s value f at time



Driving reservoir models with oscillations 5

t. Each weight update was separated by a time interval

∆t of 2 ms for all simulations. P is a running estimate

of the inverse of the correlation matrix of the network

rates r, modified according to equation 8 and initialized

with equation 9.

P (t) = P (t−∆t)− P (t−∆t)r(t)rT (t)P (t−∆t)
1 + rT (t)P (t−∆t)r(t)

, (8)

P (0) =
I

α
. (9)

where I is the identity matrix and α is a learning rate

constant. For architecture C, where the reservoir is sub-

ject to training, the whole connectivity matrix of the

reservoir is modified with equation 6.

For innate training, the same version of FORCE

learning described above was employed to train the

reservoir as well as the readout unit. However, innate

training requires an independent estimate of the inverse

correlation matrix of the presynaptic inputs P for each

plastic neuron in the reservoir:

WR
i (t) = WR

i (t−∆t)− ei(t)
∑

k∈B(i)

P ijk(t)rk(t), (10)

ei = ri(t)−Ri(t), (11)

P ijk(t) = P ijk(t−∆t)−∑
m∈B(i)

∑
n∈B(i) p

i
jm(t−∆t)rm(t)rn(t)P ink(t−∆t)

1 +
∑
m∈B(i)

∑
n∈B(i) rm(t)P imn(t−∆t)rn(t)

.

(12)

where Bi(i = 1, ..., NPlas) is the subset of presynap-

tic neurons in the reservoir (60% of the reservoir) and

equation 11 represents their error on unit i. The term ei
is the error based on the discrepancy between ri(t) (ac-

tivity of neuron i) and Ri(t), the target activity based

on the innate trajectory. Equation 12 is an altered ver-

sion of equation 8 where each plastic unit (only plastic

units have their synapses adjusted) has an independent

matrix P , which are identity matrices initialized accord-

ing to equation 9 (with a size equal to the number of

presynaptic units k). The innate training of the recur-

rent weights was applied for 20 iterations of the reser-

voir trajectory, then the weights of the readout unit

were trained for 10 iterations of the target output. The

training started at the end of the input pulse until the

end of the Gaussian peak of the target. As with FORCE

learning, each weight update was separated by a time

interval ∆t of 2 ms for all simulations.

3 Results

We begin by showing the impact of the different types of

perturbation on the performance of two training schemes

described in Methods (standard FORCE and innate

training). First, we show that local perturbations have

a marked impact on the trained models. Then, we intro-

duce an alternative model that can overcome the issue

of robustness while increasing the performance of the

network on a task of interval timing.

3.1 Structural perturbations in standard FORCE

As a starting point, we examined how small structural

alterations can impact the behavior of a network with

standard FORCE learning (Sussillo and Abbott 2009).

The first type of perturbation that we investigated is

the clamping of individual neurons. This was achieved

by setting the activation as well as all afferent and ef-

ferent connections of a given subset of neurons to zero.

We began by training a network with each architecture

(Fig. 1(a-c)) to replicate a jagged sinusoidal signal. We

used the MAE between the output and the target in

order to evaluate training performance. Once the net-

work was trained (a fixed number of cycles of the sinu-

soidal pattern, here 12 cycles), all architectures attained

a similar level of error on a distinct testing phase of the

same length (Fig. 2(a)) but without further modifica-

tions (for 100 trials, architecture A: average MAE of

0.06, SEM of 0.01, architecture B: average MAE of 0.06,

SEM of 0.01 and architecture C: average MAE of 0.05,

SEM of 0.01). However, only networks with a MAE be-

low 0.01 were selected for further analysis. In Fig. 2(b),

we clamped the activity of one random neuron from

the reservoir (out of 1,000 neurons) to zero from archi-

tecture A, and left the readout neuron untouched. We

then allowed the network to try and produce the jagged

sinusoidal signal without further training. On most tri-

als, this small perturbation produced catastrophic dis-

ruptions in network activity. In some rare cases, the

networks were able to retain some of their performance

(Fig. 2(c)), but were still unstable.

All three architectures were highly vulnerable to the

clamping of a single, randomly selected neuron (out of

a total of 1,000, representing 0.1% of all neurons in the

reservoir). To further show this effect, we calculated the

average MAE on multiple trials for each architecture

(Fig. 2(d-f)). For each of the three architectures tested

(A,B and C), five networks were generated (represented

by different colors) from which the activity of a different

neuron was clamped to 0 on each trial, for a total of

1,000 trials per network (one for each neuron).



6 Philippe Vincent-Lamarre 1 et al.

0 0.5 1 1.5
0

500

1000

F
re

qu
en

cy

Error after perturbation
0 0.5 1 1.5

0

500

1000

F
re

qu
en

cy

Error after perturbation
0 0.5 1 1.5

0

500

1000

F
re

qu
en

cy

Error after perturbation

Time [s]
0 5 10 15

O
ut

pu
t, 

ta
rg

et

-1

0

1

Time [s]
0 5 10 15

O
ut

pu
t, 

ta
rg

et

-1

0

1
a b

Time [s]
0 5 10 15

O
ut

pu
t, 

ta
rg

et

-1

0

1
c

d e f

Fig. 2 Activity of intact and damaged networks. Top: the output signal of a network is in red and the target sinusoid is
in green. a The output of a network once the training phase has ended is almost perfectly overlapping with the target.
b,c represent the outputs of selected networks with N-1 neurons of architectures A (MAE: 0.62 and 0.40). d,e,f show the
distribution of MAE obtained from 5,000 trials with architecture A, B and C, respectively. The average MAE are of 0.79, 0.69
and 0.41, respectively. When normalized with the amplitude of the output function, the averages are of 0.61, 0.53 and 0.56.
Each color represents the distribution of a different network, from which each neuron of the reservoir was clamped in turn.
Each network has an initial MAE below 0.01.

The average MAE over the 5,000 trials with archi-

tectures A, B and C were of 0.79, 0.69 and 0.41, respec-

tively. The amplitude of the target function of architec-

ture C was almost halved compared to the two others

to stay consistent with (Sussillo and Abbott 2009) for

fair comparison. That explains the shift of the distribu-

tion of Fig. 2(f) toward lower values. Because the MAE

is dependent on the amplitude of the target function

(greater amplitude leads to higher values of MAE), we

normalized the average error based on this value (i.e.,

average MAE divided by the amplitude of the target).

This yielded the following normalized average MAE:

0.61, 0.53 and 0.56 for architectures A-C, respectively.

After normalization, the performance of architecture C

was not significantly different from architecture A and

B.

In summary, all architectures used with the stan-

dard FORCE learning procedure were highly vulnerable

to the clamping of a single neuron. Next, we examined

the sensitivity of networks with innate training. Even

though this model is also trained with the FORCE algo-

rithm, it relies on different principles to generate stable

reservoir trajectories.

3.2 Structural perturbations in innate training

We tested innate training models on a timing task where

the network was taught to remain quiescent and to peak

after an interval of one second (Fig. 3(a-d)). Once the

reservoir’s trajectory was trained for 20 iterations and
the readout unit was trained for 10 iterations, the net-

work’s output had an almost perfect fit with the target

function (Fig. 3(a)). We then clamped different subsets

of neurons within the reservoir and computed the MSE

between the output and the target of the readout unit.

The trained networks lost their ability to output a sta-

ble value between the input pulse and the target peak

after a single neuron was clamped in the reservoir (Fig.

3(b)). Fig. 3(a-d) shows the output of a trained network

on five different trials (red curves) where a different sub-

set of neurons (Fig. 3(b-d), number of neurons of 1, 2

and 5, respectively) has been clamped. Nevertheless,

some networks could produce a peak in their output

after the appropriate interval despite the perturbation.

We then calculated the interval timing based on the

time when the output crossed a threshold. In order to

avoid penalizing a shift in the amplitude of the output

value after the perturbation, we computed an indepen-

dent threshold for every perturbation for each network.

To find the most appropriate thresholds, we computed



Driving reservoir models with oscillations 7

the average delay for every trial of a condition with a

threshold that was increased from 0 to 1 (maximal value

of the target function) with increments of 1e-03. The

threshold associated with the best performance was se-

lected. We also computed the success rate, where trials

were considered successful when they fell within a 40

ms window centered on the target’s peak.

The performance degraded quickly as more neurons

were clamped in the reservoir (Fig. 3(e,f)). The error

values started to plateau when a little more than 1%

of the neurons were clamped. The MSE between the

output and the target increased monotonically as fur-

ther neurons were eliminated (Fig. 3(f)). In addition to

clamping entire subsets of neurons, we verified the im-

pact of setting the weights of individual synapses to zero

in the network (Fig. 4(a-c)). On the timing task, dam-

aged networks were near the maximal error value when

1% of the synapses were clamped (Fig. 4(a)). The per-

formance curve of networks with perturbed reservoirs

with 0% to 1% of synapses set to zero was similar to

the performance of networks from which 0% to 100%

of the neurons connecting the reservoir to the readout

unit were set to zero (Fig. 4(d-f)). This shows that in

terms of proportion, the readout synapses are much less

important for the performance of the network than the

reservoir’s synapses, as long as the trajectory in the

reservoir remains intact.

We also tested the impact of Gaussian structural

disruptions distributed across all the reservoir’s synapses.

A perturbation vector was obtained by multiplying the

values of all non-zero synapses with a given proportion

of disruption. This vector was then shuffled and added

to the values of the non-zero synapses. After this manip-

ulation, the performance was a lot less degraded than

when comparable number of synapses or neurons were

removed (Fig. 4(g-i)). The ∆w (i.e., the total quan-

tity of change in weights between the original and the

perturbed network) is exactly the same for a given pro-

portion of perturbation. For instance, when 1% of all

synapses are removed or the value of all synapses are

changed by 1% of their total value, the difference in

total weight between the original and modified con-

nectivity matrix (∆w) will be the same, on average.

This greater structural robustness for global perturba-

tions was also observed with standard FORCE (Fig.

S1). This outlines an important difference between the

two types of perturbation that is not captured by the

mean amount of change but by the way it is distributed.

So far we designed perturbations on networks with

a size of 1,000 neurons to match most of the results

from (Laje and Buonomano 2013; Sussillo and Abbott

2009). When applied to networks of different size, per-

turbations were affected by the absolute number (rather

T
im

in
g 

la
g 

[m
s]

a b

dc

e f

0 1% 2% 3%
0

0.2

0.4

Neurons clamped

M
A

E

Fig. 3 Performance of innate training on the timing task af-
ter perturbations. Each reservoir has a size of 1,000 neurons.
An external input (grey dashed line) act as a reset on the
network’s state, which triggers the trajectory previously sta-
bilized in the reservoir. The network is trained to peak 1,000
ms after the end of the input signal. a,b,c,d show the outputs
of networks with N, N-1, N-2 and N-5 neurons in the reser-
voir, respectively. e Lag between the time the output crossed
the threshold and the peak of the target. f MAE between
the output and the target signal. Shaded areas represent the
standard error of the mean.

than the proportion) of neurons clamped. The aver-

age MAE for different number of neurons clamped de-

creased slightly as the total number of neurons in the

reservoir was increased with architecture A (Fig. S2).

But the smallest perturbation on the largest reservoir

(1 neuron clamped out of 10,000) still led to catas-

trophic disruptions of the network’s output (average of

0.5 MAE). With architecture D, the average error of a

perturbation was not related to the size of the reser-

voir in the testable range (larger networks are harder

to train). In other words, clamping a given number of

neurons had a relatively similar impact on performance

regardless of the size of the networks.

In summary, structural perturbations of the reser-

voir had a devastating impact on the task learned by

the readout unit when applied in a local fashion (i.e.

synapses set to zero, as opposed to the global Gaussian

perturbations). In the following section, we address in



8 Philippe Vincent-Lamarre 1 et al.
T

im
in

g 
la

g 
[m

s]
T

im
in

g 
la

g 
[m

s]
T

im
in

g 
la

g 
[m

s]

Disruption

a

f

g

0 0.5% 1%
0

0.2

0.4

Synapses set to zero

cb

M
A

E

Removed synapses
0 25%50%75%

0

0.2

0.4

Disruption
0 5% 10% 15%

0

0.2

0.4

Synapses set to zero

M
A

E

Disruption Disruption

h

Disruption

i

M
A

E
ed

Fig. 4 Performance on the timing task after different types of perturbations. Impact of clamping individual synapses of the
reservoir and of the readout unit, as well as a Gaussian perturbations on all synapses in the reservoir. a,b,c: disabling synapses
from the reservoir. d,e,f : disabling synapses that connect the reservoir to the readout. h,i,j: disruption of synaptic weights.
The leftmost column of the figure shows the lag between the estimated timing of the output and the target. The second column
shows the MAE between the output and the target. The rightmost column shows the proportion of trials for which the timing
estimate fell within a 40 ms window centered on the target’s peak. Shaded areas represent the standard error of the mean.

detail the impact of such perturbations on the network’s

dynamics and activity features.

3.3 Structural perturbations and eigenvalues

We computed the eigenvalues of the random networks

connectivity matrix to gain some insight on the effect of

the perturbations. More specifically, we aimed to char-

acterize the contrast between the dramatic impact of

the structural perturbations that we investigated to

the milder effect of similar perturbations reported in

previous studies (Laje and Buonomano 2013; Sussillo

and Barak 2013; Sussillo et al 2015), which used global

perturbations (Gaussian perturbation to the reservoirs

connectivity matrix) as opposed to the local perturba-

tions that we introduced.

We computed the eigenvalues of random connectiv-

ity matrices (N = 1,000), where each non-zero connec-

tion is drawn from a Gaussian distribution (µ = 0, σ

(gain) = 1.5), and are equivalent to the connectivity

matrices of untrained reservoirs. Therefore, we com-

pared the impact of different types of structural pertur-

bations outside of a training task. With this procedure,

it is expected that the distribution of eigenvalues lies

within a circle with a radius equal to the gain of the

network’s connections (see e.g. Bai (1997)). The devi-

ation between the eigenvalues of the original and the

damaged network (one neuron clamped) is quite large



Driving reservoir models with oscillations 9

a b c

d

Fig. 5 Eigenvalues of perturbed networks. a Eigenvalues of a random network (blue) and of the same network with N-1
neurons (red) (∆w = 21). b Eigenvalues of a reservoir (blue) and of the same reservoir where 0.1% of the synapses have been
set to zero (∆w = 11.40). c Eigenvalues of a reservoir (blue) and of the same reservoir where all non-zero synapses have been
disrupted by values following a Gaussian distribution (red) for a total disruption equal to 0.1% of their total weight (∆w =
11.87). d Average distance between the eigenvalues of the original and the perturbed network as the size of the perturbation
increased. Each proportion represents either the number of units removed or the weights changed. The random condition
is constant across all levels of perturbation and shows the distance expected between two random networks. Shaded areas
represent the standard error of the mean.

(Fig. 5(a)). This effect explains the discrepancy between

the output and the target of the two conditions, as the

eigenvalues govern the dynamics of the network.

To gain a better understanding of the different per-

turbations, we also tested the impact of removing synapses

and of Gaussian perturbations to every synapses. We

clamped 0.1% of the neurons (1/1,000 neurons, Fig.

5(a)), removed 0.1% of the synapses (100/100,000 synapses,

Fig. 5(b)) and changed 0.1% of the synapses’ weights

(Fig. 5(c)). This results in the same amount of change

(∆w) for the last two conditions (∆w = 11), and

about double the amount of change when one neuron

is clamped, because both the efferent and afferent con-

nections are removed. In addition, clamping one neuron

effectively removes one dimension from the eigenvalue

spectrum (i.e., it reduces the rank of the connectivity

matrix by one). When visually inspecting the eigen-

value spectrum, it is obvious that removing individual

synapses and neurons has a much greater impact than

splitting the same amount of change across all synapses.

We then formally compared the distance between

the original and the perturbed eigenvalue spectrum.

To do so, we computed the average distance between

each eigenvalue of the original network and its closest

eigenvalue in the perturbed network. For each level of

perturbation and each type of perturbation, we gener-

ated 50 pairs of original/perturbed networks and com-

puted their average distance (Fig. 5(d)). Different pro-

files emerged for the different types of perturbation.

Local perturbations created large disruptions on the

eigenvalue spectrum, where the distance between the

original and perturbed networks reached the same value

as for two independently generated random networks

when about 5% of their units were removed. The curve

for clamped neurons had a slightly larger distance be-

cause the number of dimensions decreased, whereas it

remained constant when a proportion of synapses were



10 Philippe Vincent-Lamarre 1 et al.

removed (until extreme values are reached). This con-

trasts with the impact of the change in synaptic weights,

where between 15% and 20% of their value had to be

changed to reach the same distance as would be ex-

pected between two random networks. It is interesting

to note that even if the ∆w is almost doubled when the

same proportion of neurons as synapses was removed,

their impact on the spectrum distance was similar until

it reached the average distance between randomly gen-

erated networks, which is concordant with their similar

impact on the timing task with architecture D (Fig. 3(e)

and Fig. 4(a)). Finally, as neurons and synapses were

removed, the radius of the eigenvalue spectrum shrank,

which explains the increasing eigenvalue distances past

the random condition. Because we added the equivalent

of Gaussian perturbations with a mean of zero on the

network’s synapses, the radius of the eigenvalue spec-

trum remained the same.

Difference in eigenspectra should manifest in differ-

ences of network trajectories. With innate learning, the

network is able to return to the trained trajectory after

the injection of a substantial pulse in the reservoir (Laje

and Buonomano 2013). The effect of this form of per-

turbation might be akin to distributing the structural

perturbation across the whole reservoir (Fig. 4(g-i)).

Based on the performance of the network on the trained

task, the reservoir was no longer able to return to the

original trajectory when a structural perturbation tar-

gets a specific portion of the network. Further analysis

shows that despite the difference between the activity of

the original and perturbed reservoirs, the trajectories of

damaged networks appeared to be stable, because the

new trajectory was still repeatable across trials (Fig.

S3). In summary, the eigenvalues analysis confirms the

large impact of local structural perturbations on the

network independently of the training algorithms.

3.4 Impact of network connectivity

We explored alternatives to the standard patterns of

connectivity in reservoirs that could improve the tol-

erance of these networks to structural perturbations.

In previous simulations with architecture A, we used a

sparse connectivity where only 10% of all possible con-

nections were set to non-zero values (the standard value

for most reservoirs models). However, the total number

of connections that each neuron makes to its counter-

parts might have an impact on their importance on the

overall network dynamics. We tested a lower range of

sparseness that remained biologically relevant (1% to

10%), and found no correlation between sparseness and

resistance of the networks to structural perturbations

(r = -0.02, p = n.s.).

Next, we looked into different patterns of connectiv-

ity as potential solutions to the sensitivity of the model

to structural perturbations. In typical reservoirs mod-

els, the number of connections of each neuron follows

a normal distribution and each neuron has the same

probability to connect to other neurons in the reser-

voirs. However, several studies suggest that the number

of synapses per neuron in the cortex might follow either

a power-law (slope of -1.3) (Bonifazi et al 2009) or ex-

ponential distribution (Perin et al 2011). This type of

connectivity has been linked to higher resilience of net-

works to random failure (Rubinov and Sporns 2010).

We tested with architecture A whether these types of

connectivity could help improve the resistance of reser-

voirs to structural perturbations. We applied these dis-

tributions to the afferent and the efferent connections

separately. This means that when one of these distri-

butions was used for either the afferent or efferent con-

nections, the other type was kept normally distributed.

Our results show that exponential and power-law

(Fig. 6(a), left and middle) distributions slightly im-

prove the resistance of the networks (larger left tail

of the distributions compared to Fig. 2(d)), but only

when applied to afferent connections. In this configu-

ration, most neurons received a very small number of

connections from other neurons whereas a few neurons

received a high number of connections. However, the

MAE of most trials was still high after clamping a sin-

gle neuron.

3.5 Network modularity

There is a body of work that shows that the brain is
modular on different scales (Meunier et al 2010). On

the meso scale, the cortex is arranged in a multitude

of cortical columns (Buxhoeveden and Casanova 2002;

Mountcastle 1997). On a higher level, the cerebral cor-

tex has been shown to be organized in different sub-

regions that have non-symmetrical ways to communi-

cate with each other (Keller et al 2014). Modular con-

nectivity has been associated with neurobiologically re-

alistic regimes of activity in simulated networks (Ru-

binov et al 2011). Additionally, clustered and modu-

lar reservoirs have been linked to increased stability in

echo-state networks (Jarvis et al 2010; Li et al 2015).

If cortical circuits were to work accordingly to reser-

voir computing principles, the reservoirs might have to

be distributed across different sub-regions, or compart-

mentalized within each region to avoid the propagation

of the error caused by the failure of one of its compo-

nent.

We started by making networks made of modules

without connections between them, then we progres-



Driving reservoir models with oscillations 11

Clamped neurons
0 10 20 30

0

200

400

600

800

1000
Non modular
20 modules
50 modules
100 modules

Clamped neurons
0 10 20 30

T
im

in
g 

la
g 

[m
s]

T
im

in
g 

la
g 

[m
s]

0

200

400

600

800

1000
Non modular
0%
1%
3%
5%

Neuron #
20 40 60 80 100

N
eu

ro
n
 #

20

40

60

80

100

-1

0

1

0 1 2
0

500

1000

F
re

qu
en

cy

Error after perturbation
0 1 2

0

500

1000

F
re

qu
en

cy
Error after perturbation Error after perturbation

0 1 2
0

500

1000

F
re

qu
en

cy

a

b c

d e

Fig. 6 Error distribution of networks with an exponential, power-law and modular connectivity. a All distributions were
obtained from architecture A (5,000 trials each). Each color represents the MAE distribution from a different network, from
which each neuron was clamped once. Error distribution of networks (N-1) with an exponential distribution (left) of afferent
connections and a power-law distribution with a slope of -1.3 (middle) of afferent connections, and (right) a reservoir of 2,000
neurons with 100 modules (of 20 neurons each). b Connectivity matrix of a toy example for a network with 10 modules of
10 neurons each. For our analysis, the size (s) and number of modules (n) were the following (s by n): 1,000 by 1, 50 by 20,
20 by 50 and 10 by 100. Modules were originally fully connected without self-connections (diagonals set at zero). Then, 5%
of these connections were rewired to connect modules to each other. c Toy example of the trajectories of different modules of
a reservoir (100 by 10, probability of connectivity within modules = 1 (without self-connections), probability of connectivity
between modules = 0.03). Red traces show the trajectories of the perturbed module (circle = start, star = end) for 300 ms.
Blue traces show the trajectories of two modules that are not directly perturbed. d Timing lag of the output based on the
time it crosses a threshold for reservoirs with different configurations of modules. e Timing lag of modular networks of size
10 by 100 where 0%, 1%, 3% and 5% of synapses that were originally connecting neurons within modules have been rewired
between modules. Shaded areas represent the standard error of the mean.



12 Philippe Vincent-Lamarre 1 et al.

sively added inter-module connections to assess the im-

pact of modularity under more realistic conditions. Fig.

6(b) shows a toy model of a reservoir made of several

modules that were initialized as smaller random net-

works. When a neuron was clamped in one module,

only this module was affected by the perturbation and

the other ones remained intact (Fig. 6(c)). Traces in

blue show the trajectories (on three different trials) of

two modules that were not directly affected by a per-

turbation. Traces in red show the trajectories of the

module where one neuron was clamped. This illustrates

the resistance of spared modules to noise in the per-

turbed modules, as long as the number of connections

between modules remains low. When implemented with

the models, there was indeed an improvement in the re-

sistance to perturbations on the complex sinusoidal task

with architecture A (Fig. 6(a), right). There is also an

improvement with architecture D and the timing task,

where Fig. 6(d) illustrates the impact of perturbations

on different module size (reservoir sizes are kept con-

stant). Of course, performance degraded as we added

inter-module connections. Fig. 6(e) shows the impact

of adding connections between modules, where 0%, 1%,

3% and 5% of the synapses within each modules were

randomly rewired to neurons from different modules.

While modularity reduces the vulnerability, it does not

eliminate the problem and requires the network to im-

plement strict parameters values to improve resilience.

3.6 Driving reservoirs with oscillations

The above findings show that recurrent networks oper-

ating in the chaotic regime are extremely sensitive to

local structural perturbations. Based on these results,

we conclude that it is unlikely that recurrent networks

of firing rate neurons can produce reliable trajectories

as autonomous systems (i.e., in absence of ongoing ex-

ternal drives) with the reservoir models tested in this

study. This is in accordance with results from stud-

ies with recurrent networks of spiking neurons (Baner-

jee et al 2008; London et al 2010). In this section,

we describe an alternative autonomous model where

the reservoir is non-autonomous but is driven by an

autonomous input layer. For the duration of a trial,

this input layer is continuously stimulating the reservoir

with an ongoing periodic drive where each input unit

behave as an independent oscillator. Such oscillatory

dynamics can be endogenously generated by small neu-

ral circuits with precise connectivity between their ex-

citatory and inhibitory components (Yuste et al 2005).

This framework allows the production of stable neural

trajectories that are the result of the interaction be-

tween the periodic input, the state and the structure of

the reservoir. This model is resilient to local and global

perturbations and conserves the computational prop-

erties offered by chaotic neural networks (Bertschinger

and Natschläger 2004).

Previous work showed that chaotic networks can be

stabilized with an oscillatory input (Rajan et al 2010).

However, an important limitation of this approach is

that the duration of the resulting neural pattern can’t

exceed the period of the oscillation. Alternatively, in

our model, combining a population of oscillatory units

provides a major advantage: it increases the duration

of the pattern that the input layer can produce. The

mechanisms underlying this effect can be explained by

the residue number system (Soderstrand et al 1986). In

short, oscillators of different periods can repeat their

combined initial state after a delay equal to the least

common multiple of all their combined periods, as long

as the ratio of their periods is a rational number. This

creates a powerful mechanism by which the network

creates meaningful and robust neural trajectories.

Fig. 7(a) illustrates the general mechanisms of this

model. Each input unit oscillates at a constant fre-

quency throughout the duration of the stimulation. The

combination of oscillators with different periods (that

are not multiples of each other) yields a much longer in-

put period than the period of the slowest oscillator. For

instance, the least common multiple of the two oscilla-

tors on Fig. 7(a) is 2,000 ms, which means the trajectory

will repeat itself every two seconds. It is well-known

mathematically that the combined activity of multiple

oscillators can create very rich dynamics.

To visualize this, consider two linear oscillators whose

phase evolutions are given by θ1(t) = w1t(%2π) and

θ2(t) = w2(%2π) respectively, where θ represents an

angle on the unit circle [0, 2π]. The combined state of

the pair of oscillators, (θ1(t), θ2(t)) is a two-dimensional

coordinate on the Cartesian product of two unit circles,

or in other terms, a 2-Torus. Suppose, without loss of

generality that the pair of oscillators both start at θ =

0. The question is: will their combined trajectory ever

wind back to (0,0)? If so, how many cycles of each os-

cillator will it take?

For both oscillators to come back to the origin at

the same time means that there exists a single time t

such that w1t and w2t are both exact multiples of 2π.

Suppose then that m and n are integers such that w1t =

2πm and w2t = 2πn, then it follows that w2/w1 = n/m,

which is only possible if the fraction w2/w1 is a ratio-

nal number. If this is the case, then the smallest valid

integers m and n correspond to the respective number

of cycles of each oscillator that combine to create a pe-

riodic trajectory on the torus. If the ratio of frequencies

is not rational, it can be shown that the trajectory will



Driving reservoir models with oscillations 13

500 ms

400 ms

: Stimulus 1
: Stimulus 2

a

32 4 5 6 7 81

1 2 43 5 6

b

1 2 3 4 5 6 1 2
7 8 1 2 3 4 5 6 

6 1 2 3 4 5 6 1
2 3 4 5 6 7 8 1

...

...

...

...

0 200 400 600 800 1000 1200

-1

0

1

e

d f

Input Onc

g

Time [ms]

O
ut

pu
ts

, t
ar

ge
t

Fig. 7 Generation of stable trajectories with oscillators. a The activity of the oscillators is controlling the dynamics of the
reservoir. Multiple oscillators can be used to increase the length of the trajectory they can generate. The two first oscillators
in this example can create a trajectory that will not repeat itself until after 2,000 ms (least common multiple of 400 ms and
500 ms) of ongoing stimulation. The stimuli (e.g., a go cue) can be seen as triggers that align the phases of the oscillators
in the same configuration on every trial. b The phase configuration can be created by an input that aligns the oscillations
at some given phases corresponding to the segment of the trajectory that is required. c Outputs of the driven network in
a that was trained on a randomly generated time-varying function with frequency components below 15 Hz.d Projection of
the reservoir’s activity on the principal components when driven by the two first oscillators. The trajectory repeat itself after
2,000 ms (green arrow). The initial segment before the green arrow represents the convergence of the reservoir’s state to the
dynamic attractor created by the input. e Five trials with random initial conditions (200 ms) created by the two stimuli. The
filled circles represent the initial states and the stars mark the end of the 200 ms stimulation. f Left: power spectrum of the
network activity. Right: power spectrum in log-log coordinates. g Distance between a random time step along the trajectory
and all subsequent steps (average for all N neurons of the reservoir) for the different network gains. The trajectory is repeated
every 2,000 ms, and the average distance between each point on the trajectory is increased with the network gain.

never repeat itself and that is will densely fill the en-

tire torus over time (see e.g. Brin and Stuck (2002)).

It is easy to see how this mechanism generalizes to the
combination of multiple oscillators. The rich behaviour

that emerges from the joint dynamics of uncoupled os-

cillators is a powerful mechanism that can be used in a

variety of contexts (Buhusi and Meck 2005; Miall 1989).

The injection of such periodic activity in reservoirs

requires no training of their recurrent connections, and

allows the production of an unlimited number of tra-

jectories where their total length is dependent on the

input and not on the network (Fig. 7(a,b)). This is a

major improvement compared to the innate training

where only innate trajectories of the network could be

stabilized, and those trajectories were greatly limited in

duration (about 8 seconds) and quantity. The weights

of the connections of the oscillators were drawn from a

Gaussian distribution and were sparsely connected to

the reservoir. Fig. 7C shows the output of a readout

trained to produce a randomly generated time-varying

output (white noise low pass filtered at 15 hz). Each

trace shows a given trial with random initial conditions

where the oscillators are turned on after 100 ms (blue

dashed line) and the target output starts at 250 ms

(black dashed line).

Fig. 7(d) shows one complete trajectory, based on

the two first oscillating units of Fig. 7(a). After a tran-

sient segment where the network converges from its ini-

tial state to the dynamic attractor (green arrow) cre-

ated by the injection of the oscillating input in the reser-

voir, the neural trajectory will repeat itself every two

seconds as long as the oscillators are active and keep

their relative phase shift. Some segments of this full

trajectory can be evoked by stimuli that either reset or

activate the oscillators at given phases (Fig. 7(b)), or

that turn them on sequentially in order to match some

predetermined phases shifts. Every time the oscillators

are initialized at some predetermined phases, they can

be used to evoke segments of the full trajectories (Fig.

7(e)), that can then be decoded by a readout unit.

The projections of the oscillators’ activity in a recur-

rent network serves two principal roles. First, it creates

a high-dimensional representation of the low-dimensional

input (Häusler et al 2003). Secondly, it takes advan-



14 Philippe Vincent-Lamarre 1 et al.

b

c

T
im

in
g 

la
g 

[m
s]

T
im

in
g 

la
g 

[m
s]

a

d

Fig. 8 Performance of the driven model. a Timing lag between the output and the target after clamping different numbers
of neurons from the reservoir. b Timing lag for the driven model after greater proportions of neurons have been removed
from the reservoir. The network reaches random performance (500 ms lag) after about 75 neurons out of 1,000 are clamped,
compared to 8 neurons for innate training. c Error on the complex sinusoidal task after clamping a single neuron of the new
model (blue, average MAE of 0.05) and architecture A (yellow, average MAE of 0.79). The frequency of the oscillators was set
manually to match the length of a full cycle of the complex sinusoid (1.2 seconds). d Performance (R2) on the timing task for
different timing interval lengths. Blue/Red: the network is driven by multiple oscillators, with reservoir gains of 0.5 and 1.5
respectively. A higher gain increases the network performance. Green/Black: performance of architecture D with no recurrent
training where the trajectory of the reservoir is repeated by resetting the initial state of the network to the same values on
each trial. Magenta: performance of innate training. For a,b and d, we generated 10 networks (per conditions for d) where
the frequencies of the oscillators were drawn for a uniform distribution with a minimum of 1 Hz and a maximum of 5 Hz. For
a and b, we clamped 10 subsets of neurons per network, for a total of 100 tests per data point. Shaded areas represent the
standard error of the mean.

tage of the recurrent connections of the network to

decorrelate the highly correlated inputs that each neu-

ron receives. Fig. 7(e) shows that as the network gain

was increased, the peak in the power spectrum (2 Hz

and 2.5 Hz based on the example of Fig. 7(a)) de-

creased, while the power of the other frequencies in-

creased, which shows that the overall correlation of the

network decreased. Fig. 7(g) shows the distance (aver-

age for all neurons of the reservoir) between a randomly

selected time step of the network’s trajectory and all

subsequent time steps. The distance reaches 0 every

2,000 ms for all conditions, which shows that the net-

work is back to its initial state. However, as the network

gain increased, the overall distance between this point

and the other states of the network increased, which

suggest better discriminability between each step of the

trajectory.



Driving reservoir models with oscillations 15

The resilience of the driven model was tested on

the previous tasks (timing and complex sinusoid), al-

though the activity of the reservoir driven with oscilla-

tions could be used with many other tasks where the

output is a time-varying function. This model displayed

considerably improved resistance to the structural per-

turbations that were completely shutting down the abil-

ity of the previous models to perform their task. Fig.

8(a,b) shows the performance after different numbers of

neurons were clamped from the reservoir of the driven

model and from reservoirs with innate training. With

innate training, networks reached random performance

when less than 10 neurons were clamped, whereas the

driven model could sustain the loss of about 75 neurons

before it reached the same disruption in performance.

Fig. 8(c) shows the performance on 2,500 trials on the

sinusoid production with the driven model where the

period of the input oscillators matches the period of

the target sinusoidal wave and 5,000 trials with archi-

tecture A (same as Fig. 2(d)). There is a large improve-

ment with the new model where almost all networks

were still successful after the perturbation compared to

architecture A where no networks were able to sustain

the loss of a single neuron.

The maximum length of the timing interval is signif-

icantly greater with the driven model than with innate

training. To get a reliable estimate of the capacity of

the new model, we generated the performance curve of

different interval lengths with the spontaneous activity

of reservoirs that was replayed multiple times with the

exact same initial conditions and without noise. The

performance of the driven model was close to the opti-

mal performance obtained when using the spontaneous

activity of chaotic networks (Fig. 8(d)). The lower per-

formance of the spontaneous activity of the network

with a gain of 3 was probably caused by the satura-

tion of the reservoir’s neurons (Fig. S4). This perfor-

mance also appears to be dependent on the strength of

the reservoir’s connections for the driven model, where

stronger connections (gain = 1.5) lead to better perfor-

mances than lower gain values. There was a trade-off

between the stability of the trajectory, the saturation

and the correlation of the network’s units (Fig. S5).

In summary, we showed that a weak periodic drive

both helps a network to remain robust to structural

perturbations and increase its performance compared

to previous implementations.

4 Discussion

4.1 Summary of results

Our results show that reservoir models that were trained

to produce precise patterns of activity were highly vul-

nerable to small structural perturbations. With every

architecture that we tested, clamping a single neuron,

or setting the weights of a very small subset of synapses

to zero, had either a strong impact or completely dis-

rupted the networks’ performance on the selected task.

This is at odds with the apparent resilience of the brain

to minor functional and structural perturbations. For

instance, the cerebellum shows considerable resistance

to lesions on tasks related to interval timing (Perrett

et al 1993). The impact of these lesions on the latency

of behavioral responses can be absent.

In contrast, when the same amount of perturbation

was distributed across all connections, the performance

degradation was milder. We found little or no improve-

ment in resistance to perturbations when increasing the

dimensionality of the reservoirs. Thus, in the range of

reservoir sizes that we tested, the absolute number of

disrupted neurons, and not the proportion of neurons

clamped, explained the impact on performance. Chang-

ing the distribution of connections in the reservoir had

little benefit in terms of resistance, except that a small

gain was obtained with an exponential and a power-law

distribution of afferent connections. We found a marked

improvement in resistance with modular networks, but

even in this scenario networks were still vulnerable to

local structural perturbations, and a very sparse con-

nectivity between modules was required to benefit from

this type of connectivity.

Finally, we introduced an alternative model, where

the reservoir was driven by a layer of oscillators. This

architecture could learn longer timing intervals, was

simpler to train and was more resilient to local pertur-

bations than other implementations. It is known that

reservoir networks driven with inputs are more stable

than non-driven network(Sussillo and Abbott 2009),

and in this work, we showed that driving reservoirs also

generate structural robustness. In models that are not

driven by external inputs, neurons of the reservoir are

only influenced by each other’s activity. Conversely, in

models that are driven by external inputs, neurons are

also influenced by a stable source of external activa-

tion that is preserved. This external signal will therefore

help to counteract the error created by the perturba-

tion in the network. In other words, the external drive

helps to guide the network to driven trajectories, which

increase robustness to changes in connectivity.



16 Philippe Vincent-Lamarre 1 et al.

The extreme sensitivity of the reservoir models that

we tested might not be an issue in many tasks where

a readout unit is used to discriminate between a few

states of the reservoir. This is usually the case for clas-

sification tasks where as long as the resulting trajectory

remains in the same subspace (e.g. basin of attraction

of a fixed point attractor), the readout unit will retain

its ability to generate the appropriate output. When

tested on a 3-Bit Flip-Flop task (Sussillo and Barak

2013), the networks retained a large part of their abil-

ity to perform the task (Fig. S6), compared to when the

same architecture was trained to reproduce a complex

sinusoid. Issues arise when the readout unit is trained

to produce complex output functions based on precise

temporal activity in the reservoir. As shown in our re-

sults, very small perturbations to the structure of a

network cause a very large impact on the network’s dy-

namics, leading to very different trajectories.

This has an important impact on computations since

the main source of disruption in the network’s perfor-

mance comes from the deviation of the reservoir’s tra-

jectory. This is highlighted by the fact that the networks

can sustain a relatively large loss of synapses connect-

ing the reservoir to the readout unit before being signif-

icantly impaired. Therefore, it is unlikely that the main

factor explaining the impaired performance is the loss

of dimensions to the solution found by the readout.

One mechanism that hasn’t been extensively tested

in the current work is the ability of a network to mod-

ify its synapses to compensate for perturbations. The

training algorithms that we used are applied to every

synapses of either the reservoir or the readout. There-

fore, retraining the network after such perturbations

generates a completely new solution equivalent to train-

ing a new network. A localized re-training (e.g., only

a subset of neurons/synapses can be modified) could

be used to compensate for synaptic failure in order

to retain the configuration of the previous network.

When only a subset of connections of the readout units

was retrained, the performance was recovered when the

size of this subset reached about 10% of all synapses

(randomly selected) (Fig. S7). However, in the case of

multiple readouts connecting to the reservoir, the total

number of synapses to retrain would increase rapidly.

Therefore, retraining the reservoir would appear to be

more efficient, but this option is only available to ar-

chitectures that allow reservoir plasticity. However, in

the case of innate training, it was almost impossible

to retrain the reservoir after a perturbation, possibly

because it created different innate trajectories.

The division of reservoirs into compartmentalized

pools of recurrent neurons appears to be an effective

mechanism to improve their resistance to structural

perturbations. Without connections between the mod-

ules, the error caused by a structural perturbation is

dependent on the number of modules directly affected

by the perturbation. Our results showed that modular

networks were more resistant to structural perturba-

tions than comparable random networks, due to their

ability to restrain the perturbations in a cluster of neu-

rons of the network. However, even if this configuration

is beneficial for the network’s resilience, this is likely not

sufficient, due to the high number of modules required

and the low tolerance to inter-module connections. The

low number of inter-module connections required to in-

crease to resilience isn’t biologically plausible (Meunier

et al 2010).

4.2 Biological relevance of the driven model

The driven model presented here relies on the injec-

tion of oscillations into neurons of the reservoir. Neu-

ronal oscillations constitute an ubiquitous form of ac-

tivity in various brain circuits, and transient increase

in specific frequency bands is linked to many behav-

ioral and cognitive outcomes (Churchland et al 2012;

Kahana 2006; MacKay 2005). The dynamics of the os-

cillators used in our model are analogous to central pat-

tern generators (CPGs) in the brain (Hooper 2001).

These circuits have been shown to produce stable and

repetitive activity in the absence of sustained sensory

or central input. CPGs have mostly been used to ex-

plain stereotyped and repetitive motions and behaviors,

such as breathing, walking or scratching (Hooper 2001).

Although they are usually associated with lower level

brain areas such as in the brainstem and spinal cord, the

cerebral cortex could also implement similar dynamics

(Yuste et al 2005). Additionally, the phase control of

ongoing oscillations has been extensively studied, where

reliable and systematic mechanisms for phase resetting

have been shown in vitro with single cells (Farries and

Wilson 2012), in populations of neurons (Akam et al

2012) and in model cells (Ermentrout 1996).

Therefore, based on the extensive reports of CPGs

and phase-resetting mechanisms in the brain, we sug-

gest that the neural mechanisms to start, sustain and

end the dynamics of the oscillators proposed in our

model are biologically plausible. However, we make no

claims about the nature or the implementation of such

mechanisms and leave this part for further studies.

4.3 Related models

The use of oscillators with different periods as a source

of neural activity underlying interval timing has been



Driving reservoir models with oscillations 17

proposed in the past. The model proposed in (Miall

1989) relies on similar principles, where the maximum

interval that can be encoded by a neural network is

given by the least common multiple of multi-periodic

oscillators. In this model, an output unit is trained

to detect the coincident activation of some pacemaker

cells. These mechanisms have been adapted in the stri-

atal beat-frequency theory (Buhusi and Meck 2005; Lustig

et al 2003), where the oscillators have origins distributed

in the cortex, and where the basal ganglia act as a co-

incidence detector. However, these models are specific

to interval timing tasks, and aren’t applicable to other

tasks that require a temporal component in their activ-

ity (Mauk and Buonomano 2004). On the other hand,

(Fiete et al 2008) proposed a coding system based on

similar principles for spatial navigation. In this theory,

the different lengths of the lattices created by the grid

cells are read by the place cells of the hippocampus

based on a modular code, similar to the residue num-

ber system (Soderstrand et al 1986). The model that

we propose is exploiting both the spatial and the tem-

poral component of the modular code, which makes it

more general and powerful.

Most reservoir models use supervised learning (Barak

et al 2013; Laje and Buonomano 2013; Maass et al 2002;

Sussillo and Abbott 2009), which has limited biological

plausibility because it implies that the target function is

accessible to the system. While we employed this learn-

ing algorithm in our model, some unsupervised learning

rules have been successfully applied to similar models

(Hoerzer et al 2014) and could potentially be used with

our driven model.

4.4 Conclusion

In this work, we raised an important problem with the

production of reliable patterns of activity by recurrent

neural networks of firing rate units, which had already

been highlighted in the past in spiking networks (Baner-

jee et al 2008; London et al 2010). Our study showed

that chaotic neural networks that are resistant to noisy

inputs and state-space perturbations (Laje and Buono-

mano 2013) are no longer resilient under minimal struc-

tural perturbations. A priori, chaos and structural per-

turbations are not necessarily related, and our work

showed that it is indeed an important distinction to

make with neural circuits.

The spontaneous activity of autonomous chaotic net-

works is a candidate mechanism to explain the brain dy-

namics required to execute intrinsically generated tem-

poral processes. However, our work showed that this ap-

proach is too sensitive to structural perturbations. On

the other hand, we showed that driving reservoirs with

oscillating inputs is an attractive solution to generate

activity that is resilient to structural perturbations. Fu-

ture directions would involve the use of reservoirs made

of spiking units to investigate their resilience to struc-

tural perturbations, as well as the possibility to gen-

erate useful spike patterns with oscillating inputs. Ex-

perimental studies could also be conducted to unravel

the presence of trial-to-trial phase coherence of oscilla-

tory activity related to the generation of spatiotemporal

patterns.

Acknowledgements This work was supported by a Discov-
ery grant from the Natural Sciences and Engineering Council
of Canada (NSERC Grant No. 210977 and No. 210989), oper-
ating funds from the Canadian Institutes of Health Research
(CIHR Grant No. 6105509), and the University of Ottawa
Brain and Mind Institute (uOBMI), scholarships awarded to
PVL from the Ontario Graduate Scholarship (OGS) and the
Fonds de recherche Nature et technologies (FQRNT) as well
as a FQRNT postdoctoral fellowship, a Bernstein Fellowship
and an Innovation Fellowship from the Washington Research
Foundation to GL. We would like to thank Eric S. Kuebler
and Nareg Berberian for their helpful comments.

5 Compliance with Ethical Standards

The authors declare that they have no conflict of inter-

est. No research involving human participants or ani-

mals was performed.

References

Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM
(2012) Oscillatory dynamics in the hippocampus sup-
port dentate gyrus-CA3 coupling. Nature neuroscience
15(5):763–768

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics
of ongoing activity: explanation of the large variability in
evoked cortical responses. Science 273(5283):1868–1871

Bai Z (1997) Circular law. The Annals of Probability
25(1):494–529

Banerjee A, Seriès P, Pouget A (2008) Dynamical constraints
on using precise spike timing to compute in recurrent cor-
tical networks. Neural computation 20(4):974–993

Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF
(2013) From fixed points to chaos: Three models of de-
layed discrimination. Progress in Neurobiology 103, DOI
10.1016/j.pneurobio.2013.02.002

Bernacchia A, Seo H, Lee D, Wang XJ (2011) A reservoir of
time constants for memory traces in cortical neurons. Nat
Neurosci 14(3):366–372, DOI 10.1038/nn.2752

Bertschinger N, Natschläger T (2004) Real-time computation
at the edge of chaos in recurrent neural networks. Neural
computation 16(7):1413–1436

Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A,
Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009)
GABAergic hub neurons orchestrate synchrony in de-
veloping hippocampal networks. Science 326(5958):1419–
1424



18 Philippe Vincent-Lamarre 1 et al.

Brin M, Stuck G (2002) Introduction to dynamical systems.
Cambridge University Press

Buhusi CV, Meck WH (2005) What makes us tick? Func-
tional and neural mechanisms of interval timing. Nat Rev
Neurosci 6(10):755–765, DOI 10.1038/nrn1764

Buonomano DV, Maass W (2009) State-dependent compu-
tations: spatiotemporal processing in cortical networks.
Nature Reviews Neuroscience 10(2):113–125

Buxhoeveden DP, Casanova MF (2002) The minicolumn hy-
pothesis in neuroscience. Brain 125(5):935–951

Churchland MM, Shenoy KV (2007) Temporal complexity
and heterogeneity of single-neuron activity in premotor
and motor cortex. Journal of neurophysiology 97(6):4235–
4257

Churchland MM, Cunningham JP, Kaufman MT, Foster JD,
Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural popula-
tion dynamics during reaching. Nature 487(7405):51–56,
DOI 10.1038/nature11129

De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Wit-
ter L, Koekkoek SK (2011) Spatiotemporal firing pat-
terns in the cerebellum. Nature Reviews Neuroscience
12(6):327–344

Enel P (2014) Dynamic representation in the prefrontal
cortex : insights from comparing reservoir computing
and primate neurophysiology. Theses, Université Claude
Bernard - Lyon I

Ermentrout B (1996) Type I membranes, phase resetting
curves, and synchrony. Neural computation 8(5):979–1001

Farries MA, Wilson CJ (2012) Phase response curves of sub-
thalamic neurons measured with synaptic input and cur-
rent injection. Journal of Neurophysiology 108(7):1822–
1837, DOI 10.1152/jn.00053.2012

Fiete IR, Burak Y, Brookings T (2008) What grid cells
convey about rat location. The Journal of Neuroscience
28(27):6858–6871

Froemke RC, Schreiner CE (2015) Synaptic plasticity as a
cortical coding scheme. Current opinion in neurobiology
35:185–199

Fu Y, Yu Y, Paxinos G, Watson C, Rusznák Z (2015) Aging-
dependent changes in the cellular composition of the
mouse brain and spinal cord. Neuroscience 290(0):406–
420, DOI 10.1016/j.neuroscience.2015.01.039

Goel A, Buonomano DV (2014) Timing as an intrinsic prop-
erty of neural networks: evidence from in vivo and in vitro
experiments. Philosophical transactions of the Royal So-
ciety B: Biological sciences 369(1637):20120,460

Häusler S, Markram H, Maass W (2003) Perspectives of the
high-dimensional dynamics of neural microcircuits from
the point of view of low-dimensional readouts. Complex-
ity 8(4):39–50

Haykin S (2002) Adaptive filter theory. Prentice Hall 2:478–
481

Hoerzer GM, Legenstein R, Maass W (2014) Emergence of
complex computational structures from chaotic neural
networks through reward-modulated Hebbian learning.
Cerebral cortex 24(3):677–690

Hooper SL (2001) Central Pattern Generators. In: eLS, John
Wiley & Sons, Ltd

Jaeger H (2002) Adaptive nonlinear system identification
with echo state networks. pp 593–600

Jarvis S, Rotter S, Egert U (2010) Extending stability
through hierarchical clusters in echo state networks. Fron-
tiers in neuroinformatics 4

Joshi P, Maass W (2005) Movement generation with circuits
of spiking neurons. Neural Computation 17(8):1715–1738

Kahana MJ (2006) The cognitive correlates of human brain
oscillations. The Journal of Neuroscience 26(6):1669–1672

Keller CJ, Honey CJ, Mégevand P, Entz L, Ulbert I,
Mehta AD (2014) Mapping human brain networks with
cortico-cortical evoked potentials. Philosophical Trans-
actions of the Royal Society B: Biological Sciences
369(1653):20130,528

Laje R, Buonomano DV (2013) Robust timing and motor
patterns by taming chaos in recurrent neural networks.
Nat Neurosci 16, DOI 10.1038/nn.3405

Lajoie G, Lin KK, Shea-Brown E (2013) Chaos and relia-
bility in balanced spiking networks with temporal drive.
Physical Review E 87(5):052,901

Lajoie G, Thivierge JP, Shea-Brown E (2014) Structured
chaos shapes spike-response noise entropy in balanced
neural networks. Frontiers in Computational Neuro-
science 8, DOI 10.3389/fncom.2014.00123

Li X, Zhong L, Xue F, Zhang A (2015) A Priori Data-Driven
Multi-Clustered Reservoir Generation Algorithm for Echo
State Network. PloS one 10(4)

London M, Roth A, Beeren L, Häusser M, Latham PE (2010)
Sensitivity to perturbations in vivo implies high noise and
suggests rate coding in cortex. Nature 466(7302):123–127

Lustig C, Matell MS, Meck WH (2003) Not “just” a coin-
cidence: Frontal-striatal interactions in working memory
and interval timing. Memory 13(3-4):441–448

Maass W, Natschläger T, Markram H (2002) Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations. Neural computation
14(11):2531–2560

MacKay WA (2005) Wheels of motion: oscillatory potentials
in the motor cortex. Motor Cortex in Voluntary Move-
ments: A Distributed System for Distributed Functions
pp 181–211

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing
in neocortical neurons. Science 268(5216):1503–1506

Mante V, Sussillo D, Shenoy KV, Newsome WT (2013)
Context-dependent computation by recurrent dynamics
in prefrontal cortex. Nature 503(7474):78–84

Mauk MD, Buonomano DV (2004) The neural basis of tem-
poral processing. Annu Rev Neurosci 27:307–340

Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A
role for neural integrators in perceptual decision making.
Cerebral cortex 13(11):1257–1269

Meunier D, Lambiotte R, Bullmore ET (2010) Modular and
hierarchically modular organization of brain networks.
Frontiers in neuroscience 4

Miall C (1989) The storage of time intervals using oscillating
neurons. Neural Computation 1(3):359–371

Molgedey L, Schuchhardt J, Schuster HG (1992) Suppress-
ing chaos in neural networks by noise. Physical Review
Letters 69(26):3717–3719

Mountcastle VB (1997) The columnar organization of the
neocortex. Brain 120(4):701–722

Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gun-
dersen HJG, Nyengaard JR, Regeur L (2003) Aging and
the human neocortex. Proceedings of the 6th Interna-
tional Symposium on the Neurobiology and Neuroen-
docrinology of Aging 38(1–2):95–99, DOI 10.1016/S0531-
5565(02)00151-1

Perin R, Berger TK, Markram H (2011) A synaptic organiz-
ing principle for cortical neuronal groups. Proceedings of
the National Academy of Sciences 108(13):5419–5424

Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex le-
sions disrupt learning-dependent timing of conditioned
eyelid responses. The Journal of Neuroscience 13(4):1708–



Driving reservoir models with oscillations 19

1718
Rajan K, Abbott L, Sompolinsky H (2010) Stimulus-

dependent suppression of chaos in recurrent neural net-
works. Physical Review E 82(1):011,903

Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal
correlates of parametric working memory in the prefrontal
cortex. Nature 399(6735):470–473, DOI 10.1038/20939

Rubinov M, Sporns O (2010) Complex network measures of
brain connectivity: uses and interpretations. Neuroimage
52(3):1059–1069

Rubinov M, Sporns O, Thivierge JP, Breakspear M (2011)
Neurobiologically realistic determinants of self-organized
criticality in networks of spiking neurons. PLoS compu-
tational biology 7(6):e1002,038

Soderstrand MA, Jenkins WK, Jullien GA, Taylor FJ (eds)
(1986) Residue Number System Arithmetic: Modern Ap-
plications in Digital Signal Processing. IEEE Press, Pis-
cataway, NJ, USA

Sompolinsky H, Crisanti A, Sommers H (1988) Chaos in ran-
dom neural networks. Physical Review Letters 61(3):259

Sussillo D, Abbott LF (2009) Generating Coherent Patterns
of Activity from Chaotic Neural Networks. Neuron 63,
DOI 10.1016/j.neuron.2009.07.018

Sussillo D, Barak O (2013) Opening the black box: low-
dimensional dynamics in high-dimensional recurrent neu-
ral networks. Neural computation 25(3):626–649

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV
(2015) A neural network that finds a naturalistic solution
for the production of muscle activity. Nature neuroscience
18(7):1025–1033

Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of
spike timing in visual cortical circuits. Nature reviews
neuroscience 9(2):97–107

Toledo-Suárez C, Duarte R, Morrison A (2014) Liquid com-
puting on and off the edge of chaos with a striatal micro-
circuit. Frontiers in computational neuroscience 8

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal
networks with balanced excitatory and inhibitory activity.
Science 274(5293):1724–1726

Westlye LT, Walhovd KB, Dale AM, Bjørnerud A, Due-
Tønnessen P, Engvig A, Grydeland H, Tamnes CK, Østby
Y, Fjell AM (2009) Life-span changes of the human brain
white matter: diffusion tensor imaging (DTI) and volume-
try. Cerebral cortex p bhp280

Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state
machine. Neural Networks 20(3):290–297

Yuste R, MacLean JN, Smith J, Lansner A (2005) The cor-
tex as a central pattern generator. Nature Reviews Neu-
roscience 6(6):477–483


