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Abstract Developing networks of neural systems can

exhibit spontaneous, synchronous activities called neu-
ral bursts, which can be important in the organization

of functional neural circuits. Before the network ma-

tures, the activity level of a burst can reverberate in

repeated rise-and-falls in periods of hundreds of mil-

liseconds following an initial wave-like propagation of
spiking activity, while the burst itself lasts for seconds.

To investigate the spatiotemporal structure of the re-

verberatory bursts, we culture dissociated, rat corti-

cal neurons on a high-density multi-electrode array to
record the dynamics of neural activity over the growth

and maturation of the network. We find the synchrony

of the spiking significantly reduced following the ini-

tial wave and the activities become broadly distributed

spatially. The synchrony recovers as the system rever-
berates until the end of the burst. Using a propagation

model we infer the spreading speed of the spiking ac-

tivity, which increases as the culture ages. We perform

computer simulations of the system using a physiologi-
cal model of spiking networks in two spatial dimensions

and find the parameters that reproduce the observed

resynchronization of spiking in the bursts. An analysis

of the simulated dynamics suggests that the depletion

of synaptic resources causes the resynchronization. The
spatial propagation dynamics of the simulations match
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well with observations over the course of a burst and

point to an interplay of the synaptic efficacy and the
noisy neural self-activation in producing the morphol-

ogy of the bursts.

Keywords Bursting · Reverberation · Synchroniza-

tion · Cultured network · Simulation

1 Introduction

During the development of neural systems, spontaneous

and synchronous activities can appear following the out-

growth of neurites and before the availability of external

stimulus inputs (Segev et al, 2003; Meister et al, 1991).
These activities are believed to play an important role

in the formation and organization of functional neu-

ral circuitries (Katz and Shatz, 1996; Turrigiano and

Nelson, 2004; Harris, 1981; Crair, 1999). The investi-
gation of these network activities can help to elucidate

the cellular and network mechanisms involved in neural

development (Zhang and Poo, 2001; Bi and Poo, 2001;

Blankenship and Feller, 2010; Kerschensteiner, 2014)

and will lead to a better understanding of the function-
ing of a brain (Penn and Shatz, 1999; Hua and Smith,

2004; Chiappalone et al, 2006; Pu et al, 2013). Among

approaches to study the spontaneous activity of devel-

oping neural systems, dissociated cultures of cortical or
hippocampal neurons on a multi-electrode array (MEA)

have been used for decades as experimental models for

observing the dynamics of growing networks (Thomas

et al, 1972; Pine, 1980; Gross et al, 1982; Potter and

DeMarse, 2001).

Usually, spontaneous activities can be observed af-
ter about a week in vitro and the activities are later

synchronized into episodic network bursts (Maeda et al,

1995; Chiappalone et al, 2006). Interesting patterns of
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these neural bursts have been reported (Van Pelt et al,

2004; Wagenaar et al, 2006; Raichman and Ben-Jacob,

2008), where the activity level of firing rate in the burst

can have repeated peaks of rise-and-falls called rever-

berations at a time scale of hundreds of milliseconds
following the initial spike of activities (Lau and Bi,

2005). These so-called “super bursts” (Wagenaar et al,

2006) can last for seconds and, for their similarity in

the time scales, are thought to be important to under-
stand cognitive functions such as working memory on

the cellular and network levels (Wang, 2001; Lau and

Bi, 2005; Compte, 2006; Mongillo et al, 2008; Volman

and Gerkin, 2011; Bermudez Contreras et al, 2013; Dra-

nias et al, 2013).

There have been active studies on the initiation of

in vitro neural bursts (Feinerman et al, 2007; Eckmann

et al, 2008) focusing on both the role of hub neurons
(Cossart, 2014; Schroeter et al, 2015) and topological

effects (Orlandi et al, 2013). The development of high-

density MEA systems has enabled more detailed in-

vestigation of the activity propagation in the neural
bursts. Notably, the collective dynamics of spiking neu-

rons such as center-of-activity trajectory (CAT) allow

the identification of a propagation phase and a rever-

beration phase in the progression of a burst event (Gan-

dolfo et al, 2010).

In the current study, we use a similar high-density

MEA system to investigate reverberatory bursts ob-
served in the development of dissociated cortical cul-

tures. Instead of considering reduced dynamics such as

principal components or CAT, we use a propagation

model to predict the location of each occurring spike.

The effectiveness of such prediction allows the classifica-
tion of the spikes into evoked and spontaneous ones, and

can be used in reverse for an inference on the spread-

ing speed of the recorded spiking activity. We find a

recovering dominance of the evoked spikes over the re-
verberatory phase of a burst following their reduction

after the initial propagating wave.

We implement a physiologically realistic model of
neuronal systems (Volman et al, 2007) on a geometrically-

constrained, two-dimensional network and identify sets

of parameters that can produce reverberatory bursts

qualitatively similar to the experimental observations.

With all dynamical variables being available in com-
puter simulations, we clarify the roles played by the

neuronal noise as well as the depletion of synaptic re-

sources in the continuation and termination of the re-

verberatory bursts. We find that the depletion, which
is responsible for terminating the burst events (Cohen

and Segal, 2011), is also important in restoring the syn-

chrony of reverberatory activity during the bursts.

2 Materials and methods

2.1 Cell cultures and experimental setup

Cortical neurons were dissociated from Wistar rat at

embryonic day 17 (E17). Tissues were digested by 0.125%

trypsin and plated on the BioChip 4096E (3Brain, Switzer-
land) previously coated with poly-D-lysine (0.1mg/ml)

and laminin (0.1mg/ml) to promote the adhesion of

neurons. About 6×104 neurons were plated, completely

covering an active area of 6×6 mm2, yielding a density
of the culture of about 1.7×103 neurons/mm2. Cultures

were filled with 1 mL culture medium at 30 min after

plating and incubated at 37℃ in the presence of 5%

CO2. Half of the medium was refreshed twice a week.

2.2 Electrophysiological signals

Electrophysiological activities of neurons were recorded

with the original culture medium once every other day

since 6 DIV in 5% CO2 at room temperature (24℃).

Before recording, the culture was kept at room tem-

perature for 10 min for stabilization and placed back to
the incubator immediately after the recording for future

measurement. The chip 4096E has a recording area of

5.12×5.12 mm2 covered by 64×64 electrodes. The area

of each electrode is 21×21 µm2 with an inter-electrode
separation of 81µm.

The network activity was acquired at a sampling

rate of 7.7 kHz for each electrode. Each recording data

set includes network activity of 5 min. But, the data sets

containing unstable activity patterns, long silent peri-

ods, or abnormal activities with, e.g., strong noise, were
excluded for further processing. The qualified data sets

for further processing are listed in Table 1. Spontaneous

activities can be observed after about 2 weeks in vitro,

comprising isolated spikes and short bursts involving
many neurons (electrodes), e.g., the one shown in Fig. 1.

The isolated spikes produced in neurons are detected

by the BrainWave software through the Precise Timing

Spike Detection with threshold values that are 8 times

of the standard deviation of spike-free signals.

2.3 Detection of bursts and activity peaks

The bursts are detected as follows. The spike rate R (t)

at each instance t is measured as an average over the

time window of size λ centered at the time. For detected

spike times from each MEA recording, typically of a 5-
minute duration, the maximum of the spike rate Rmax

is first determined. A lower threshold Rlower ≡ ǫRmax

is used to decide whether the culture is in an active
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Table 1 List of experimental recordings

Culture DIV Reverberation
Spreading

Speed (mm/s)

A
12 No 93.15
25 Yes 140.9

B
13 No 30.78
25 Yes 75.33

C
33 Yes 200.9
40 Yes 179.8
68 No 554.9

D

26 No 145.0
33 Yes 458.5
40 Yes 480.3
68 No 517.6

E
24 Yes 77.76
38 Yes 435.0
41 No 398.5

F
12 Yes 116.6
39 Yes 403.4
54 No 448.7

Fig. 1 a Raster plot of detected spikes from the culture E at
DIV 38 and b the corresponding time histogram of firing rate. c
to e Firing-rate histograms for different DIVs (as labeled) of the
culture E

state as illustrated in Fig. 2a. A reverberatory burst
typically starts with a strong activity peak for the ini-

tiation phase followed by varying activity level or peaks

in the reverberation phase as illustrated in Fig. 2a. A

burst is registered starting at ts when the culture be-

comes active at ts and stays active until the spike rate
reaches an upper threshold of Rupper ≡ ∆Rmax. The

registered burst ends at te when the culture becomes

inactive at te and stays inactive at least for a duration

of τterm. The empirical values for the parameters used
in the burst detection of both the experimental and

simulated data are: λ = 0.02s, ǫ = 0.04, ∆ = 0.2, and

τterm = 1.5s.

Rmax1

Δ

ε

τtermburst duration
ts te

1

ε

a b

α

h

h/2

★

peak start time

initiation reverberation

Fig. 2 Illustrated parameters for the detection of a a burst and
b a spike rate peak (marked by the star) as described in the text.
The vertical axes are spike rate in units of their maximum Rmax

of the recording while the horizontal are time axes

The peaks or reverberations could also be identified

using the same method as described above with a dif-

ferent set of empirical parameter values. However, here
we use a simpler definition that is time-symmetric: A

peak is defined as a significant maximum (height h >

αRmax > Rlower) in the firing rate of a continuous time

interval where the rate is above half of this maximum
firing rate as marked in Fig. 2b. Preceding this inter-

val and following the previous peak, if the firing rate of

the culture stays above the lower threshold, the min-

imum of firing rate is considered the starting time of

this peak. Otherwise, the starting time is registered as
the time when the rate crosses the lower threshold. The

state variables of the system representing the internal

noise and degree of depletion, which are only available

in simulation results, are determined at the start time
of a peak to correlate with the characteristics of the

peak.

2.4 Activity propagation and predictability of spiking

electrodes

The propagation of the spiking activity in a burst can

be visually observed from the animated replay of sus-
taining spikes (Online Resource). To quantify the wave-

like propagation of the initial sweep of activity and the

subsequent distributed activation of neurons, we intro-

duce a simple linear-spread diffusive model that can be
used to predict the electrode for the next spike using

spikes that have already been recorded. The probabil-

ity for the next spike occurring at time t to be on the

electrode at r is given by

P (r) =
1

N

∑

{i|ti<t}

e−(t−ti)/τp
1

L2
i

e−|r−ri|
2/L2

i (1)

where ti and ri are time and location of the previous
spike i, Li ≡ v (t− ti) is the spreading influence range

of the spike i, τp is the decay time of the influence,

N ≡
∑

r
P (r) is the normalization factor, and v is the
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spreading speed of the influence. We note that the prob-

ability (1) is conditional on a spike occurring at time t,

and should be multiplied with the spike rate R (t) for

predicting the occurrence of a spike at r. We define the

predictability of spikes as the average of P (r) over all
spikes in a recording comparing to the uniform distri-

bution, which tells us how well the location of a spike

can be predicted from previous spikes using the simple

model (1). For each recording, we find the value of v
that maximizes the predictability relative to a surrogate

with randomized spike positions as shown in Fig. 3a and

these values are included in Table (1) for all record-

ings. With the optimal value v, a spike is considered

an evoked spike if its position r satisfies P (r) > 2P0

where P0 = 1/Nelec ≈ 2.4× 10−4 is the average proba-

bility for the spike to occur at an electrode out of the

Nelec = 4096 electrodes for our MEA. The number ra-

tio of evoked spikes to the total spikes within the rate
peaks of a burst are shown next to the corresponding

peaks in Fig. 3b.

2.5 Computer simulations

To gain insight into the dynamics of the reverberatory

bursts, we use a neuronal synaptic model similar to

that described by Volman et al (Volman et al, 2007).

The model uses Morris–Lecar (ML) (Morris and Lecar,
1981) neurons connected with Tsodyks–Markram (TM)

(Tsodyks and Markram, 1997) synapses. The dynamics

of neurons are governed by the ML equations,

C
dV

dt
= −Iion +G (Vr − V ) + Ibg, (2a)

dW

dt
= θ

W∞ −W

τW
(2b)

where

Iion = gCam∞ (V − VCa)+gKW (V − VK)+gL (V − VL)

(3)

is the current through the membrane ion channels,

τW =

(

cosh
V − V3

2V4

)−1

, (4a)

W∞ =
1

2

(

1 + tanh
V − V3

V4

)

, (4b)

m∞ =
1

2

(

1 + tanh
V − V1

V2

)

(4c)

are the voltage dependent dynamic parameters, and the
threshold Vth of membrane potential defines the spik-

ing events which result in synchronous releases of neu-

ral transmitters at the efferent synapses. Additionally,

Fig. 3 a Predictability as a function of presumed spreading
speed for culture C at 33 DIV. Inset is a similar plot from a sim-
ulation. b Time-histogram of a typical reverberatory burst with
identified activity peaks color coded with corresponding center-
of-activity trajectories in the insets. The numbers next to the rate
peaks show the fractions of the evoked spikes out of all spikes in
the activity peaks. c Time-histogram for a simulated reverbera-
tory burst. The fractions of evoked spikes are similarly labeled
for each activity peak

a residual calcium variable RCa driven by the spiking

events,

d

dt
RCa =

−βRn
Ca

knR +Rn
Ca

+ Ip + Sγ log
R0

Ca

RCa
, (5)

where the spike train is S =
∑

σ δ (t− tσ) with tσ being

the time of the spike event σ, is used to determine the

rate,

η = ηmax
Rm

Ca

kma +Rm
Ca

, (6)

of synapse-dependent asynchronous releases of neural

transmitters (see below) following an independent Pois-
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Table 2 Values of parameters used in simulations.

Morris–Lecar model

VCa 100 mV V2 15 mV gL 0.5 mS

VK −70 mV V3 0 mV C 1 µF

VL −65 mV V4 30 mV θ 0.2 ms−1

Vr 0 mV gCa 1.1 mS Vth 10 mV

V1 −1 mV gK 2 mS

Tsodyks–Markram synaptic transmission

τd 10 ms τl 800 ms u 0.25

τr 250 ms τs 5000 ms ξ̄ 0.02

Residual calcium dynamics

β 0.005
µM

ms
γ 0.033 ka 0.13 µM

kR 0.4 µM R0
Ca

2000 µM m 4

Ip 1.1× 10−4 µM

ms
ηmax 0.32 ms−1 n 2

son process at each efferent synapse. The neural trans-

mitters released by the spike-driven synchronous and

calcium-dependent asynchronous events follow a four-

state decaying dynamics based on a modification of the
TM model,

dX

dt
=

Q

τs
+

Z

τr
− uXS −Xξ (7a)

dY

dt
= −

Y

τd
+ uXS +Xξ (7b)

dZ

dt
=

Y

τd
−

Z

τr
−

Z

τl
(7c)

dQ

dt
=

Z

τl
−

Q

τs
. (7d)

where ξ = ξ̄
∑

a δ (t− ta) summing over the asynchronous

release events a with a Poisson rate given by (6), to

include a super-inactive state Q. Multiplying by the

synaptic weights, the fractions of neural transmitters
in the active state Y (7b) determine the contribution

of the afferent synapses to the membrane conductance

G of a post-synaptic neuron through a linear sum

Gi =
∑

j

wjiYji (8)

over all pre-synaptic neurons j of the given post-synaptic

neuron i. Following Volman et al (2007), the synaptic

weights w are randomly drawn from a truncated Gaus-

sian distribution with a width that is ±20% of its mean

w̄ for the connected neurons.

We place the model neurons on a 2D geometrical

network with connection probability between two neu-

rons decaying exponentially with the distance between
them. Most of the model parameters used in our simu-

lations follow the values given in (Volman et al, 2007)

and can be found in Table 2. The time constants of

TM dynamics, background currents for ML neurons,
and synaptic weights are adjusted uniformly to reach

simulated time-histograms that qualitatively reproduce

the experimental results as seen in Fig. 3. The raster

Fig. 4 a Raster plot of recorded spikes and corresponding spike-
rate histogram for the bursting event shown in Fig. 3b. b Raster
plot of simulated spikes and corresponding histogram for the

bursting event shown in Fig. 3c

plots for the simulated burst and the experimentally

observed burst in Fig. 3 are shown in Fig. 4. For cur-
rent study, we focus on the reverberatory bursts with

distinct reverberation peaks or sub-bursts in the spike

rate histogram.

The same burst and peak detections for the experi-

mental measurements are applied to the simulation re-
sults with slightly different empirical parameters. Com-

paring to the experiments, the full dynamics of the

simulations is readily available as numerical data and

can be further analyzed to clarify the physical mech-

anisms of the bursting behavior. Beside recording the
time and neuron of each spike for the calculation of

a time-histogram and keeping track of activity prop-

agation, we are interested in the information of neu-

ronal noise and the depletion of synaptic resources. The
former is represented by the average concentration of

residual calcium that governs the asynchronous release

while the later is represented by the average fraction of
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Fig. 5 Number of detected peaks in spike rate per burst as a
function of DIV of the cultures. The reverberation of the bursts
is maximized around 30 DIV

inactive and super inactive neural transmitters which

deplete the available neural transmitters in a bursting
cycle. Both of the values are retained at the start time

of each detected peak in the spike-rate histogram and

used to correlate with the properties of each peak.

2.6 Implementations

We implemented the computational model in the C++

programming language using the Common Simulation

Tools framework. The simulation codes along with the

framework are included in the supplementary materials
of the paper. The spike data from the MEA recordings

as well as the computer simulations were processed with

the Python3 programming language and most of the

data plots were produced using the Matplotlib library
module. A Jupyter Notebook containing the Python3

codes for data processing and plotting is also included

in the supplementary materials.

3 Results

After plating, spontaneous activities are observed in

about a week in vitro. Such activities become synchro-

nized into network bursts around 10 DIV and show re-

verberations after 15 DIV. The number of peaks per
burst reaches a maximum around 30 DIV as shown in

Fig. 5 and falls back to one without reverberation after

40 DIV. It has been observed that the reverberatory

bursts during the intermediate DIV can be divided into
two phases (Gandolfo et al, 2010): a propagation phase

where the channels are activated sequentially and dif-

fusively and a reverberation phase where the firings of

the neurons are seemingly random and more decoupled.

Such division was confirmed with CAT observation. As

evident from streches of the CATs shown in the insets

of Fig. 3b for a reverberatory burst, the propagation is

indeed more prominent for the initiating peak of spike
rate (blue trajectory) and reduces to a lingering (green)

trajectory soon after. However, as the network reverber-

ates, the CAT gradually regains its propagating sweeps

until the end of the burst (magenta trajectory).

The factors driving the spiking activity of a neu-

ron during a bursting event include the synaptic action

spreading from its presynaptic neurons and the sponta-

neous activation driven by its own neuronal or synap-

tic noises. To identify the dominating factor contribut-
ing to a spike, we use the simple linear-spread diffusive

model (1) parametrized with a spreading speed, which

can be determined by a maximum likelihood method

for each recording as documented in Table 1. While a
more sophisticated propagation model might produce a

better match to the observed behavior, the added com-

plexity is not expected to change our conclusions qual-

itatively. Using the propagation model (1), we classify

spikes into evoked spikes and spontaneous spikes. We
then determine their ratio for all rate peaks of a burst.

The results of evoked-spike fractions plotted in Fig. 6a

for 33 DIV recording of culture C show an increase in

the fraction of evoked spikes as the network reverber-
ates. To characterize how synchronous the spikes within

an activity peak are, we normalize each rate peak i

with its spike count ni and use the normalized height

hi/ni to quantify the synchrony. In Figure 6b, the syn-

chrony of the activity peaks is plotted against the time
of the peaks relative to the start of the bursts. While

the synchrony data is more disperse, we can see an up-

ward trend following the time course of the bursts. This

demonstrates a correlation between the activity spread-
ing and synchrony of the spikes. The result may not be

a surprise considering the activity spreading through

synaptic action following presynaptic spikes is how neu-

rons can communicate and should help to orchestrate

the synchronous activity.

To further clarify the synaptic dynamics contribut-

ing to the increasing dominance of the evoked spikes

over spontaneous ones during a reverberatory burst, we

turn to our simulations that produce qualitatively sim-

ilar, reverberatory bursts with the increasing height of
activity peaks in the spike-rate, time histogram over the

bursts as shown in Fig. 3c. With a simulated system,

the full set of dynamic variables are available for analy-

sis. We identify two factors of relevance in determining
the peak height or the synchrony of the reverberation

from our simulations: Firstly, the residual calcium con-

centration controls the rate of asynchronous release at
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Fig. 6 a Fraction of evoked spikes in detected activity peaks for
reverberatory bursts of 33 DIV recording of culture C against the
peak times relative to the start of the bursts. b Peak synchrony
defined as the height of a peak over its spike count. The faint
lines connect activity peaks in a burst in sequence. c and d are
corresponding results for fraction of evoked spikes and synchrony,
respectively, from simulations.

synapses in the model and represents the strength of

an internal noise of the neurons. Secondly, the inactive

and super-inactive states featured in the model take up

the neural transmitters as they are activated and rep-

resent the depletion of synaptic resources. We correlate
the system average of these two factors with the height

of activity peaks in a 3D scatter plot for all peaks of the

simulated recording as shown in Fig. 7. From the projec-

tion Fig. 7b, we see that depletion, which increases dur-
ing a burst, correlates positively with an increase of the

peak height and thus the synchrony of the spikes. On

the other hand, the noise factor represented by resid-

ual calcium, as shown in Fig. 7c, is initially pumped

up by the spiking activity of a burst, reaching a maxi-
mum about half way through the burst, and decreases

afterward due to the lengthening intervals between the

reverberation peaks until the end of the burst.

The detailed dynamics of different factors can be

further analyzed in a simulation. In Fig. 8, we plot the
residual calcium concentration, depleted neural trans-

mitter fraction (Z+Q), and the active neural transmit-

ter fraction over the very burst shown in Fig. 3c. Taken

from the computational model, the depletion of neural
transmitters to the Z and Q states is driven by the ac-

tivated transmitters Y from the spiking activity. The

spiking activity also increases the level of residual cal-

Fig. 7 a Scatter plot for correlation of height of activity peaks
with the system level of noise, represented by residual calcium
concentration ([Ca2+]), and the depletion of synaptic resources,
represented by the super inactive state of neural transmitters. b
Front view of the 3D plot. c Top view of the 3D plot

Fig. 8 Average levels of residual calcium concentration (mid-
dle curve), depleted neural transmitter (upper curve), and active
neural transmitter fractions (lower curve, 10-time magnified) of
the system over the course of the simulated burst of Fig. 3c. The
shaded area shows the time-histogram of the burst
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cium, which controls the noisy, asynchronous releases of

the neural transmitters leading to the reverberation in

a burst. Apart from making the role of synchronous re-

leases more important in the activation of neurons, the

depletion also leads to longer recovery time of neural
transmitters. Coupling with the rapid decay of calcium

between the reverberation peaks, this leads to the low-

ing in the mean level of residual calcium towards the

end of a burst.

4 Discussion

In the current study, we use a high-density MEA system

to investigate the physical mechanisms underlying the
morphological richness of reverberatory neural bursts.

Our simple linear-spread diffusive model allows a clas-

sification of the spikes as well as an inference of the

propagation speed of synaptic activities. The change

of the predictability of spikes allows us to detect the
change in the propagation behavior during a burst as

shown in Fig. 6. However, the traveling-wave-like sweep

of activity, especially for the initiation of a burst, is not

diffusive. A more sophisticated model will be required
if one would like to have a more faithful capture of

such dynamics. Nonetheless, the method of inference for

the model parameters using individual spikes as demon-

strated remains applicable. The method is enabled by

our use of high-density MEA and does not resort to
data reduction before inferring the propagation dynam-

ics. That is, each spike has a direct contribution to the

resolution of the spreading speed and the method can

potentially be used to resolve more complex dynamics
of the system.

The finding from our analysis of the simulated sys-

tem suggests an interesting phenomena, which we call

depletion-enhanced synchronization, at play in the cul-

tured network with the reverberatory bursts. In such a
burst, the initiation activity is a fast sweeping wave of

propagating spikes across the network that is well syn-

chronized. This activity produces a significant amount

of residual calcium, promoting noisy asynchronous re-
leases, and prompting the spontaneous firing of the neu-

rons that results in the subsequent reverberation of the

burst. Initially, the spontaneous spikes are more or less

independent and the heterogeneity in the neurons and

their connectivity makes the spike-rate peaks broad and
less synchronous. However, as the neural and synaptic

resources are increasingly depleted by the continuing

spiking activity of the burst, it becomes harder for the

neurons to fire independently and they thus increas-
ingly rely on the synchronous releases triggered by the

firing of their presynaptic neurons to help them cross

the firing threshold. Such mechanism accounts for the

observed increase of evoked spikes and the synchrony

in Fig. 6 and may be a general mode of operation for

other complex systems.

The synchronized network activities observed in our

cultures seem to be similar to the switching between
Up and Down states as observed in other neuronal net-

work preparations (MacLean et al, 2005; Holcman and

Tsodyks, 2006; Johnson and Buonomano, 2007). How-

ever, since our measurements are carried out on MEA,
records of the membrane potentials are not available to

verify these states. It is known that activities similar to

what we reported here can also be induced in acute slice

(Czarnecki et al, 2012) when inhibitory interactions are

blocked. Presumably, there are too many recurrent con-
nections in our cultures which might correspond to the

pathological condition during epilepsy (McCormick and

Contreras, 2001).

In the computational model, the active state is ini-

tially stabilized by the residual calcium which promotes
the asynchronous releases intrinsic to the neurons, and

later revitalized by the synaptic couplings of the net-

work. The role of calcium in the reverberation was im-

plicated by Lau and Bi (2005) and we chose to imple-
ment the model by Volman et al (2007) based the sim-

ilarity between the firing-rate time histograms it pro-

duces and those were seen in our experiments. Alter-

natively, NMDA receptors have been proposed to play

a role in persisting a burst (Wang, 1999, 2001). It will
be interesting to see in future studies what difference

in the bursting morphology will result from an NMDA

receptor based model.

Finally, we note that while synchrony is often asso-
ciated with coherence, it actually reduces the diversity

in the possible dynamics of a system. In the reverber-

atory bursts that we focused on, the synchrony results

from the depletion of synaptic resources and precedes

the termination of the burst. This parallels the recent
findings in epilepsy that increasing synchrony can be

observed towards the end of seizures (Lehnertz et al,

2009; Jiruska et al, 2013). Our results may suggest a

possible mechanism for such phenomena for systems of
similar episodic dynamics.
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