Skip to main content
Log in

Neural field model of seizure-like activity in isolated cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Epileptiform discharges on an isolated cortex are explored using neural field theory. A neural field model of the isolated cortex is used that consists of three neural populations, excitatory, inhibitory, and excitatory bursting. Mechanisms by which an isolated cortex gives rise to seizure-like waveforms thought to underly pathological EEG waveforms on the deafferented cortex are explored. It is shown that the model reproduces similar time series and oscillatory frequencies for paroxysmal discharges when compared with physiological recordings both during acute and chronic deafferentation states. Furthermore, within our model ictal activity arises from perturbations to steady-states very close to the dynamical system’s instability boundary; hence, these are distinct from corticothalamic seizures observed in the model for the intact brain which involved limit-cycle dynamics. The results are applied to experiments in deafferented cats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alligood, K., Sauer, T., & Yorke, J. (1997). Chaos, an introduction to dynamical systems. New York: Springer.

    Google Scholar 

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Arbib, M.A. (2002). The handbook of brain theory and neural networks, 2nd edn.: The MIT press.

  • Avoli, M., & Gloor, P. (1982). Role of the thalamus in generalized penicillin epilepsy: observations on decorticated cats. Clinical and Experimental Neurology, 77, 386–402.

    Article  CAS  Google Scholar 

  • Avoli, M., Gloor, P., Kostopoulos, G., & Gotman, J. (1983). An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. Journal of Neurophysiology, 50, 819–837.

    CAS  PubMed  Google Scholar 

  • Beurle, R.L. (1956). Properties of a mass of cells capable of regenerating pulses. Philosophical Transactions of the Royal Society A B, 240, 55–94.

    Article  Google Scholar 

  • Boucetta, S., Crochet, S., Chauvette, S., Seigneur, J., & Timofeev, I. (2013). Extracellular Ca2 + fluctuations in vivo affect afterhyperpolarization potential and modify firing patterns of neocortical neurons. Experimental Neurology, 245, 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg, V., & Schüz, A. (1998). Cortical architectonics. In Cortex: Statistics and Geometry of Neuronal Connectivity, (pp. 135–137): Springer.

  • Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., & Robinson, P.A. (2006). A unified explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16, 1296–1313.

    Article  CAS  PubMed  Google Scholar 

  • Bush, P.C., Prince, D.A., & Miller, K.D. (1999). Increased pyramidal excitability and nmda conductance can explain posttraumatic epileptogenesis without disinhibition: a model. Journal of Neurophysiology, 82, 1748–1758.

    CAS  PubMed  Google Scholar 

  • Crochet, S., Chauvette, S., Boucetta, S., & Timofeev, I. (2005). Modulation of synaptic transmission in neocortex by network activities. European Journal Neuroscience, 21, 1030–1044.

    Article  Google Scholar 

  • Da Silva Sousa, P., Lin, K., Garzon, E., Sakamoto, A.C., & Yacubian, E.M.T. (2005). Self-perception of factors that precipitate or inhibit seizures in juvenile myoclonic epilepsy. Seizure, 14, 340–346.

    Article  PubMed  Google Scholar 

  • Danober, L., Deransart, C., Depaulis, A., Vergnes, M., & Marescaux, C. (1998). Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progress in Neurobiology, 55, 27–57.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABA B receptors. Journal Neuroscience, 18, 9099–9111.

    CAS  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., & Steriade, M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, pp. 38.

  • Destexhe, A., McCormick, D.A., & Sejnowski, T.J. (1993). A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal, 65, 2473–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dichter, M.A., & Ayala, G. (1987). Cellular mechanisms of epilepsy: a status report. Science, 237, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Dinner, D. (1993). Posttraumatic epilepsy. In Wyllie, E. (Ed.), The Treatment of Epilepsy: Principles and Practice (pp. 654–658). Philadelphia: Lea & Fibinger.

    Google Scholar 

  • Dinner, D.S. (2002). Effect of sleep on epilepsy. Clinical Neurophysiology, 19, 504–513.

    Article  Google Scholar 

  • Echlin, F.A., & Battista, A. (1963). Epileptiform seizures from chronic isolated cortex. Archives of Neurology, 9, 154–170.

    Article  CAS  PubMed  Google Scholar 

  • Foehring, R.C., Lorenzon, N.M., Herron, P., & Wilson, C.J. (1991). Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. Journal of Neurophysiology, 66, 1825–1837.

    CAS  PubMed  Google Scholar 

  • Freeman, W.J. (1975). Mass action in nervous system. New York: Academic.

    Google Scholar 

  • Friedman, A., & Gutnick, M.J. (1987). Low-threshold calcium electrogenesis in neocortical neurons. Neuroscience Letters, 81, 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Galarreta, M., & Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, 1, 587–594.

    Article  CAS  PubMed  Google Scholar 

  • Gloor, P., & Fariello, R. (1988). Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends in Neurosciences, 11, 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Gloor, P., Quesney, L., & Zumstein, H. (1977). Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. topical application of penicillin to the cerebral cortex and to subcortical structures. Electroenics Clinic of Neurophysics, 43, 79–94.

    Article  CAS  Google Scholar 

  • Griffith, J. (1963). A field theory of neural nets: I: Derivation of field equations. Bulletin of Mathematical Biophysics, 25, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, J.S. (1965). A field theory of neural nets: II. properties of the field equations. Bulletin of Mathematical Biophysics, 27, 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, J.A., & Robinson, P.A. (2014). Relations between the geometry of cortical gyrification and white-matter network architecture. Brain Connection, 4, 112–130.

    Article  Google Scholar 

  • Houweling, A.R., Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (2005). Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex, 15, 834–845.

    Article  PubMed  Google Scholar 

  • Izhikevich, E., & Edelman, G. (2008). Large-scale model of mamMalian thalamocortical systems. Proceedings of the National Academy of Science, 105, 3593–3598.

    Article  CAS  Google Scholar 

  • Jacobs, K.M., & Prince, D.A. (2005). Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria. Journal of Neurophysiology, 93, 687–696.

    Article  CAS  PubMed  Google Scholar 

  • Kollevold, T. (1976). Immediate and early cerebral seizures after head injuries. Part I Journal of the Oslo City Hospitals, 26, 99–114.

    CAS  PubMed  Google Scholar 

  • Kramer, M. A., Lopour, B.A., Kirsch, H.E., & Szeri, A.J. (2006). Bifurcation control of a seizing human cortex. Physical Review E, 73, 041928.

    Article  Google Scholar 

  • Liley, D.T., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22, 300–313.

    CAS  PubMed  Google Scholar 

  • Lytton, W.W., Contreras, D., Destexhe, A., & Steriade, M. (1997). Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. Journal of Neurophysiology, 77, 1679–1696.

    CAS  PubMed  Google Scholar 

  • Marcus, E.M., & Watson, C. (1966). Bilateral synchronous spike wave electrographic patterns in the cat: interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. Archives of Neurology, 14, 601.

    Article  CAS  PubMed  Google Scholar 

  • Marten, F., Rodrigues, S., Benjamin, O., Richardson, M.P., & Terry, J.R. (2009). Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philosophical Transactions of the Royal Society A, 367, 1145–1161.

    Article  Google Scholar 

  • Massimini, M., & Amzica, F. (2001). Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. Journal of Neurophysiology, 85, 1346–1350.

    CAS  PubMed  Google Scholar 

  • Matsumoto, H., & Marsan, C.A. (1964a). Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Experimental Neurology, 9, 305–326.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, H., & Marsan, C.A. (1964b). Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Experimental Neurology, 9, 286–304.

    Article  CAS  PubMed  Google Scholar 

  • Musgrave, J., & Gloor, P. (1980). The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy. Epilepsia, 21, 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, S.B., & Turrigiano, G.G. (1998). Synaptic depression: a key player in the cortical balancing act. Nature Neuroscience, 1, 539–541.

    Article  CAS  PubMed  Google Scholar 

  • Nita, D.A., Cissé, Y., & Timofeev, I. (2008). State-dependent slow outlasting activities following neocortical kindling in cats. Experimental Neurology, 211, 456–468.

    Article  PubMed  Google Scholar 

  • Nita, D.A., Cissé, Y., Timofeev, I., & Steriade, M. (2006). Increased propensity to seizures after chronic cortical deafferentation in vivo. Journal of Neurophysiology, 95, 902–913.

    Article  PubMed  Google Scholar 

  • Nunez, P.L. (1995). Neocortical dynamics and human EEG rhythms. Oxford: Oxford University Press.

    Google Scholar 

  • Nunez, P.L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. USA: Oxford University Press.

    Book  Google Scholar 

  • Pellegrini, A., Musgrave, J., & Gloor, P. (1979). Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy. Experimental Neurology, 64, 155–173.

    Article  CAS  PubMed  Google Scholar 

  • Prince, D.A. (1978). Neurophysiology of epilepsy. Annual Review of Neuroscience, 1, 395–415.

    Article  CAS  PubMed  Google Scholar 

  • Prince, D.A. (1999). Epileptogenic neurons and circuits. Advances in Neurological, 79, 665.

    CAS  Google Scholar 

  • Prince, D.A., Jacobs, K.M., Salin, P.A., Hoffman, S., & Parada, I. (1997). Chronic focal neocortical epileptogenesis: does disinhibition play a role? Canadian journal of physiology and pharmacology, 75, 500–507.

    Article  CAS  PubMed  Google Scholar 

  • Purpura, D., & Housepian, E. (1961). Morphological and physiological properties of chronically isolated immature neocortex. Experimental Neurology, 4, 377–401.

    Article  CAS  PubMed  Google Scholar 

  • Ralston, B., & Ajmone-Marsan, C. (1956). Thalamic control of certain normal and abnormal cortical rhythms. Electroenics Clinic if Neurology, 8, 559–582.

    Article  Google Scholar 

  • Rennie, C.J., Robinson, P.A., & Wright, J.J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J.A., & Robinson, P.A. (2008). Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. Journal of Theoritical Biological, 253, 189–201.

    Article  Google Scholar 

  • Roberts, J.A., & Robinson, P.A. (2012). Corticothalamic dynamics: Structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, 85, 011910.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., & Rowe, D.L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 64, 041924.

    Article  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Rowe, D.L., & O’Connor, S.C. (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapping, 23, 53–72.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., & Gordon, E. (2005). Multiscale brain modelling. Philosophical Transactions of the Royal Society B, 360, 1043–1050.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W., & et al. (2003). Neurophysical modeling of brain dynamics. Neuropsychopharmacology, 28, S74.

    Article  PubMed  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Wright, J., & Bourke, P. (1998). Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review E, 58, 3557.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., & Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., & Rowe, D.L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 021903.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Wu, H., & Kim, J.W. (2008). Neural rate equations for bursting dynamics derived from conductance-based equations. Journal of Theoritical Biology, 250, 663–672.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Zhao, X., Aquino, K.M., Griffiths, J.D., Sarkar, S., & Mehta-Pandejee, G. (2016). Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. NeuroImage.

  • Rodrigues, S., Barton, D., Szalai, R., Benjamin, O., Richardson, M.P., & Terry, J.R. (2009). Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. Journal of Comparative Neuroscience, 27, 507–526.

    Article  Google Scholar 

  • Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Schomer, D.L., & Da Silva, F.L. (2012). Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins.

  • Seidenbecher, T., Staak, R., & Pape, H.-C. (1998). Relations between cortical and thalamic cellular activities during absence seizures in rats. European of Journal Neuroscience, 10, 1103–1112.

    Article  CAS  Google Scholar 

  • Sharpless, S.K., & Halpern, L.M. (1962). The electrical excitability of chronically isolated cortex studied by means of permanently implanted electrodes. Electroenics of Clinical Neurophysiology, 14, 244–255.

    Article  CAS  Google Scholar 

  • Soltesz, I., & Staley, K. (2011). Computational neuroscience in epilepsy. Academic Press.

  • Steriade, M. (1974). Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroenics of Clinical Neuroscience, 37, 247–263.

    Article  CAS  Google Scholar 

  • Steriade, M., & Contreras, D. (1998). Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. Journal of Neurophysiology, 80, 1439–1455.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

    CAS  PubMed  Google Scholar 

  • Steyn-Ross, M.L., Steyn-Ross, D.A., & Sleigh, J.W. (2012). Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex. Cognitive Neurodynamics, 6, 215–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suffczynski, P., Kalitzin, S., & Lopes Da Silva, F. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126, 467–484.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., & Steriade, M. (2004). Neocortical seizures: initiation, development and cessation. Neuroscience, 123, 299–336.

    Article  CAS  PubMed  Google Scholar 

  • Topolnik, L., Steriade, M., & Timofeev, I. (2003a). Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo. European Journal of Neuroscience, 18, 486–496.

    Article  PubMed  Google Scholar 

  • Topolnik, L., Steriade, M., & Timofeev, I. (2003b). Partial cortical deafferentation promotes development of paroxysmal activity. Cerebral Cortex, 13, 883–893.

    Article  PubMed  Google Scholar 

  • Traub, R.D., Borck, C., Colling, S.B., & Jefferys, J.G. (1996). On the structure of ictal events in vitro. Epilepsia, 37, 879–891.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F., Bartolomei, F., Bellanger, J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European of Journal Neuroscience, 15, 1499–1508.

    Article  CAS  Google Scholar 

  • Wendling, F., Hernandez, A., Bellanger, J.-J., Chauvel, P., & Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology, 22, 343.

    PubMed  PubMed Central  Google Scholar 

  • Wennberg, R., Quesney, L., & Villemure, J.-G. (1997). Epileptiform and non-epileptiform paroxysmal activity from isolated cortex after functional hemispherectomy. Electroenics of Clinical Neuroscience, 102, 437–442.

    Article  CAS  Google Scholar 

  • Wilson, H. (1999a). Simplified dynamics of human and mamMalian neocortical neurons. Journal of Theoritical Biology, 200, 375–388.

    Article  CAS  Google Scholar 

  • Wilson, H. (1999b). Spikes, Decisions and actions: The dynamical foundations of neuroscience. New York: Oxford University Press.

    Google Scholar 

  • Wright, J.J., & Liley, D.T.J. (1996). Dynamics of the brain at global and microscopic scales; neural networks and the EEG. Behavioral and Brain Sciences, 19, 285– -295.

    Article  Google Scholar 

  • Zhao, X., Kim, J.W., & Robinson, P.A. (2015). Slow-wave oscillations in a corticothalamic model of sleep and wake. Journal of Theoritical Biology.

  • Zhao, X., Kim, J.W., Robinson, P.A., & Rennie, C.J. (2014). Low dimensional model of bursting neurons. Journal of Computational Neuroscience, 36, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., & Robinson, P.A. (2015). Generalized seizures in a neural field model with bursting dynamics. Journal of Comparative Neuroscience, 39, 197–216.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council Center of Excellence for Integrative Brain Function (ARC Grant CE140100007) and by ARC Laureate Fellowship Grant FL1401000225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Michael Breakspear

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Robinson, P.A. Neural field model of seizure-like activity in isolated cortex. J Comput Neurosci 42, 307–321 (2017). https://doi.org/10.1007/s10827-017-0642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0642-z

Keywords

Navigation