Skip to main content

Advertisement

Log in

Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injuries and neurological diseases

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The presence of diffuse Focal Axonal Swellings (FAS) is a hallmark cellular feature in many neurological diseases and traumatic brain injury. Among other things, the FAS have a significant impact on spike-train encodings that propagate through the affected neurons, leading to compromised signal processing on a neuronal network level. This work merges, for the first time, three fields of study: (i) signal processing in excitatory-inhibitory (EI) networks of neurons via population codes, (ii) decision-making theory driven by the production of evidence from stimulus, and (iii) compromised spike-train propagation through FAS. As such, we demonstrate a mathematical architecture capable of characterizing compromised decision-making driven by cellular mechanisms. The computational model also leads to several novel predictions and diagnostics for understanding injury level and cognitive deficits, including a key finding that decision-making reaction times, rather than accuracy, are indicative of network level damage. The results have a number of translational implications, including that the level of network damage can be characterized by the reaction times in simple cognitive and motor tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adalbert, R., Nogradi, A., Babetto, E., Janeckova, L., Walker, S.A., Kerschensteiner, M., Misgeld, T., & Coleman, M.P. (2009). Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain, 132, 402– 416.

    Article  PubMed  Google Scholar 

  • Adams, J.H., Jennett, B., Murray, L.S., Teasdale, G.M., Gennarelli, T.A., & Graham, D.I. (2011). Neuropathological findings in disabled survivors of a head injury. Journal of Neurotrauma, 28, 701–709.

    Article  PubMed  Google Scholar 

  • Adle-Biassette, H., Chretien, F., Wingertsmann, L., Hery, C., Ereau, T., Scaravilli, F., Tardieu, M., & Gray, F. (1999). Neuronal apoptosis does not correlate with dementia in hiv infection but is related to microglial activation and axonal damage. Neuropathology and Applied Neurobiology, 25, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, D.E., Kaup, A., Kirby, K., Byers, A.L., Diaz-Arrastia, R., & Yaffe, K. (2014). Traumatic brain injury and risk of dementia in older veterans. Neurology, 83, 312–319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumbergs, P., Scott, G., Manavis, J., Wainwright, H., Simpson, D., & McLean, A. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12, 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J.D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.

    Article  PubMed  Google Scholar 

  • Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C. Jr, Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., Boustani, S.E., & Destexhe, A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Browne, K.D., Chen, X.H., Meaney, D.F., & Smith, D.H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. Journal of Neurotrauma, 28(9), 1747–1755.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunton, B.W., Botvinick, M.M., & Brody, C.D. (2013). Rats and humans can optimally accumulate evidence for decision-making. Science, 340, 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.C., Smith, D.H., & Meaney, D. (2009). In-vitro approaches for studying blast-induced traumatic brain injury. Journal of Neurotrauma, 26(6), 861–876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christman, C., Grady, M., Walker, S., Hol-Loway, K., & Povlishock, J. (1994). Ultra-structural studies of diffuse axonal injury in humans. Journal of Neurotrauma, 11, 173–186.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, M. (2005). Axon degeneration mechanisms: commonality amid diversity. Nature Reviews Neuroscience, 6(11), 889–898.

    Article  CAS  PubMed  Google Scholar 

  • Daianu, M., Jacobs, R.E., Town, T., & Thompson, P.M. (2016). Axonal diameter and density estimated with 7-tesla hybrid diffusion imaging in transgenic alzheimer rats. SPIE Proceedings, 9784, 1–6.

    Google Scholar 

  • Dayan, P., & Abbot, L. (2001). Theoretical neuroscience. Cambridge: MIT.

    Google Scholar 

  • del Razo, M.J., Morofuji, Y., Meabon, J.S., Huber, B.R., Peskind, E.R., Banks, W.A., Mourad, P.D., LeVeque, R.J., & Cook, D.G. (2016). Computational and in vitro studies of blast-induced blood-brain barrier disruption. SIAM Journal on Scientific Computing, 38(3), 347–374.

    Article  Google Scholar 

  • Dikranian, K., Cohen, R., Donald, C.M., Pan, Y., Brakefield, D., Bayly, P., & Parsadanian, A. (2008). Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Experimental Neurology, 211, 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditterich, J. (2006). Stochastic models of decisions about motion direction: behavior and physiology. Neural Networks, 19, 981–1012.

    Article  PubMed  Google Scholar 

  • Edlow, B.L., Copen, W.A., Izzy, S., van der Kouwe, A., Glenn, M.B., Greenberg, S.M., Greer, D.M., & Wu, O. (2016). Longitudinal diffusion tensor imaging detects recovery of fractional anisotropy within traumatic axonal injury lesions. Neurocritical Care, 24(3), 342–352.

    Article  PubMed  Google Scholar 

  • Fainaru-Wada, M., & Fainaru, S. (2013). League of denial: the nfl, concussions, and the battle for truth. Crown Archetype.

  • Faul, M., Xu, L., Wald, M.M., & Coronado, V.G. (2010). Traumatic brain injury in the united states: emergency department visits, hospitalizations, and deaths. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.

    Google Scholar 

  • Fayanz, I., & Tator, C.H. (2000). Modeling axonal injury in vitro: injury and regeneration following acute neuritic trauma. Journal of Neuroscience Methods, 102, 69–79.

    Article  Google Scholar 

  • Friese, M.A., Schattling, B., & Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nature Reviews Neurology, 10, 225–238.

    Article  CAS  PubMed  Google Scholar 

  • Galvin, J.E., Uryu, K., Lee, V.M., & Trojanowski, J.Q. (1999). Axon pathology in parkinson’s disease and lewy body dementia hippocampus contains α-, β-, and γ -synuclein. Proceedings of National Academy of Science, 96, 13450–13455.

    Article  CAS  Google Scholar 

  • Grady, M., Mclaughlin, M., Christman, C., Valadaka, A., Flinger, C., & Povlishock, J. (1993). The use of antibodies against neurofilament subunits for the detection of diffuse axonal injury in humans. Journal of Neuropathology and Experimental Neurology, 52, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., & Sen, N. (2016). Traumatic brain injury: a risk factor for neurodegenerative diseases. Reviews in the Neurosciences, 27(1), 93–100.

    Article  PubMed  Google Scholar 

  • Hanell, A., Greer, J.E., McGinn, M.J., & Povlishock, J.T. (2015). Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathologica, 129, 317–332.

    Article  CAS  PubMed  Google Scholar 

  • Hay, J., Johnson, V.E., Smith, D.H., & Stewart, W. (2016). Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury. Annual Review of Pathology: Mechanisms of Disease, 11, 21–45.

    Article  CAS  Google Scholar 

  • Hellman, A.N., Vahidi, B., Kim, H.J., Mismar, W., Steward, O., Jeonde, N.L., & Venugopalan, V. (2010). Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab on a Chip, 16, 2083–2092.

    Article  Google Scholar 

  • Hemphill, M., Dabiri, B., Gabriele, S., Kerscher, L., Franck, C., Goss, J., Alford, P., & Parker, K. (2011). A possible role for integrin signaling in diffuse axonal injury. PLos ONE, 6(7), e22899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemphill, M., Dauth, S., Yu, C.J., Dabiri, B., & Parker, K. (2015). Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron, 86(6), 1177–1192.

    Article  Google Scholar 

  • Henninger, N., Bouley, J., Sikoglu, E.M., An, J., Moore, C.M., King, J.A., Bowser, R., Freeman, M.R., & Brown, R.H. Jr (2016). Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking sarm1. Brain, 139(4), 1–12.

  • Herwerth, M., Kalluri, S.R., Srivastava, R., Kleele, T., Kenet, S., Illes, Z., Merkler, D., Bennett, J.L., Misgeld, T., & Hemmer, B. (2016). In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology. Annals of Neurology, 79, 794–805.

    Article  CAS  PubMed Central  Google Scholar 

  • Higham, D. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525 (546).

    Article  Google Scholar 

  • Hill, C.S., Coleman, M.P., & Menon, D.K. (2016). Traumatic axonal injury: mechanisms and translational opportunities. Trends in Neuroscience, 39(5), 311–324.

    CAS  Google Scholar 

  • Ikonomovic, M.D., Uryu, K., Abrahamson, E.E., Ciallella, J.R., Trojanowski, J.Q., Lee, V.M.Y., Clark, R.S., Marione, D.W., Wisniewski, S.R., & DeKosky, S.T. (2004). Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Experimental Neurology, 190, 192–203.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, V.E., Stewart, W., & Smith, D.H. (2010). Traumatic brain injury and amyloid-β pathology: a link to alzheimer’s disease? Nature Reviews Neuroscience, 11, 361–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, V.E., Stewart, W., & Smith, D.H. (2012). Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathology, 22, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, V.E., Stewart, W., & Smith, D.H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Jones, L., Fontanini, A., Sadacca, B., Miller, P., & Katz, D. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. USA, 104, 18772–18777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., & Magnotta, V. (2012). White matter abnormalities in veterans with mild traumatic brain injury. American Journal of Psychiatry, 169(12), 1284–1291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorm, A.F., & Jolley, D. (1998). The incidence of dementia: a meta analysis. Neurology, 51, 728–733.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G. (1999). A systems perspective on early olfaction coding. Science, 286, 723–728.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews Neuroscience, 3, 884–895.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, P., Haroutounian, S., Polydefkis, M., Nyengaard, J.R., & Jensen, T.S. (2016). Structural and functional characterization of nerve fibres in polyneuropathy and healthy subjects. Scandinavian Journal of Pain, 10, 28–35.

    Article  PubMed  Google Scholar 

  • Katz, L.N., Yates, J.L., Pillow, J.W., & Huk, A.C. (2016). Dissociated functional significance of decision- related activity in the primate dorsal stream. Nature, 535, 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnunen, K.M., Greenwood, R., Powell, J.H., Leech, R., Hawkins, P.C., Bonnelle, V., Patel, M.C., Counsell, S.J., & Sharp, D.J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134(2), 1–15.

  • Kolaric, K.V., Thomson, G., Edgar, J.M., & Brown, A.M. (2013). Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study. Physiological Reports, 1(3), e00059.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krstic, D., & Knuesel, I. (2012). Deciphering the mechanism underlying late-onset alzheimer disease. Nature Reviews Neuroscience, 9(1), 25–34.

    Google Scholar 

  • Lachance, M., Longtin, A., Morris, C.E., Yu, N., & Joós, B. (2014). Stimulation-induced ectopicity and propagation windows in model damaged axons. Journal of Computational Neuroscience, 37, 523–531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laukka, J.J., Kamholz, J., & Bessert, D. (2016). Novel pathologic findings in patients with pelizaeus-merzbacher disease. Neuroscience Letters.

  • Lauria, G., Morbin, M., Lombardi, R., Borgna, M., Mazzoleni, G., Sghirlanzoni, A., & Pareyson, D. (2003). Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology, 61, 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Liberski, P.P., & Budka, H. (1999). Neuroaxonal pathology in creutzfeldt-jakob disease. Acta Neuropathology, 97, 329–334.

    Article  CAS  Google Scholar 

  • LoBue, C., Denney, D., Hynan, L.S., Rossetti, H.C., Lacritz, L.H., Hart, J. Jr, Womack, K.B., Woon, F.L., & Cullum, C.M. (2016). Self-reported traumatic brain injury and mild cognitive impairment: increased risk and earlier age of diagnosis. Journal of Alzheimer’s Disease, 51, 727–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis, E.D., Faust, P.L., Vonsattel, J., Honig, L.S., Rajput, A., Rajput, A., Pahwa, R., Lyons, K.E., Ross, G.W., Elble, R.J., Erickson-Davis, C., Moskowitz, C.B., & Lawton, A. (2009). Torpedoes in parkinson’s disease, alzheimer’s disease, essential tremor, and control brains. Movement Disorders, 24 (11), 1600–1605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magdesian, M.H., Sanchez, F., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., & Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdesian, M.H., Lopez-Ayon, G.M., Mori, M., Boudreau, D., Goulet-Hanssens, A., Sanz, R., Miyahara, Y., Barrett, C.J., Fournier, A.E., Koninck, Y.D., & Grütter, P. (2016). Rapid mechanically controlled rewiring of neuronal circuits. The Journal of Neuroscience, 36(3), 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia, P.D., & Kutz, J.N. (2014a). Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. Journal of Computational Neuroscience, 27, 317–332.

    Article  Google Scholar 

  • Maia, P.D., & Kutz, J.N. (2014b). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 141–155.

    Article  PubMed  Google Scholar 

  • Maia, P.D., Hemphill, M.A., Zehnder, B., Zhang, C., Parker, K.K., & Kutz, J.N. (2015). Diagnostic tools for evaluating the impact of focal axonal swellings arising in neurodegenerative diseases and/or traumatic brain injury. Journal of Neuroscience Methods, 253, 233–243.

    Article  PubMed  Google Scholar 

  • Maxwell, W.L., Povlishock, J.T., & Graham, D.L. (1997). A mechanistic analysis of nondisruptive axonal injury: a review. Journal of Neurotrauma, 17(7), 419–440.

    Article  Google Scholar 

  • Menon, D.K., & Maas, A.I.R. (2015). Progress, failures and new approaches for tbi research. Nature Reviews Neuroloy, 11, 71– 72.

    Article  Google Scholar 

  • Millecamps, S., & Julien, J. (2013). Axonal transport deficits and neurodegenerative diseases. Nature Reviews Neuroscience, 14(161), 161–176.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, B., Elkin, B.S., Dolle, J.P., & Yarmush, M.L. (2011). In vitro models of traumatic brain injury. Annual Reviews in Biomedical Engineering, 13(1), 91–126.

    Article  CAS  Google Scholar 

  • Nikic, I., Merkler, D., Sorbara, C., Brinkoetter, M., Kreutzfeld, M., Bareyre, F., Bruck, W., Bishop, D., Misgeld, T., & Kerschensteiner, M. (2011). A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature Medicine, 17(4), 495–499.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342, 1238,411–1–1238,411–8.

    Article  Google Scholar 

  • Patterson, B.W., Elbert, D.L., Mawuenyega, K.G., Kasten, T., Ovod, V., Ma, S., Xiong, C., Chott, R., Yarasheski, K., Sigurdson, W., Zhang, L., Goate, A., Benzinger, T., Morris, J.C., Holtzman, D., & Bateman, R.J. (2015). Age and amyloid effects on human central nervous system amyloid-beta kinetics. American Neurological Association, 78(3), 439–453.

    CAS  Google Scholar 

  • Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Povlishock, J.T., & Katz, D.I. (2005). Update of neuropathology and neurological recovery after traumatic brain injury. Journal of Head Trauma Rehabilitation, 20(1), 76–94.

    Article  PubMed  Google Scholar 

  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128.

    PubMed  PubMed Central  Google Scholar 

  • Rabinovich, M., Huerta, R., Varona, P., & Afraimovich, V. (2008). Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology, 4, e1000,072.

    Article  Google Scholar 

  • Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H., & Laurent, G. (2001). Dynamical encoding by networks of competing neuron groups: Winnerless competition. Physical Review Letters, 87, 068102.

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356.

    Article  Google Scholar 

  • Reeves, T.M., Smith, T.L., Williamson, J.C., & Phillips, L.L. (2012). Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. Journal of Neuropathology & Experimental Neurology, 71(3), 198–210.

    Article  Google Scholar 

  • Riffell, J.A., Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A.J., & Kutz, J.N. (2014). Flower discrimination by pollinators in a dynamic chemical environment. Science, 344, 1515–1518.

    Article  CAS  PubMed  Google Scholar 

  • Roozenbeek, B., Maas, A.I.R., & Menon, D.K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9, 231–236.

    Article  PubMed  Google Scholar 

  • Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C., Tempel-Brami, C., Stein, E., Hoffer, B., Balaban, C., Schreiber, S., Chiu, W., & Pick, C. (2011). A mouse model of blast-induced mild traumatic brain injury. Experimental Neurology, 232(2), 280–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudy, S., Maia, P.D., & Kutz, J.N. (2016). Cognitive and behavioral deficits arising from neurodegeneration and traumatic brain injury: a model for the underlying role of focal axonal swellings in neuronal networks with plasticity. Journal of Systems and Integrative Neuroscience.

  • Shadlen, M.N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(3), 791–332.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M.N., & Shohamy, D. (2016). Decision making and sequential sampling from memory. Neuron, 90, 927–939.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M.N., Hanks, T.D., Churchland, A.K., Kiani, R., & Yang, T. (2007). The speed and accuracy of a simple perceptual decision: a mathematical primer. Ch 10.

  • Sharp, D.J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10, 156–166.

    Article  PubMed  Google Scholar 

  • Shlizerman, E., Riffell, J.A., & Kutz, J.N. (2014). Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Frontiers in Computational Neuroscience, 8(70), 1–15.

    Google Scholar 

  • Skandsen, T., Kvistad, K.A., Solheim, O., Strand, I.H., Folvik, M., & Vik, A. (2010). Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. Journal of Neurosurgery, 113(3), 556–563.

    Article  PubMed  Google Scholar 

  • Smith, D., Wolf, J., Lusardi, T., Lee, V., & Meaney, D. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. The Journal of Neuroscience, 19(11), 4263–4269.

    CAS  PubMed  Google Scholar 

  • Tagliaferro, P., & Burke, R.E. (2016). Retrograde axonal degeneration in parkinson disease. Journal of Parkinson’s Disease, 6, 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang-Schomer, M.D., Patel, A., Bass, P.W., & Smith, D.H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., & Smith, D.H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.

    Article  PubMed  Google Scholar 

  • Thies, W., & Bleiler, L. (2013). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 9(2), 208–245.

    Article  Google Scholar 

  • Trapp, B.D., & Nave, K.A. (2008). Multiple sclerosis: an immune or neurodegenerative disorder? Annual Review Neuroscience, 31(1), 247–269.

    Article  CAS  Google Scholar 

  • Tsai, J., Grutzendler, J., Duff, K., & Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.

    Article  CAS  PubMed  Google Scholar 

  • Victor, J.D., & Purpura, K.P. (1997). Metric space analysis of spike trains: theory, algorithms and application. Network: Computational Neural Systems, 8, 127–164.

    Article  Google Scholar 

  • Wang, J., Hamm, R.J., & Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Wulfram Gerstner Werner, M., Kistler, R.N., & Paninski, L. (2014). Neuronal dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(22), 128–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, J.K., Vassar, M.J., Lingsma, H.F., Cooper, S.R., Okonkwo, D.O., Valadka, A.B., Gordon, W.A., Maas, A.I.R., Mukherjee, P., Yuh, E.L., Puccio, A.M., Schnyer, D.M., Manley, G.T., Casey, S.S., Cheong, M., Dams-O’Connor, K., Hricik, A.J., Knight, E.E., Kulubya, E.S., Menon, D.K., Morabito, D.J., Pacheco, J.L., & Sinha, T.K. (2013). Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. Journal of Neurotrauma, 30, 1831–1844.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro D. Maia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Jonathan David Victor

Appendix

Appendix

1.1 Additional histogram panels

For sake of completeness, we provide additional histogram panels for different coherence levels, injury levels and FAS distributions in Figs. 1415 and 16. Histogram panels follow the structure and conventions from Fig. 11 with the 9 possible outcomes of [Before vs After] annotated in the title of each subplot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, P.D., Kutz, J.N. Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injuries and neurological diseases. J Comput Neurosci 42, 323–347 (2017). https://doi.org/10.1007/s10827-017-0643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0643-y

Keywords

Navigation