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Abstract

Persistent neuronal activity is usually studied in the context of short-term memory localized in 

central cortical areas. Recent studies show that early sensory areas also can have persistent 

representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly 

(over seconds). Traditional positive feedback models cannot explain sensory persistence for at 

least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a 

quasi-permanent change of system state, whereas sensory systems return to the original state after 

a transient. (ii) As we show, those positive feedback models which decay to baseline lose their 

persistence when their recurrent connections are subject to short-term depression, a common 

property of excitatory connections in early sensory areas. Dual time constant network behavior has 

also been implemented by nonlinear afferents producing a large transient input followed by much 

smaller steady state input. We show that such networks require unphysiologically large onset 

transients to produce the rise and decay observed in sensory areas. Our study explores how 

memory and persistence can be implemented in another model class, derivative feedback 

networks. We show that these networks can operate with two vastly different time courses, 

changing their state quickly when new information is coming in but retaining it for a long time, 

and that these capabilities are robust to short-term depression. Specifically, derivative feedback 

networks with short-term depression that acts differentially on positive and negative feedback 

projections are capable of dynamically changing their time constant, thus allowing fast onset and 

slow decay of responses without requiring unrealistically large input transients.
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1 Introduction

Persistence of activity after the removal of a stimulus has been observed in many areas of 

cortex. In the prefrontal and parietal lobes, persistent activity can last for tens of seconds 

during working memory tasks, for a review see Curtis and D’Esposito (2003). Shorter 

decaying memory traces have recently been found in early sensory areas including visual, 

auditory and somatosensory cortex, and the olfactory bulb (Super et al, 2001; Shuler and 

Bear, 2006; O’Herron and von der Heydt, 2009; Nikolić et al, 2009; O’Herron and von der 

Heydt, 2011; Petreanu et al, 2012; Patterson et al, 2013). These traces rise over tens of 

milliseconds and decay over seconds. For instance, Shuler and Bear (Shuler and Bear, 2006) 

observed decaying activity in primary visual cortex which was tied to the learned time of 

reward. O’Herron and von der Heydt (2009) showed that activity representing border 

ownership relationships in cortical area V2 lasts for a time period of about one second after 

the end of stimulus presentation.

Physiologically plausible computational models of cortical activity in networks driven by 

recurrent connectivity have previously shown the ability to produce widely varying time 

constants (Hardy and Buonomano, 2016). These models fall into two categories: those 

which maintain activity through positive feedback, e.g. Gavornik et al (2009) and Gavornik 

and Shouval (2011), or through derivative feedback (Lim and Goldman, 2013). Both types 

of networks depend on their recurrent connections to maintain activity after stimulus offset. 

Previous studies of the decay times of both network types have not taken into account 

history dependent changes of synaptic strength (Gavornik et al, 2009; Lim and Goldman, 

2013, 2014), even though the strengths of individual synapses in cortex change constantly 

due to both shortterm depression (STD) and short-term facilitation (STF). Specifically, it is 

known that the strengths of synapses in early sensory cortex are dominated by STD (Beck et 

al, 2005; Tsodyks and Markram, 1997; Petersen, 2002).We therefore examine how STD 

impacts the transient activity of both positive feedback and derivative feedback networks. 

We show that the decay times of positive feedback networks are highly sensitive to STD on 

their recurrent connections, whereas the decay times of derivative feedback networks have 

decay times which are robust within the physiological range of STD parameters.

A defining characteristic of any memory mechanism is that memories are acquired much 

faster than they decay (other persistent activity patterns exist where this is not the case, e.g. 
sensory after-effects, but those are usually not considered memories). Such behavior cannot 

be explained in linear systems whose dynamics are symmetric with respect to rise and decay. 

Most current memory models create the asymmetry by positive feedback which makes 

activity patterns fall into particular attractor states (Wang, 1999; Compte et al, 2000; Major 

and Tank, 2004; Barak and Tsodyks, 2007). Such models can explain working memory 

behavior but not sensory memory since, in the latter, when the stimulus is removed activity 

decays to the pre-stimulus level. Furthermore, our results show that even small contributions 

of STD in the recurrent connections, a feature commonly observed in sensory cortex, 

eliminates persistent activity of positive feedback networks.

A class of models whose activity does return to pre-stimulus levels are negative-derivative 

networks (Lim and Goldman, 2013), which for simplicity we will call derivative feedback 
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networks in the following. This is a special case of balanced networks that have been 

proposed as implementing a computing paradigm of much higher efficiency and 

representational power than conventional rate coding (Denève and Machens, 2016). 

Recurrent activity in these networks approximates a negative derivative with respect to time 

which is obtained from the combination of fast inhibitory feedback followed immediately by 

slower excitatory feedback (Lim and Goldman, 2013). This negative derivative feedback is 

mathematically equivalent to a friction/damping term in a mechanical system which slows 

down the decay of activity after a transient excursion. The defining characteristic of 

derivative feedback networks is that the response time of the network is strongly dependent 

on the difference in time course between the excitatory-toexcitatory (EE) and excitatory-to-

inhibitory (IE) projections.

We have shown previously (Gillary and Niebur, 2016) that small changes in the relative 

timing can produce disproportionately larger (by two orders of magnitude) changes in the 

response time of the network. We will show below that, different from positive feedback 

models, derivative feedback models are robust to decreases in synaptic strength which are 

due to STD on their recurrent connections. However, previously described derivative 

feedback networks cannot explain the observed persistence of responses in sensory cortex. 

We will show that to produce the relative difference in onset vs. offset timing that is 

observed in cortex, derivative feedback networks require very large onset transients. One 

way to produce such large transients is through STD on the afferents, the feedforward 

connections to the population of interest. We show that for derivative feedback networks, 

STD on the afferent must be stronger than what is generally observed in cortex to produce a 

sufficiently strong onset transient. Therefore, neither positive feedback networks nor the 

derivative feedback networks described so far can explain the vast differences between onset 

and offset time courses.

Understanding the observed neuronal behavior requires a slight generalization of the 

previously discussed derivative networks which, at the same time, makes the model more 

biophysically realistic. We have, so far, adopted the commonly made simplification that STD 

can be described by a single dynamic variable that describes the activity-related depletion of 

synaptic resources, e.g. by using up synaptic vesicles at a higher rate than they can be 

renewed. We call such networks “homogeneous” derivative networks. While this is a 

reasonable point of departure, it is unlikely that all synapses will have completely identical 

STD characteristics. It is more likely that different synapses, neurons and projections 

express some range of activity-related synaptic depression (on longer time scales which are 

better understood, it is known that synaptic strength even can switch signs, from long term 

depression to long term potentiation and vice-versa, when calcium concentration or 

intracellular voltage change (Tsumoto and Yasuda, 1996; Hansel et al, 1997; Cormier et al, 

2001)). While the assumption of completely identical STD characteristics in all synapses is 

unlikely to be true, few details about the range and distribution of STD parameters are 

known. We therefore explore the assumption that the distribution of STD takes on the 

simplest non-homogeneous form. That is, we assume that one synaptic population has 

stronger STD than the other, with no further differentiation within these populations. We call 

derivative networks with this property “heterogeneous” networks.
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After we have relaxed the unphysiological restriction to homogeneous networks, we are now 

in a position to explain the observed neuronal behavior by making one additional 

assumption. Glutamatergic pathways in cortex typically have synapses which are composed 

of a mixture of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-

methyl-D-aspartate (NMDA) receptors, a property that we make use of in our model to 

allow for a variety of time courses in the recurrent connections. Different time courses are 

due to different relative contributions from synapses with different ratios of fast (AMPA) and 

slow (NMDA) receptors. We approximate the possible range of relative contributions of 

AMPA and NMDA by two synapse types, one which is AMPA-dominated with fast kinetics 

and another which is NMDA-dominated, with slow kinetics. These appear in the two 

recurrent pathways of our network, excitatory-to-excitatory and excitatory-to-inhibitory. The 

assumption that we will make is that the two types of STD (stronger and weaker) are 

assigned specifically to the fast and slow pathways, as described in more detail below.

While it is unlikely that the effect of STD is identical in different pathways, we want to 

make clear that, at this time, the specific assignment of STD to the fast and slow pathways as 

it is described below (eqs 16–18) is a prediction of our model. There are many ways in 

which STD could differ between pathways. While we are not aware of any experimental 

evidence arguing against our assumption, we also do not know of direct evidence that would 

turn our assumption into a known fact. We make this prediction because it provides a simple 

and, we feel, plausible mechanism to explain the existence of sensory memory in cortical 

networks, with fast rise and slow decay of neuronal activity. We also note that slightly more 

general mechanisms than those we adopted can explain the behavior. We have chosen the 

simplest and most parsimonious model requiring the smallest number of free parameters but 

so-far unknown biophysical or physiological constraints may require a generalization of the 

model while still allowing it to explain the occurrence of sensory memory.

If STD decreases the strength of, say, the faster component of a projection more than that of 

its slower component, the overall time constant of the projection will change (become 

longer, in this case) over the course of a stimulus presentation. As we have shown in 

previous work (Gillary and Niebur, 2016), changes in the relative time courses of positive 

and negative feedback connections in this balanced network lead to proportionally larger 

changes in the response time course of the network as a whole. If the EE projection slows 

relative to the IE projection, the speed of response of the network can also change 

significantly over a single stimulus presentation. With appropriate starting parameters these 

networks are capable of rising quickly at stimulus onset and then decaying slowly after 

stimulus offset. Simulation results (below) demonstrate that our conclusions hold for not 

only for rate models but also for networks of spiking neurons.

Finally, since STD causes the strength of individual connections to change over the course of 

a stimulus presentation and is also dependent upon the firing rate of the afferent projection, 

one might expect the decay times of such networks to change with different stimulus 

presentation lengths and for different steady state firing rates. Contrary to this expectation, 

previous experimental work has shown that the decay time of networks with persistent 

activity does not depend strongly on either parameter (O’Herron and von der Heydt, 2009). 

Indeed, we show that the decay time of a network with heterogeneous feedback connections 
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is well maintained over a range of stimulus presentation lengths as well as for different 

baseline activity levels. This is due to the reduced synaptic strengths being balanced by a 

slowing of the EE projection relative to the IE projection. In contrast, derivative feedback 

networks with homogeneous STD have network decay times which are much more strongly 

dependent on both the stimulus length and steady state firing rate than the network with 

heterogeneous STD.

2 Methods

2.1 Positive feedback model

If Figure 1a we define a positive feedback model with homogenerous STD on the recurrent 

connections where homogeneous STD means that only a single set of STD parameters are 

used. This network is described by a fourth-order nonlinear ordinary differential equation:

τe
dRe
dt = − Re + w(Sampa + Snmda) + I(t) (1)

τampadSampa

dt = − Sampa + (1 − q)xRe (2)

τnmdadSnmda

dt = − Snmda + qxRe (3)

dx
dt = 1 − x

τr
− uxRe (4)

where Re is the firing rate of an excitatory population with intrinsic time constant τe = 20 ms 

and w represents the strength of the recurrent connections whose activity is filtered through 

two synaptic activation variables Sampa and Snmda. These variables represent AMPA and 

NMDA type receptors with time constants τampa = 5 ms and τnmda = 100 ms. These time 

constants are used for all rate based simulations in this study for both the positive feedback 

network and the derivative feedback networks defined below. The recurrent activity from the 

excitatory population is split between the two receptor types by the variable q which 

represents the fraction of synaptic strength carried by the NMDA receptors, q ∈ [0, 1]. We 

set q = 0.5 for all simulations of the positive feedback network. The STD on the recurrent 

synapses is represented by the variable x where x ∈ [0, 1] and x(0) = 1. For simulations 

without STD we set x(t) = 1. For synapses with STD, the recovery rate of the synapse is 

represented by τr, chosen as τr = 500 ms in all simulations with recurrent STD. The usage 

rate of the synapse, u, is the fraction of synaptic resources expended by each action 

potential.
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The input Iff(t) to the network is a “box car” function whose value jumps from zero to Iff at 

time t = 0, and back to zero after a time specified for each condition below. Half its strength 

is filtered through AMPA and the other half through NMDA type receptors such that the 

input current I(t) in Eq. 1 is computed as,

I(t) = 1
2S ff

ampa + 1
2S ff

nmda (5)

τampadS ff
ampa

dt = − S ff
ampa + I ff (t) (6)

τnmdadS ff
nmda

dt = − S ff
nmda + I ff (t) (7)

We use the terms “rise time” and “decay time” to describe the speed of network response to 

the onset and offset of a stimulus respectively. We define the rise time as the time for Re to 

go from 10% to 90% of its steady state value Re
ss (computed below) when the stimulus is 

present, and vice-versa for the decay time. We refer to rise time and decay time generally as 

response times of the network.

The steady state firing rate Re
ss of the system defined in Eqs. 1–4 is computed analytically, as 

the solution to a second order polynomial:

Re
ss = − 1

2
1 − w

uτr
± 1

2
1 − w

uτr

2
+ 4 I

uτr
(8)

When I = 0 the steady states of the network are Re
ss = (0, (w − 1)/(uτr)). If w ≤ 1 this network 

will always decay back to its baseline value after stimulus offset (note that the negative 

steady state can not be reached by the system since Re ≥ 0). Therefore, we limit w to the 

range [0, 1] for all our simulations of the positive feedback network.

2.2 Derivative feedback model

The dynamics of the rate-based derivative feedback network, shown in Fig. 2a, can be 

described by the following set of ordinary differential equations,

τe
dRe
dt = − Re + w(See

ampa + See
nmda) − kwSei

gaba + I(t) (9)
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τi
dRi
dt = − Ri + w(Sie

ampa + Sie
nmda) − kwSii

gaba (10)

τampadSmn
ampa

dt = − Smn
ampa + 1

N ∑
j

(1 − qmn
j )xmn

j Re (11)

τnmdadSmn
nmda

dt = − Smn
nmda + 1

N ∑
j

qmn
j xmn

j Re (12)

τgabadSmn
gaba

dt = − Smn
gaba + Ri (13)

dxmn
j

dt =
1 − xmn

j

(1 + pmn
j )τr

− (1 + pmn
j )uxmn

j Re (14)

The variables Re and Ri in Eqs. 9 and 10 represent the firing rates of the excitatory and 

inhibitory populations, respectively, with intrinsic time constants τe = 20 ms and τi = 10 ms. 

As for the positive feedback model, the parameter w in Eqs. 9, 10 represents the maximal 

strength for the excitatory projections. The inhibitory connection is w multiplied by a factor 

k which must fulfill k ≥ 1 to ensure stability. All rate based derivative feedback models in 

this work use w = 100 and k = 1.1. This parameterization of the derivative feedback network 

is similar to that used by Murphy and Miller (2009).

Smn
l  in Eqs. 11–13 is the synaptic activation level of the projection from population n to 

population m where l can be either ampa or nmda for AMPA or NMDA receptors on an 

excitatory projection, or gaba for GABA (γ–Amino-Butyric Acid) receptors on inhibitory 

projections where τampa = 5 ms, τnmda = 100 ms and τgaba = 10 ms.

Projections from the inhibitory populations, Eq. 13, have only a single type of receptor, l = 

gaba, and do not have STD. Conversely, excitatory projections have multiple receptor types, 

l ∈ {ampa, nmda}, which may occur in different ratios across synapses. They also have STD 

whose parameters may have different values across synapses allowing multiple possible 

combinations. We define a particular combination of AMPA/NMDA ratio, qmn
j , and set of 

STD, xmn
j , parameters by the index j and call it a synapse type. N is the number of synapse 
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types for each excitatory projection, defined below. Note that Eq. 11 represents two 

equations, one for the (AMPA-)receptors on the projection from the excitatory population to 

itself (m = n = e), and one from the excitatory to the inhibitory projection (m = i, n = e). The 

analogous comment applies to Eqs. 12–14.

For projections from the excitatory population, qmn
j  defines the fraction of total synaptic 

strength for synapse type j from population n to population m that is represented by NMDA 

receptors. xmn
j  is the STD variable for synapse type j on the projection from populations n to 

m with baseline recovery time constant τr, and usage rate u, as computed in Eq. 14. We set 

τr = 500 ms for all simulations. We add an additional variable pmn
j  which defines a 

percentage shift from the baseline STD parameters.

We define two different models of STD, “homogeneous” and “heterogeneous.” For 

“homogeneous STD,” STD is the same for all excitatory projections, pmn
j = 0 in Eq. 14. For 

“heterogeneous STD,” pmn
j  has multiple non-zero values on each excitatory projection, see 

below for details. Note that in the heterogeneous STD model, STD is modified both through 

τr and through u, and that in both cases the dependence on pmn
j  is the same (both have a 

(1 + pmn
j ) multiplicator). We make this choice for the sake of simplicity and parsimony but, if 

needed, it is possible to modify STD dynamics by changing only one of these parameters, or 

selecting different functions of pmn
j  for one or both of these parameters.

For networks without STD or with homogeneous STD (Figs. 2b–d, 3, 4 and 5b,d), there is 

only a single type of synapse for each excitatory projection so we have N = 1 and we can 

ignore the summation over j in Eqs. 11–12. The value of qie is always 0.5. The value of qee 

is used to select the response time of the overall network. As qee increases, the relative 

contribution of the slow-decay NMDA currents to EE currents increases and therefore the 

time constant on the EE projection increases relative to that of the IE projection. The value 

Δτ characterizes this change in relative timing between the EE and IE projections. It is 

defined as the difference between the average synaptic time constant of the EE projection 

(first term in the following equation) and that of the IE projection (second term),

Δτ = ((1 − qee)τ
ampa + qeeτ

nmda) − ((1 − qie)τ
ampa + qieτ

nmda) (15)

For networks with homogeneous STD, a single set of STD parameters is used on both EE 

and IE projections defined by τr and u where, as a reminder, pmn
j = 0.

For heterogeneous STD (Figs. 6 and 10), pmn
j ≠ 0, we have two types of synapses on each 

excitatory projection (N = 2) and j takes the value slow or fast. To avoid confusion, we note 

that, following generally applied practice, we have previously referred to NMDA and AMPA 

receptors as slow and fast, respectively. In the following we formally define entire synapses 

(that have both AMPA and NMDA channels) as slow or fast, with the former having a higher 
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proportion of NMDA channels than the latter. Specifically, the EE and the IE pathways each 

have a slow and a fast synaptic component. For both, we assume a 3:1 ratio of NMDA to 

AMPA for slow synapses, and the converse for fast synapses:

qee
slow = qie

slow = 0.75

qee
fast = qie

fast = 0.25 (16)

We make a specific assumption (which is at this time a genuine prediction of our model) that 

STD differs between the excitatory pathways as follows. The STD recovery function, eq. 14 

is characterized by a single parameter p where

pee
fast = pie

slow = p

pee
slow = pie

fast = − p (17)

Recall from eq. 14 that increasing the value of pmn
j  increases STD. For the parameterization 

in eq. 17, higher network activity suppresses the fast component of the EE projection relative 

to its slow component, and does the opposite for the IE projection. This causes the average 

synaptic time constant of the EE projection to increase relative to the IE projection when the 

network is active. The use of anti-symmetric values of p between the EE and IE connections 

reduces the number of free parameters while ensuring that the balance of positive and 

negative feedback, needed for the stability of the network (Gillary and Niebur, 2016), is 

maintained throughout stimulus presentation. We will study generalizations of this 

assumption below.

As before, the change in relative timing is determined by the difference in average synaptic 

time constants between the EE and IE projections, Δτ. For the heterogeneous network this is 

obtained from a straight-forward generalization of eq. 15,

Δτ = 1
∑ j xee

j ∑
j

xee
j [(1 − qee

j )τampa + qee
j τnmda] − 1

∑ j xie
j ∑

j
xie

j [(1 − qie
j )τampa + qie

j τnmda]

(18)

The difference, Δτ, is now a function of the time-dependent variables xmn
j , rather than a 

constant as in the linear and homogeneous networks. We use the starting value of Δτ as a 

parameter of the network. Therefore, when we state the value of Δτ for the heterogeneous 
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networks we are referring to the value of Δτ at t = 0 where xmn
j (0) = 1 for all values of m, n 

and j, see Figs. 6–10.

Time varying input to the excitatory population is denoted by I(t). For simulations without 

feedforward STD, the input is a boxcar input filtered through half AMPA and half NMDA 

receptors as in the positive feedback model, Eqs. 5–7. For feedforward input with STD the 

input is again as in Eq. 5 but Eqs. 6–7 are replaced by

τampadS ff
ampa

dt = − S ff
ampa + w ff x ff R ff (t) (19)

τnmdadS ff
nmda

dt = − S ff
nmda + w ff x ff R ff (t) (20)

Here, feedforward STD xff is defined as,

dx ff
dt =

1 − x ff

τr
ff − u ff x ff R ff (21)

with uff and τr
ff  referring to the usage rate and recovery time constant of the feedforward 

connections, respectively. As before, the feed forward input firing rate Rff is boxcar-shaped. 

In order to maintain the same steady state input across feedforward STD parameters, we set 

the feedforward synaptic strength, wff, to yield a constant steady state input for each 

simulation, see Figs. 3, 4, 6 and 10.

The response time of the network is computed in the same way as for the positive feedback 

network. We again use the analytically derived steady state, Re
ss for this computation. For the 

homogeneous network Re
ss is the solution to a second order polynomial,

a2s2 + a1s + a0 = 0 (22)

with coefficients:

a0 = −I
τru

(23)
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a1 = − I + 1 + w(k − 1)
τru(1 + kw) (24)

a2 = 1 . (25)

Re
ss for the heterogeneous network is the solution to a third order polynomial,

a3s3 + a2s2 + a1s + a0 = 0 (26)

with coefficients:

a0 = −I
τr

fastu fastτr
slowuslow (27)

a1 = − I 1
τr

fastu fast + 1
τr

slowuslow +
1 − w

1 + kw

τr
fastu fastτr

slowuslow (28)

a2 = − I + 1 − 1
2

w
1 + kw

1
τr

fastu fast + 1
τr

slowuslow (29)

a3 = 1 . (30)

The largest root of each polynomial provides Re
ss and defines the network response time.

2.3 Leaky integrate and fire networks

All our LIF networks have Ne = 9, 600 excitatory neurons and the derivative feedback 

networks have, in addition, Ni = 2, 400 inhibitory neurons. Neurons are randomly connected, 

with the probability of making a connection from any neuron to any other being ρ = 0.2. 

Each neuron is represented by the standard LIF equation, and synapses have exponentially 

decaying activation,
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τθ
dVm
dt = − (Vm − El) + ∑

n, l
Smn

l + I(t) (31)

τl dSmn
l

dt = − Smn
l + ∑

n, k
xmn

j Jmn
l δ(t − tmn

α ) (32)

dxmn
j

dt =
1 − xmn

j

(1 + pmn
j )τr

− ∑
k

(1 + pmn
j )uxmn

j δ(t − tmn
α ) (33)

where τθ, the membrane time constant, is τe for excitatory and τi for inhibitory neurons. We 

set both membrane time constants to 20 ms, again following Murphy and Miller (2009). El = 

−60 mV is the reversal potential. Vm is the membrane voltage for neuron m with firing 

threshold −40 mV, a reset potential after firing of −52 mV and a refractory period of 2 ms. 

Smn
l  is the synaptic activation for receptors of type l from neuron n to neuron m, tmn

α  is the 

time of the α–th incoming action potential at this synapse and τl is its decay time of that 

receptor type, where τampa = τgaba = 10 ms and τnmda = 200 ms for all m and n. The strength 

of this synapse is Jmn
l , with

Jmn
ampa = (1 − qmn

j )w/(Neρ) (34)

Jmn
nmda = qmn

j w/(Neρ) (35)

for excitatory synapses and

Jmn
gaba = kw/(Niρ) (36)

for inhibitory synapses.

We use j to define different types of synapses. For excitatory projections, a synapse is 

defined by its ratio of NMDA to AMPA receptors, qmn
j , and its STD parameter pmn

j . The 

index l separates the types of receptors and their activations in Eqs. 31–32 such that each 

synapse indexed by m and n has a type j which sets the relationship between AMPA and 

NMDA receptors indexed by l, see Eqs. 34–35. For all LIF networks the excitatory 
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projections are evenly split between synapses which are 25% NMDA (qmn
fast = 0.25) and those 

which are 75% NMDA (qmn
slow = 0.75) so that the total amount of current through NMDA 

receptors is the same as through AMPA receptors. We define Δτ as in the rate based model 

using Eqs. 15 and 18. For inhibitory synapses there is only a single receptor type and no 

STD so Eq. 36 fully defines the inhibitory synapses.

The overall connectivity pattern of each network is the same as in the rate based simulations 

(see Fig. 1a for the positive feedback network and Fig. 1b for the derivative feedback 

network). For the positive feedback network with LIF neurons, the strength of recurrent 

connections is defined by a single overall parameter w and there is no inhibitory population. 

For the derivative feedback networks, excitatory projections have maximal strength w and 

inhibitory projection have strength kw.

For all networks without STD xmn
j = 1 for all synapses and eq. 33 can be ignored as in the 

rate based networks. For the positive feedback network with STD and the derivative 

feedback network with homogeneous STD, STD is the same at all synapses such that 

pmn
j = 0 for every synapse in eq. 33.

Each neuron receives Poisson-distributed background input from 5,000 independent neurons 

with synaptic strength of 0.2 mV. The firing rates of the background inputs were 1.825 Hz, 

3.25 Hz and 1.875 Hz for the positive feedback network, derivative feedback network with 

homogeneous STD, and derivative feedback network with heterogeneous STD, respectively. 

Values were chosen to produce a baseline firing rate (for I(t) = 0) of approximately 1 Hz. 

The boxcar input to each network comes from Nff = 5, 000 independent Poisson spiking 

neurons, each of which randomly connected to the excitatory population with probability ρ = 

0.2. The strength of each individual synapse is Jff = wff/(Nff ρ) where wff, the strength of the 

feedforward projection, is given for each simulation. All feedforward inputs are filtered with 

a τff = 100 ms time constant in order to mimic the temporal integration of the step input 

caused by upstream populations,

I(t) = ∑S ff (37)

τ ff
dS ff
dt = − S ff + ∑

k
x ff J ff δ(t − tk) (38)

where k indexes each spike at a synapse and xff = 1 if there is no feedforward STD. Eq. 37 is 

the sum over the approximately ρNff poisson inputs to each neuron in the excitatory 

population. If there is feedforward STD then
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dx ff
dt =

1 − x ff

τr
ff − ∑

k
u ff x ff δ(t − tk) (39)

for each feedforward synapse. For illustration purposes, all LIF network output shown below 

is averaged across the excitatory population and then smoothed with a Gaussian filter with σ 
= 4 ms.

2.4 Summary of model parameters

In Table 1 we summarize the parameters that we vary for all seven model structures in this 

paper. We do not include membrane time constants, receptor time constants or NMDA/

AMPA fractions q, all of which remain constant throughout the paper. Table 1 also applies to 

the LIF networks which use the same set of parameters, with the exception of LIF networks 

without feedforward STD. In those, we replace Iff in the rate based network with a set of 

Poisson spiking neurons with baseline firing rate Rff and projection strength wff. The values 

of parameters for each set of simulations will be defined in the captions of their respective 

figures.

All Matlab and Python code used in this paper is available at: https://github.com/llgigll/

FastRiseSlowDecay.

3 Results

3.1 The impact of STD on positive feedback networks

In this section we examine the impact of short-term depression on the decay time of positive 

feedback networks. The attractor states of such networks have previously been examined in 

the context of STD and their decay times have also been examined, however without STD 

(Barak and Tsodyks, 2007; Gavornik et al, 2009). Here we examine how transient decay 

times of positive feedback networks are influenced by STD of their recurrent projections. A 

positive feedback network can be represented simply by an excitatory population with a 

single recurrent projection, as in Fig. 1a. We define transient decay as a network returning to 

baseline activity after the offset of a stimulus. We will show that for positive feedback 

networks, with STD on the recurrent connections, the time constant of decay is significantly 

shorter than without STD, and that it is more dependent on the overall strength of STD than 

on the starting synaptic weights.

The dynamics of a rate-based network with a single excitatory recurrent connection are 

determined predominantly by the strength of that recurrent connection, x(t)w, see Fig. 1a. As 

a reminder, w is the maximal strength of the recurrent connection and x is the effect of short-

term depression which is parameterized by the usage rate u and the recovery rate τr. We will 

look at the response of the network to a step input for a range of values of w and u. We hold 

τr constant but its impact on the network is similar to changing u. We require w ≤ 1 which 

ensures that the network state decays back to zero after stimulus offset (see Eq. (8) with I = 

0).
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Fig. 1b shows the results of simulations of the network in Fig. 1a for four different strengths 

of STD but with the same steady state activity. With no STD on the recurrent connection the 

network has a decay time of 25 s. We chose 25 s arbitrarily to show the significant impact of 

STD on the decay time. Note that since the stimulus lasts for only 2 s the simulation without 

STD does not come close to reaching its steady state activity before the offset of the 

stimulus. Even relatively weak STD yields a dramatic decrease in the decay time of the 

network. When u = 0.05, which is at the low end of usage rates observed in cortex (Beck et 

al, 2005), the decay time of the network decreases to a few hundred milliseconds. This is a 

change of two orders of magnitude and the decrease becomes even larger for usage rates of 

0.1 and 0.2 which are more consistent with those observed in early sensory areas (Beck et al, 

2005). We note that the rise time of the network also decreases as STD becomes stonger. A 

reduction in overall response times to both the onset and offset of a stimulus could be one 

reason that early sensory areas tend to be dominated by STD since fast reaction to changing 

sensory input is a likely priority. We focus on decay time here but will consider rise time in a 

subsequent section.

Although this network is nonlinear, the change in the decay time constant of the network can 

be understood by considering the decay time constant of a linear network (without recurrent 

STD) as a function of the synaptic strength at each time point in the simulations in Fig. 1b. 

In this case the linear network would have an instantaneous recurrent strength wlin = x(t)w. 

Fig. 1c shows the decay times for linear networks with recurrent strength wlin at each time 

point in Fig. 1b. By definition, the network with no STD has a constant decay time. In 

contrast, networks with STD show a precipitous decrease in decay time after stimulus onset. 

This decline occurs because the decay time of a linear positive feedback network is 

proportional to 1/(w − 1) (seen directly from a simplified linear version of Eq. 1). Fig. 1d 

shows this relationship between decay time and w for the network without STD. Decay time 

for each value of w is computed directly from a simulation. Irrespective of the starting value 

of w, STD decreases the effective synaptic strength and thus drives each network towards 

the left hand side of Fig. 1d, compressing its decay time. When the network dynamics show 

long time constant decay, then very small changes in w produce large changes in decay time 

(imagine decreasing w in Fig 1d when w ≈ 1).

Fig. 1e shows that the compression of decay time that we would expect from the linear 

model does actually occur for networks with recurrent STD. We see that the addition of even 

weak STD, u = 0.05, reduces the decay time to approximately 700 ms or less for all values 

of w. Stronger STD reduces network decay times even further. In addition to decreasing the 

decay time of the network, recurrent STD also makes networks with w > 1 stable. However, 

when w > 1 in a positive feedback network with STD the network will decay to a non-zero 

steady state after the offset of a stimulus. Since we are considering networks without 

attractor like dynamics this provides an effective upper limit on the network decay time at w 
= 1. Additionally, increasing w past unity does not significantly increase the decay time of 

the network, even to an attractor state (Barak and Tsodyks, 2007). Fig. 1f shows the 

maximum decay time of the network (for w = 1) for a range of usage rates. The figure shows 

that it is very strongly dependent on u. When u < 0.05 then the network approaches the 

behavior of the linear system.
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We conclude that in networks with STD and physiological usage rates, the positive feedback 

network has a decay time less than 500 ms. This implies that persistence in early sensory 

areas, where STD dominates, must be caused by a mechanism other than positive feedback. 

Fig. 1g shows the same dynamics as in Fig. 1a but for a network made up of LIF neurons. 

The addition of STD has the same impact on decay time as it does in the rate based network 

implying that these concepts also hold for stochastic spiking networks. In the next section 

we will consider derivative feedback networks and show that they are far more robust to the 

addition of STD on their excitatory connections.

3.2 Derivative feedback networks with homogeneous STD

Recurrent networks with negative derivative feedback have been discussed as a model for 

working memory, mainly in central areas like prefrontal cortex (Lim and Goldman, 2013). 

Recent work has shown that derivative feedback networks with STD can also produce 

persistent activity that decays to the baseline value over the course of up to several seconds 

(Gillary and Niebur, 2016). Return to the baseline value is a property needed in circuits 

representing sensory information where, different from shortterm memory circuitry, attractor 

dynamics are undesirable. Fig. 2a shows an example of a derivative feedback network where 

w represents the baseline strength of excitatory connections and kw is the strength of 

inhibitory projections. In such networks the decay time depends strongly on both the overall 

strength of the network connections and on the difference in average synaptic time constants 

between the EE and IE projections. In our model the average synaptic time constant is 

determined by the relative proportion of AMPA and NMDA receptors on the synapses in a 

projection. In Fig. 2a we have only one type of synapse on each projection but each 

projection has a different proportion of AMPA and NMDA receptors. We define projections 

with relatively more NMDA as slow projections and color those synapses red while 

projections with relatively more AMPA receptors are termed fast projections and colored 

green. When the EE projection slows relative to the IE projection then the response time of 

the network increases. We call this difference in average synaptic time constant between 

excitatory projections Δτ (see Eqs. 15, 18) where positive Δτ indicates a relatively slower 

EE projection when compared to the IE projection. Stability of this and related systems is 

analyzed by Gillary and Niebur (2016).

As in the positive feedback network we are interested in how STD on the excitatory 

connections impacts the decay time of the network. In this section we consider derivative 

feedback networks with homogeneous STD on all excitatory projections (EE and IE), where 

STD decreases the overall strength of excitatory connections. Fig. 2b shows simulations of 

this network for four different STD strengths. Strikingly, although we selected the 

parameters of the network with no STD to give the same response times as the positive 

feedback network with no STD shown in Fig. 1b, the decrease in decay time of the derivate 

feedback network due to STD is much less pronounced. This can also be seen in the decay 

times computed for the linear systems as a function of STD at each time point in the 

simulations, Fig. 2c, to be compared to the much steeper decay in Fig. 1c. Although there is 

a significant reduction in the decay time of the linear systems the reductions are much 

smaller than in the positive feedback network for the same STD parameters.
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The relative robustness of the derivative feedback network is due to the linear relationship 

between the strength of the network projections, w, and the decay time of the linear 

derivative feedback network, Fig. 2d. This is in stark contrast to the approximately 

geometric relationship between w and the decay time constant in the linear positive feedback 

network, Fig. 1d. When STD is added to the derivative feedback network the relationship 

between w and decay time remains linear, Fig. 2e. The strength of STD determines the slope 

of the relationship between w and decay time. As can be seen from the plot, the derivative 

feedback network with STD can produce decay times which are more than long enough to 

replicate the persistence observed in cortex (Shuler and Bear, 2006). This is in part due to 

the fact that there is not an upper limit on the value of w as there is in the positive feedback 

network where w > 1 results in either instability for the positive feedback network without 

STD or an attractor state for the positive feedback network with STD. Similar dynamics are 

also obtained for spiking networks, Fig. 2f.

We have thus shown that derivative feedback networks can develop persistent activity that is 

far more robust to reductions in synaptic strength due to STD than positive feedback based 

networks. This robustness to STD implies that, for early sensory systems where STD 

dominates, derivative feedback networks are significantly more capable of providing the 

persistence observed in experimental work. Although we have considered only the decay of 

the derivative feedback network, for a memory system to work, it must also be able to 

encode information on time scales much shorter than its memory. In the next section we 

examine how the rise time of the network is impacted by STD on both the recurrent 

connections as well on the feedforward input to the network.

3.3 Rise time in the derivative feedback network with STD

A defining characteristic of any memory mechanism is that memories are acquired much 

faster than they decay. However, such dual time constant responses are not possible in linear 

networks. This is because responses of such linear networks are symmetric to step increases 

and decreases of equal and opposite magnitude in the input. Therefore, if we change the 

parameters to yield persistent activity after stimulus offset we also slow down the response 

of the network to stimulus onset. This is not necessarily the case any more for nonlinear 

systems, e.g. when we introduce STD. Fig. 3a shows three simulations of the derivative 

feedback network with STD for different values of Δτ (see eq. 18). As Δτ increases we see 

an increase in both the rise time and the decay time of the network, similar in tendency to 

what we would expect in a linear system. The STD-associated nonlinearity on the excitatory 

connections, does, however break the exact symmetry between the offset and onset response 

of the network. Fig. 3d shows that for a large range of Δτ and different STD strengths the 

rise time of the network is only about 30–50% of the decay time. Therefore, a network with 

a decay time of ~1 second will have a rise time of ~300–500 milliseconds. While the decay 

times are comparable to those observed in sensory cortex, the rise time is far longer than 

observed. Furthermore, rise time and decay time are strongly correlated across the range of 

Δτ’s. In cortex, a correlation between the rise time and the decay time of the network is not 

observed (Shuler and Bear, 2006; O’Herron and von der Heydt, 2009).
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In order to decouple the response times at the onset of the stimulus from those at the offset 

we require some additional form of nonlinearity. In previous work this decoupling was 

obtained through strong input transients to the network on a base level of much lower steady 

state input (Gavornik et al, 2009; Lim and Goldman, 2013). Such a pulse-step approach can 

be accomplished with STD on the feedforward input to the network. Fig. 4a–c depicts how 

STD produces a step input for three different feedforward usage rates, uff, see eq. 21. The 

overall input to the excitatory population is Iin(t) = wffxff (t)Rff (t) where wff is the (constant) 

starting strength of the feedforward projection, xff is the STD influence, and Rff is the firing 

rate of the input. The step input to the excitatory population is produced by a step change in 

Rff which rises at t = 0 s and returns to baseline at t = 2 s. The step input drives STD on the 

afferent synapses, Fig. 4b. The combination of decreasing synaptic strength and step change 

in input yield a large initial transient current followed by a smaller steady state input, Fig. 

4c. The largest usage rate, uff = 0.5, see Fig. 4c, approaches the tail end of the distribution of 

usage rates that is observed in cortex (Beck et al, 2005). For this value, the input current 

attains a peak that is approximately three times the steady state value. Such a ratio is 

consistent with what has been observed in thalamic input to layer 4 cells in mouse primary 

visual cortex (Reinhold et al, 2015).

In Fig. 4d we chose Δτ such that the network has a 1 second long decay time. This network 

receives the three different transient inputs depicted in Fig. 4c. Although the transients do 

shorten the rise time of the network, all three values produce long rising transients peaking 

after 350 milliseconds. These transients are much longer than those observed for cortical 

networks with persistent activity. We conclude that, although STD on the input to the 

network decreases rise time relative to decay times, it is not sufficient to produce the 

observed fast onset transients and, at the same time, persistence over the observed range. In 

the following section, we show that heterogeneous STD on the recurrent connections can 

change the underlying time constant of the network from fast to slow over the course of a 

stimulus presentation yielding the observed difference in response time.

3.4 Derivative feedback networks with heterogeneous STD

In the previous sections, we have considered homogeneous STD and a single ratio of AMPA 

to NMDA receptors on each projection. It is known, however, that most networks have a 

range of STD values as well as ratios of AMPA to NMDA receptors (Castro-Alamancos and 

Connors, 1997; Myme et al, 2003). Irrespective of the distribution of STD parameters, STD 

will always decrease the overall strength of a projection. However, STD may either increase 

or decrease the average synaptic time constant of that projection, depending on how STD 

parameters and AMPA/NMDA ratios are distributed. For example, if a synapse with a 

stronger NMDA component has weaker STD while another synapse has both a stronger 

AMPA component and stronger STD, then the average time constant of the combined 

synaptic input will increase during stimulus presentation. In Fig. 5a the EE projection is an 

example such a projection with a fast synapse and a slow synapse. The fast synapse is 25% 

NMDA while the slow synapse is 75% NMDA. The two synapses have STD with different 

strength. We define this difference in strength as a change from baseline STD by the 

parameter p where, for the EE connections, the STD parameters on the fast synapse, xfast, is 

increased by p and STD on the slow synapse, xslow, is decreased by p with the opposite 
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change being made for the IE connections, see eq. 14 and discussion following it. The 

choice of equal but opposite changes on the EE and IE connections ensures that the balance 

of excitation and inhibition is maintained within the network. When p > 0 this yields 

stronger STD on the fast EE synapses and weaker STD on the slow EE synapses and vice-
versa on the IE synapses. If p = 0 we have homogeneous STD as in previous sections.

Fig. 5b shows the evolution of strong and weak STD for a step input at t = 0. The STD 

decreases the overall strength of the input to the population by ≈ 60% over the course of the 

stimulus presentation while the difference in average synaptic time constant between the 

projections, Δτ , increases by 8 ms, Fig. 5c. Looking back at Fig. 3c we see that a change Δτ 
in the derivative feedback network of 8 ms can change the decay time of the network by 

seconds. Therefore, if STD causes an increase in the average synaptic time constant on the 

EE projection and a decrease on the IE projection, then Δτ for the network will increase by a 

large margin. We call networks with STD of this form derivative feedback networks with 

heterogeneous STD, see Fig. 5a.

Fig. 6a shows simulations of the derivative feedback network with heterogeneous STD for 

four different values of p. As p increases the network yields longer decay times while still 

maintaining a fast rise time although large p does produce a pronounced dip in activity after 

the initial peak. Fig. 6b shows Δτ of the same network as a function of time. The initial fast 

rise of the network is caused by a starting small negative value of Δτ which can be seen at t 
= 0 s. Note that when Δτ is small and negative that derivative feedback networks are close to 

critically damped (Gillary and Niebur, 2016). When p = 0 (i.e. the homogeneous network) 

then Δτ is constant across the entire simulation. However, when p is positive the initially 

negative value of Δτ becomes large and positive by stimulus offset, thereby producing the 

slow decay after stimulus offset. The large difference in rise time versus decay time as a 

function of p is illustrated in Fig. 6c. The decay time of the network is approximately 

linearly related to p while the rise time remains close to zero. Since p represents a 

percentage change from the baseline parameters we also examine how changing the baseline 

usage rate, u, impacts the network response. Fig. 6d shows the network response time as a 

function of u for p = 0.1. Although the decay time of the network decreases as u increases 

the network still maintains decay times longer than 1 s even for large values of u. Therefore, 

we see that the network dynamics are robust across a large range of baseline parameters.

The initial fast response of the network is due to the negative starting value of Δτ. However, 

the network will also produce a fast response with larger starting values of Δτ if there is 

STD on the input, as in Fig. 4. Fig. 6e shows simulations of the derivative network with 

heterogeneous STD and, in addition, with STD on the afferent projection. These simulations 

still show long decay times and short rise times, see also Fig. 6f. Additionally, we see that 

the dip following stimulus onset seen in Fig. 6a is reduced or removed when there is STD on 

the afferent synapses.

What Fig. 6 essentially shows is that the combination of STD and derivative feedback 

networks can reproduce a wide variety of dynamics that are observed in cortex by altering 

parameters in the local network. This is in contrast to both positive feedback networks and 

derivative feedback networks with homogeneous STD in which fast rise and slow decay can 
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only be achieved by assuming unphysiologically high rates of STD on the input and virtual 

absence of STD on the recurrent connections.

In Fig. 6g,h we compare the behavior of our network with neuronal activity in secondary 

visual cortex (area V2) of two awake behaving monkeys. We use the data in Fig. 2A from 

O’Herron and von der Heydt (2009) which shows the difference of firing rates of 

borderownership selective neurons between responses to an object in their preferred and 

non-preferred locations. In the experiment, a stimulus is presented either in the preferred or 

non-preferred border ownership location from t = 0 to t = 0.5 s, after which the object is 

replaced by an edge in the receptive field of the neuron that is devoid of any border 

ownership information, see O’Herron and von der Heydt (2009) for details. The blue curves 

in Fig. 6g,h show this difference for the two monkeys. It rises very fast (within less than 

50ms after stimulus onset), is maintained while the stimulus has border ownership 

information (until t = 0.5s), and then decays slowly to zero over the course of about one 

second. It is believed that the modulation is produced by populations of neurons (“grouping 

cells”) in a downstream cortical area that represent the grouping of object features (Craft et 

al, 2007; Mihalas et al, 2011; Sugihara et al, 2011; Russell et al, 2014).We model grouping 

cell populations as derivative feedback networks with heterogeneous STD and plot their 

responses (orange lines) along with experimental data (blue lines) in Fig. 6g,h. The only 

difference in the fits between the two plots is a slightly higher value of p, in Fig. 6g than in 

Fig. 6h, chosen to match the decay time of each network. The full parameter set is listed in 

the figure caption. The agreement of simulation results with the experimental data for both 

monkeys is very good, suggesting that dynamics generated by a derivative network with 

heterogeneous STD may be responsible for the generation of the observed modulation of 

neuronal activity.

Up to this point we have chosen specific values for the ratio of AMPA to NMDA and a very 

specific anti-symmetric structure for STD. However, the dynamics of our network do not 

depend stringently on either of these choices. In Fig. 7 we show that many different values 

of q provide fast rise and slow decay. We define two new variables: Δq and qshift.

qee
slow = qie

slow = 0.5 + Δq + qshift

qee
fast = qie

fast = 0.5 − Δq + qshift (40)

where Δq represents the difference in the amount of NMDA on fast and slow synapses while 

qshift represents changes in the average amount of NMDA across the two synapses in our 

model. Under this formulation all of our previous simulations have used Δq = 0.25 and qshift 

= 0. In Fig. 7a,b we set qshift = 0 and vary Δq for a range of different values of p. As can be 

seen, the value of Δq has very little impact on the rise time of our network but does 

significantly impact the decay time. The greater the difference in the amount of NMDA on 

fast and slow synapses, the larger the value of Δτ that can be driven by the asymmetric STD 

on the fast and slow synapses. Conversely, the baseline amount of NMDA on the synapses as 
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represented by qshift has very little impact, Fig. 7c,d. The black crosses and black plus signs 

on each panel in Fig. 7 represent the values of q and p used in Fig. 6g,h. Our fit for q clearly 

sits within a range of possible values.

In Eqn 17 we define an anti-symmetric relationship between the STD parameters on the EE 

and IE projections. In Fig. 8 we loosen this condition. In panel a we allow STD on the EE 

projection to change as in previous simulations but hold the STD parameters on the IE 

projection constant: pee
fast = p, pee

slow = − p and pie
fast = pie

slow = 0. As the value of p increases 

the network shows fast rise and slow decay. However, it also begins to have an excess of 

positive feedback. For large values of p it produces an attractor state due to this excess. The 

reason this occurs is that the removal of the anti-symmetric condition causes EE connection 

to become stronger than the IE connection when the network is activated. Importantly, the 

STD parameters have to change by more than 10% before the network approaches this 

attractor state.

The network can be re-balanced without the anti-symmetric condition. Instead, we can 

slightly reduce the strength of STD on the IE projection such that the network maintains the 

balance of positive and negative feedback after activation. In Fig. 8b we set 

pee
fast = p, pee

slow = − p and pie
fast = pie

slow =bal where pbal is a reduction in the strength of STD 

on the IE projection that balances the positive and negative feedback but produces no change 

in the timing of positive and negative feedback. We use values of pbal = {0, −0.0015, 

−0.0061, −0.0135} for each respective value of p = {0, 0.05, 0.1, 0.15}. The values of pbal 

were calculated by matching the steady state strength of the EE and IE projections for a 

firing rate of 25 Hz for each value of p. Fig. 8 b shows that this way of balancing the 

network maintains the temporal dynamics while preventing the network from approaching 

an attractor state.

We note that there is an overall reduction in the range of possible decay times as compared 

to previous simulations. This reduction occurs because pbal yields no difference in timing on 

the IE projection thereby reducing Δτ. It should also be noted that the purple trace (p = 0.15) 

does have a longer decay time than the yellow trace which is lost due to the purple trace 

failing to reach steady state before the offset of the input. These simulations show that 

although the anti-symmetric condition simplifies the study of the heterogeneous network, it 

is not a necessity to get both fast rise and slow decay. The removal of the anti-symmetric 

condition simply requires that STD parameters are calculated such that positive and negative 

feedback are balanced. Consequently, Fig. 8 does show that our model requires that the 

balance between positive and negative feedback is maintained, something to be expected in 

any network with strong recurrent connections. A balance between excitation and inhibition 

is also required by other models as well as observed during in-vivo recordings in visual 

cortex Rubin et al (2015); Lim and Goldman (2013); Xue et al (2014).

Our conclusions about the derivative feedback network also hold for spiking networks with 

the same structure, as shown in Fig. 9. When the persistence of the network is caused by Δτ 
then both rise time and decay time increase together, Fig. 9a. The addition of strong STD 

decreases the rise time but not enough to approach the rise times observed in cortex, Fig. 9b. 
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Conversely, heterogeneous STD is capable of producing fast rise and slow decay but with a 

pronounced dip, Fig. 9c. The addition of STD on the feedforward connections significantly 

reduces the dip, Fig. 9d.

3.5 Robustness of the heterogeneous network response

The evolution of STD depends not only on the values of the parameters determining 

synaptic depression but also on the activity of the synapses. This means that for different 

lengths of stimulus presentation and for different steady state firing rates we expect the 

overall response of the network to change. Fig. 10a shows the response of the derivative 

feedback network with heterogeneous STD to three different lengths of step input. The onset 

response of the network is exactly the same in each case, as it has to be for networks with 

exactly the same initial conditions. The decay time, however, depends on the stimulus 

length. Their correlation can be clearly seen in Fig. 10b where we show the decay time of 

the homogeneous network (solid line) and the heterogeneous network (dashed line) as a 

function of stimulus length. For stimulus lengths above 250 ms in the heterogeneous 

network, the reduction in decay time from the asymptotic value (i.e. for a stimulus length of 

1 s) is less than 15%. Conversely, for the derivative feedback network with homogeneous 

STD, decreasing the stimulus length to 250 ms from 1 s causes more than a 100% increase 

in decay time. We choose 250 ms stimulus duration for the comparison because the average 

fixation duration for monkeys is on the order of 250 ms in free viewing tasks (Guo et al, 

2006). The change in decay time for the homogeneous network has the opposite sign and is 

an order of magnitude larger than for the network with heterogeneous STD. This is an 

important prediction of our model.

While both positive feedback models and derivative feedback network models with 

homogeneous STD predict strongly decreasing decay times for longer stimulus 

presentations, the derivative feedback network with heterogeneous STD shows an increasing 

decay time for longer stimulus lengths, as seen in Fig. 10b. Such behavior has been recently 

observed in the olfactory bulb (Patterson et al, 2013). Additionally, adaptation aftereffects in 

perception generally show the same correlation: longer adaptation produces longer lasting 

aftereffects (Greenlee et al, 1991; Leopold et al, 2005). This prediction could easily be tested 

more generally in any experimental paradigm yielding persistent activity after stimulus 

offset.

Fig. 10c shows simulations for the same derivative feedback network as Fig. 10a but with 

different starting feed-forwards weights, wff, to yield a range of steady state firing rates, Re
ss, 

for the excitatory population. Furthemore, now the input duration is the same for all three 

cases. As in the simulations with different stimulus lengths in panel (a) the different trials do 

not show appreciably different rise times. There is, however, an inverse correlation between 

Re
ss and the decay time of the network, dashed line Fig. 10d. For this choice of parameters 

the decay time of the network with heterogeneous STD decreases with a slope of 30 ms/Hz 

between 10 Hz and 50 Hz. However, the homogeneous network, solid line, has an average 

slope of 75 ms/Hz between 10 Hz and 50 Hz, far larger than for the network with 

heterogeneous STD. Overall Fig. 10 shows that, in addition to being able to replicate the fast 

rise and slow decay observed in cortex, the network response, when decay times are driven 
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by heterogeneous STD, is also significantly more robust to changes in input than networks 

whose decay time is determined by a static Δτ.

4 Discussion

Persistent decaying activity has been observed in a number of early sensory areas. Most 

previous work on neuronal persistence has been on understanding short-term memory. 

Substantial progress has been made by the study of networks with attractor dynamics. Such 

dynamics are, however, not suitable for sensory coding whose task it is to efficiently and 

faithfully represent environmental variables. In addition (and possibly for this reason), 

synapses show much stronger short-term depression effects in early sensory cortex than in 

more central areas (Hempel et al, 2000). Here we examine the impact of STD on the 

transient dynamics of two classes of circuit models, positive feedback and derivative 

feedback networks. Both network types have been used to produce either slow integration or 

slow decay at the onset and offset of neural signals (Lim and Goldman, 2014).

We first show that the dynamics for positive feedback models are strongly influenced by the 

presence of STD on the recurrent excitatory connections. Even for relatively weak STD, 

such networks can only produce fast onset and offset dynamics but not the observed 

persistent activity. Conversely, we show that the range of transient dynamics for derivative 

feedback networks is robust to STD. However, as with positive feedback networks, 

derivative feedback networks which decay slowly at stimulus offset also respond slowly to 

stimulus onset. Such networks can only produce a fast onset response while maintaining a 

level of persistence if they are driven by a large initial transient input. While onset transients 

are commonly observed in sensory cortex, their magnitude is much lower than what is 

required to generate the large difference between the time courses of rise and decay of 

network activity found experimentally. The derivative feedback networks considered at this 

point therefore do not explain observed neuronal behavior either. Therefore, we look for a 

way to produce fast rise times and slow decay times by altering the intrinsic time constant of 

the network rather than through the shape of the input.

It turns out that removing a simplification we (and others) had originally made in the 

construction of the model solves this problem. We had adopted the standard model of STD 

(Tsodyks et al, 1998) in which synaptic strength is governed by a single variable (the case N 

= 1, pmn
j = 0 in Eqs. 11–14 and discussed in section 3.1). In reality, most networks have a 

range of STD values (Castro-Alamancos and Connors, 1997). We approximate this situation 

in possibly the simplest way by allowing the excitatory projections (EE and IE) to have 

synapses with different strengths of short-term depression. Different from the homogeneous 

STD model considered earlier, we now assume that each projection has two types of 

synapse, one fast-acting and one slow-acting, as an approximation for the more general case 

in which a whole range of time courses exists. As for the homogeneous model, and in 

agreement with physiological data (Myme et al, 2003), each of these projections consists of 

a mixture of NMDA-type and AMPA-type receptors.

The fast and slow components are naturally obtained through synapses with different 

proportions of fast (AMPA) and slow (NMDA) channel dynamics. We assume, somewhat 
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arbitrarily that the ratio is three-to-one in both cases, Eq. 16 (but show that our results do not 

depend critically on this choice, Fig. 7). The crucial modification from the homogeneous 

model is that we assume that these two components have different short term depression 

behavior. Little quantitative information is available about the details of the distributions of 

STD characteristics, therefore we make the simplifying assumption that STD is the same on 

the fast EE connection and the slow IE connection, and equal but opposite on the other two 

connections, see Eq. 17. While the resulting reduction of free parameters, from four to one, 

makes the network easier to understand, we emphasize that this constraint can be easily 

relaxed as soon as more information about the relative and absolute strength of STD in 

different recurrent connections becomes available. In Fig. 8b we show one particular 

example of how this constraint might be relaxed. However, in a network with many synaptic 

connections there would also be many possible ways to maintain the balance between 

excitation and inhibition while also increasing Δτ. Likewise, the assumptions on the relative 

strengths of slow and fast synapses, Eq. 16, which result in the same reduction of the 

number of free parameters, can be easily generalized, as can the number of contributing 

components, by increasing the value of N in Eqs. 11,12.

This generalization from the homogeneous network allows us to change the intrinsic time 

constant of the network dynamically, rather than through the shape of the input, thus 

generating fast rise times and slow decay times. The reason is that the response times of 

derivative feedback networks depend on the difference in timing across the excitatory 

projections. The response time of the network over a stimulus presentation is now changed 

by the stimulus itself as it changes the effective AMPA to NMDA ratio of synaptic strength 

differently on the different excitatory projections (EE and IE). We show that in the model 

with heterogeneous STD parameters on the excitatory projections the average synaptic time 

constant of those projections changes over the course of the stimulus presentation. Such a 

network can respond quickly to stimulus onset and decay slowly (over a time course that can 

reach seconds) after stimulus offset. We also show that the model with STD driven 

persistence is more robust than the derivative feedback network with homogeneous STD to 

changes in both the stimulus length and changes in the steady state firing rate of the 

network. We note that the specific relationship between STD and AMPA/NMDA ratios 

postulated by our model has not previously been studied in the context of networks in 

sensory cortex showing long time constant decay. Our model therefore makes the prediction 

that, in such networks, synapses in the EE projection with a higher ratio of AMPA receptors 

have stronger STD than synapses with more NMDA receptors, and that the opposite is the 

case for the IE projection.

A central result of our work is that the addition of STD dramatically alters the transient 

dynamics of local networks. For networks whose dynamics depend on positive feedback, 

STD narrows the range of possible response times while, for derivative feedback networks, 

STD allows a network to show two substantially different response times at the onset and 

offset of a stimulus. The transient responses of these networks are usually considered in the 

context of connectivity matrices for linear networks with particular connection strengths 

between either populations or neurons (Ganguli et al, 2008). STD constantly alters the state 

of these connectivity matrices, effectively yielding a different network for every point in 

time. Therefore, STD acts to change the state space of the network and can dramatically 
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alter its dynamics depending on the starting network state and the distribution of STD. This 

implies that the distribution of STD may be as important to the response of the network as 

the underlying structure and baseline synaptic strengths.

Although we only consider STD, the addition of short-term facilitation (STF) on the 

excitatory projections would expand the range of dynamics available to both types of 

network. For example, positive feedback networks dominated by facilitation can produce 

persistent activity which decays to baseline level rather than approaching an attractor 

different from the baseline (Mi et al, 2014). However, STF tends to slow the onset response 

of a network and prevents the network from producing the fast responses generally observed 

in early sensory areas (Barak and Tsodyks, 2007). In future work it would be interesting to 

examine how weak facilitation on the excitatory projections may impact the transient 

responses of both positive feedback and derivative feedback networks. We also note that 

STF has been observed on inhibitory synapses. While our work has focused on the impact of 

short-term potentiation on excitatory synapses, the changing strength of inhibitory synapses 

may also affect the network (Gupta et al, 2000; Reyes, 2011).

While stimulus dependent changes in temporal structure have been observed in early sensory 

areas, their impact on computation is currently unclear. It has been proposed that such 

activity may be used in networks that learn the temporal structure of stimuli (Johnson et al, 

2010). Additionally, in reward timing paradigms cholinergic mechanisms are believed to 

train networks to represent the temporal relationship between a stimulus and a reward 

(Chubykin et al, 2013). Such persistence may also act like a transient memory after the 

offset of a stimulus (Pasternak and Greenlee, 2005; O’Herron and von der Heydt, 2009). In 

addition to changing the intrinsic time constant of the network during a stimulus 

presentation, our network could also change the intrinsic time constant of a network between 

stimulus presentations. Such a change would be driven by differences in the recovery rate of 

the synapses and could allow changes in the timing of response to stimuli across 

presentations.

In addition to the already discussed prediction of the specific distribution of STD strengths 

in the fast and slow synapses of EE and IE projections in balanced derivative networks, our 

work makes a number of more general predictions concerning how networks dominated by 

STD may produce long time constant decay. For positive feedback networks, reducing the 

strength of STD would be the primary method to increase the network’s decay time. 

Derivative feedback networks, on the other hand, have a number of different ways that the 

persistence of decay activity can be altered. An overall increase in w, the strength of 

recurrent connections, would increase the decay time. As in the positive feedback network, 

reducing the strength of STD would also have a similar although less drastic effect. Each of 

these parameters provides a way to change the response time of the network although only 

heterogeneous STD driven persistence can change the decay time of the network without 

significantly altering the rise time.
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Fig. 1. 
Dependence of decay time in the positive feedback network on STD parameters. (a) 
Network schematic showing the positive feedback network. The strength of the recurrent 

projection is x(t)w where x(t) is the time-dependent STD variable and w is the resting 

synaptic strength. There is only a single set of STD parameters for this projection. (b) 
Response of the positive feedback network to a step input at t = 0 s and ending at t = 2 s for 

four different values of usage rate, u. (c) Decay time of a linear system (i.e. with no STD) 

with instantaneous recurrent strength wlin = x(t)w at each time point in the simulation in 

panel b. Note that the network with no STD is already linear and so the decay time is 
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constant. (d) Decay time of the positive feedback network without STD. (e) Decay time of 

the positive feedback network with STD for three different usage rates. Note the different 

scale when compared to panel d. (f) Maximum decay time of the positive feedback network 

with STD as a function of usage rate, u. The maximum decay time occurs when w = 1. (g) 
Response of positive feedback network composed of 9,600 LIF neurons to a step input at t = 

0 s and ending at t = 2 s for four different values of usage rate, u. Each run uses the same 

recurrent strength, w = 0.145, which was chosen to produce a decay time of 2 s for the LIF 

network without STD. All rate based networks use w = 0.9936 chosen to yield a decay time 

of 25 s for the network without STD. All networks use τr = 500 ms when STD is present and 

have I(t) chosen to produce a steady state firing rate of 20 Hz.
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Fig. 2. 
Dependence of decay time in the derivative feedback network on the strength of STD on the 

excitatory projections. (a) Network schematic showing the derivative feedback network. The 

strength of the recurrent excitatory projections are x(t)w where x(t) is STD and w is the 

resting synaptic strength. Colored synapses indicate combinations of AMPA and NMDA 

receptors yielding either a longer (red) or shorter (green) average synaptic time constant 

respectively. For brevity, we refer to synapses with longer and shorter average synaptic time 

constants as slow and fast synapses respectively. All excitatory synapses have the same STD 

parameters. Inhibitory projections have no STD and a total synaptic strength of kw. (b) 
Response of derivative feedback network with homogeneous STD on its excitatory 

projections to a step input at t = 0 s and ending at t = 2 s for four different values of usage 
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rate, u. (c) Decay time of a linear system (i.e.. with no STD) where the strength of excitatory 

projections are wlin = x(t)w at each time point in the simulation in panel b. Note that the 

network with no STD is already linear and so the decay time is constant. (d) Decay time of 

the derivative feedback network without STD for a range of values of w. Note the different 

scale when compared to panel e. (e) Decay time of the derivative feedback network with 

STD as a function of w for three different usage rates. (f) Response of derivative feedback 

network composed of 9,600 excitatory LIF neurons and 2,400 inhibitory LIF neurons to a 

step input at t = 0 s and ending at t = 2 s for four different values of usage rate, u. Each run 

uses the same parameters w = 10, k = 2, Δτ = 38 ms and τr = 500 ms (for simulations with 

STD). All rate based networks use w = 100, k = 1.1, Δτ = 10.925 ms unless otherwise noted. 

For simulations with STD τr = 500 ms.
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Fig. 3. 
Dependence on Δτ of rise time and decay time of the derivative feedback network with STD. 

(a) Activity of the derivative feedback network with STD for different values of Δτ with a 

step input starting at t = 0 s and ending at t = 2 s. (b) Rise time as a function of Δτ and u. (c) 
Decay time as a function of Δτ and u. (d) Ratio of rise time to decay time as a function of 

Δτ and u. All simulations in this figure use w = 100, k = 1.1, τr = 500 ms and u = 0.1 unless 

otherwise noted.
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Fig. 4. 
STD on the input to the derivative feedback network yields a large initial transient. (a) 
Schematic of input with STD to the excitatory population. Input depends on the starting 

feedforward weight, wff, the feedforward STD, xff and the firing rate of the feedforward 

connections, Rff. The step input is a step in Rff as depicted in the bottom half of the panel. 

(b) Plot of xff for three different usage rates, uff. (c) Input seen by the excitatory population 

after being filtered through half AMPA and half NMDA receptors (Eqs. 5–7) for the 

feedforward system in panel a and the STD values in panel b. (d) Simulation showing 

decreasing rise time for derivative feedback networks with stronger STD on their 

feedforward connections (i.e. when the inputs to the network are those shown in panel c). In 

this network Δτ = 1.6 ms yields a decay time of 1 second. Other parameters used are w = 

100, k = 1.1, u = 0.1, τr = 500 ms and τr
ff = 500 ms.
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Fig. 5. 
STD can change the average synaptic time constant of projections during a stimulus 

presentation. (a) Schematic of the derivative feedback network with heterogeneous STD on 

the two excitatory projections. Red and green synapses indicate combinations of AMPA and 

NMDA receptors yielding a longer or shorter average synaptic time constant respectively. 

Synapses with dotted fills have relatively weak STD while synapses with bars have relatively 

strong STD. This combination of synapse speed and different STD causes each projection to 

change its average synaptic time constant, τave, for increasing levels of activity. On the EE 

connection this causes an overall increase in τave and on the IE projection this causes a 

decrease in τave making, the EE connection slower than the IE connection. This causes a 

significant increase in Δτ and therefore a significant increase in the overall response time of 

the network (see Fig. 3a). A network with this structure slows significantly over the course 

of a stimulus presentation. (b) Plot of weak and strong STD for a step increase of the input 

by 20 Hz at t = 0 s. Each STD has base parameters τr = 500 ms and u = 0.15. We use p = 

0.15 giving a 15% increase in the STD parameters for strong STD and a 15% decrease in the 

STD parameters for weak STD. (c) Synaptic strength-weighted average time constant of the 

projection as a function of time. As the system evolves the difference in the average time 

constant, Δτ, between the projections increases.
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Fig. 6. 
Heterogeneous STD allows networks to change response time over the course of a stimulus 

presentation. (a) Response of derivative feedback network with heterogeneous STD on its 

excitatory projections to a step input at t = 0 s and ending at t = 2 s for four different values 

of p. (b) The difference in average synaptic time constant between the EE and IE 

projections, Δτ, as a function of time. Δτ is computed using the synaptic strengths from 

panel a at each time point. (c) Rise and decay time of the derivative feedback network with 

heterogeneous STD as a function of p. (d) Rise and decay time of the derivative feedback 

network with heterogeneous STD as a function of the base usage rate, u, and with p = 0.1. 
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(e) Simulations of the derivative feedback network with heterogeneous STD and 

feedforward STD. (f) Rise and decay time of the derivative feedback network with 

heterogeneous STD and feedforward STD. Response times are plotted as a function of p. (g–
h) Fit of the derivative feedback network with heterogeneous and feedforward STD to 

decaying activity in two different monkeys. Data is taken from previous experimental work 

(O’Herron and von der Heydt, 2009) discounting the onset latency (55 ms) and offset 

latency (103 ms) of the average neural response. Both fits use Δτ = −0.38 ms, uff = 0.1 and 

wff set so that each panel has a steady state firing rate of 8 Hz. The only difference in 

parameters between g and h is p where panel g has p = 0.07 and panel h has p = 0.05. All 

simulations use base parameters of w = 100, k = 1.1, τr = 500 ms and u = 0.1. 

Heterogeneous networks without feedforward STD use Δτ = −0.7125 ms and have I(t) 
chosen to yield a 25 Hz steady state. Heterogeneous networks with feedforward STD use Δτ 
= 0 ms, uff = 0.2, τr

ff = 500 ms, Rff = 15 Hz and have wff chosen to yield a 25 Hz steady state. 

Any deviations from these values are noted in the panel descriptions.
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Fig. 7. 
The rise time and decay time of heterogeneous STD are robust to changes in the AMPA/

NMDA ratio. (a) Rise time of the derivative feedback network with heterogeneous STD as a 

function of Δq (see text) and p. (b) Same for the decay time. (c) Rise time of the derivative 

feedback network with heterogeneous STD as a function of qshift (see text) and p. (d) Same 

for the decay time. All simulations use base parameters of w = 100, k = 1.1, τr = 500 ms, u = 

0.1, Δτ = −0.7125 ms and have I(t) chosen to yield a 25 Hz steady state. The black + in the 

panels represents the parameter values of q and p used in Fig. 6g while the black × 

represents the values of q and p used in Fig. 6h.

Gillary et al. Page 38

J Comput Neurosci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
The impact of heterogeneous STD depends on the maintenance of the balance between 

positive and negative feedback. (a) Response of the derivative feedback network with 

heterogeneous STD on its EE projection and homogeneous STD on its IE projection. We use 

pee
fast = p, pee

slow = − p and pie
fast = pie

slow = 0. Note the emergence of an attractor state for the 

largest value, p = 0.15 (purple line). (b) Response of the derivative feedback network with 

heterogeneous STD on its EE projection and balanced homogeneous STD on its IE 

projection. We use pee
fast = p, pee

slow = − p and pie
fast = pie

slow = pbal (see text). This re-balanced 

network avoids attractor dynamics for all values of p shown, including p = 0.15 (purple line). 

All simulations use base parameters of w = 100, k = 1.1, τr = 500 ms, u = 0.1, Δτ = −0.7125 

ms and have I(t) chosen to yield a 25 Hz steady state.
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Fig. 9. 
LIF networks have dynamics similar to the rate based models. (a) Response of derivative 

feedback network with homogeneous STD for three different values of Δτ. Each run uses w 
= 10, k = 2, u = 0.1, τr = 500 ms, Rff = 20 Hz and wff = 0.6. (b) Response of derivative 

feedback network with homogeneous STD and feedforward STD for three different values 

of uff. Each run uses w = 10, k = 2, u = 0.1, τr = 500 ms, Δτ = 38 ms, Rff = 20 Hz and 

w ff = 0.6(1 + u ff τr
ff R ff ). (c) Response of derivative feedback network with heterogeneous 

STD for three different values of p. Each run uses w = 20, k = 1, u = 0.1, τr = 500 ms, Rff = 

20 Hz and wff = 0.55. For each p we use (0, 0.125 or 0.25) we have a different respective 

value of Δτ −2.47 ms, −3.23 ms or −4.18 ms. (d) Response of derivative feedback network 

with both heterogeneous STD and feedforward STD for three different values of uff. Each 

run uses w = 20, k = 1, u = 0.1, τr = 500 ms, p = 0.125, Δτ = −1.14 ms, Rff = 20 Hz and 

w ff = 0.55(1 + u ff τr
ff R ff ). All simulations in Figure use a step input at t = 0 s and ending at t = 

2 s.
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Fig. 10. 
The impact of stimulus length and steady state firing rate on decay time. (a) Simulations of 

the derivative feedback network with heterogeneous STD and feedforward STD for different 

stimulus lengths. The strengths of the feedforward connections were set to give a steady 

state firing rate for the population of 25 Hz. (b) Decay time of the derivative feedback 

network with homogeneous and heterogeneous STD on the recurrent connections as a 

function of stimulus length. (c) Simulations of the derivative feedback network with 

heterogeneous STD and feedforward STD for different levels of steady state activity. The 

strengths of the feedforward connections were set to give the steady state firing rates 

indicated in the legend. (d) Decay time of the derivative feedback network with 

homogeneous and heterogeneous STD on the recurrent connections as a function of steady 

state firing rate, Re
ss. All simulations of networks with heterogeneous STD in this figure use 

w = 100, k = 1.1, τr = 500 ms, u = 0.1, p = 0.1, Δτ = 0 ms, uff = 0.2, τr
ff = 500 ms and Rff = 

15 Hz. Networks with homogeneous STD use the same parameters except p = 0 and Δτ = 

4.75 ms.
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Table 1

Summary of model parameters

Model Parameters

Positive Feedback:

no STD w and Iff

with Recurrent STD w, u, τr and Iff

Derivative Feedback:

no STD w, k, Δτ and Iff

with homogeneous STD w, k, Δτ, u, τr and Iff

with homogeneous STD and feedforward STD
w, k, Δτ, u, τr, uff, τr

ff , wff and Rff

with heterogeneous STD w, k, Δτ, u, τr, p and Iff

with heterogeneous STD and feedforward STD
w, k, Δτ, u, τr, p, uff, τr

ff  and Rff
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