Skip to main content

Advertisement

Log in

New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons. In this new study, we developed a novel class of reduced discrete time spiking neuron models for large-scale network simulations of wake and sleep dynamics. In addition to the spiking mechanism, the new model implemented nonlinearities capturing effects of the leak current, the Ca2+ dependent K+ current and the persistent Na+ current that were found to be critical for transitions between Up and Down states of the slow oscillation. We applied the new model to study large-scale two-dimensional cortical network activity during slow-wave sleep. Our study explained traveling wave dynamics and characteristic synchronization properties of transitions between Up and Down states of the slow oscillation as observed in vivo in recordings from cats. We further predict a critical role of synaptic noise and slow adaptive currents for spike sequence replay as found during sleep related memory consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achermann, P., & Borbely, A. A. (1997). Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience, 81(1), 213–222.

  • Aeschbacj, D., Borbely, A.A. (1993). All-night dynamics of the human sleep EEG. Journal of Sleep Research, 2(2), 70–81.

  • Ali, M. M., Sellers, K. K., & Fröhlich, F. (2013). Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. The Journal of Neuroscience, 33(27), 11262–11275. https://doi.org/10.1523/JNEUROSCI.5867-12.2013 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, C. R., & Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced ebd-plate current fluctuations at frog neuromoscular junction. Journal of Physiology, 235, 655–691 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(19), 8691–8704 PubMed.

    CAS  Google Scholar 

  • Bazhenov, M., Rulkov, N. F., & Timofeev, I. (2008). Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. Journal of neurophysiology, 100(3), 1562–1575. https://doi.org/10.1152/jn.90613.2008 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borbely, A. A., Baumann, F., Brandeis, D., Strauch, I., & Lehmann, D. (1981). Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology, 51(5), 483–495 Epub 1981/05/01. PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology, 94(5), 3637–3642. https://doi.org/10.1152/jn.00686.2005 PubMed.

    Article  PubMed  Google Scholar 

  • Buhl, E. H., Tams, G., Szilgyi, T., Stricker, C., Paulsen, O., & Somogyi, P. (1997). Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. The Journal of physiology, 500(Pt 3), 689–713 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casti, A.R.R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., et al. (2002). A population study of integrate-and-fire-or-burst neurons. Neural computation, 14(5), 957–986. https://doi.org/10.1162/089976602753633349 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Chauvette, S., Volgushev, M., & Timofeev, I. (2010). Origin of Active States in Local Neocortical Networks during Slow Sleep Oscillation. Cerebral Cortex, p., 2660–2674.

  • Chauvette, S., Crochet, S., Volgushev, M., & Timofeev, I. (2011). Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats. The Journal of Neuroscience., 31(42), 14998–15008. https://doi.org/10.1523/JNEUROSCI.2339-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J.-Y., Chauvette, S., Skorheim, S., Timofeev, I., & Bazhenov, M. (2012). Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. The Journal of physiology, 590(Pt 16), 3987–4010. https://doi.org/10.1113/jphysiol.2012.227462 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X.-J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–2725.

    Article  PubMed  Google Scholar 

  • Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. The Journal of neuroscience, 15(1), 604–622 PubMed.

    CAS  PubMed  Google Scholar 

  • Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 251–264.

  • Contreras, D., Destexhe, A., Sejnowski, T., & Steriade, M. (1997). Spatiotemporal patterns of spindle oscillations in cortex and thalamus. Journal of Neuroscience, 1179–1196.

  • Crook, S. M., Ermentrout, G. B., Vanier, M. C., & Bower, J. M. (1997). The role of axonal delay in the synchronization of networks of coupled cortical oscillators. Journal of Computational Neuroscience, 4(2), 161–172. https://doi.org/10.1023/A:1008843412952 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up–Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506. https://doi.org/10.1007/s10827-009-0164-4 PubMed.

    Article  PubMed  Google Scholar 

  • Destexhe, A., & Pare, D. (1999). Impact of Network Activity on the Integrative Properties of Neocortical Pyramidal Neurons In Vivo. Journal of Neurophysiology, 81, 1531–1547 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., Sejnowski, T. J., & Steriade, M. (1994). A Model of Spindle Rhythmicity in the Isolated Thalamic Reticular Nucleus. Journal of neurophysiology, 72(2), 803–818 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature reviews Neuroscience, 11(2), 114–126. https://doi.org/10.1038/nrn2762 PubMed.

    CAS  PubMed  Google Scholar 

  • Esser, S. K., Hill, S. L., & Tononi, G. (2007). Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep, 30(12), 1617–1630 PubMed PMID: 18246972; PubMed Central PMCID: PMCPMC2276134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleidervish, I. A., Friedman, A., & Gutnick, M. J. (1996). Slow inactivation of Na current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. Journal of Physiology, 493(1), 83–97 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil, Z., Connors, B. W., & Amitai, Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 679-86.

  • Guan, D., Lee, J. C. F., Tkatch, T., Surmeier, D. J., Armstrong, W. E., & Foehring, R. C. (2006). Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. The Journal of physiology, 571(Pt 2), 371–389. https://doi.org/10.1113/jphysiol.2005.097006 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Guan, D., Lee, J. C. F., Higgs, M. H., Spain, W. J., & Foehring, R. C. (2007). Functional roles of Kv1 channels in neocortical pyramidal neurons. Journal of neurophysiology, 97(3), 1931–1940. https://doi.org/10.1152/jn.00933.2006 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural computation, 10(Cv)), 1047–1065. https://doi.org/10.1162/089976698300017331 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3), 1671–1698 PubMed.

    Article  PubMed  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal Physiol, 117, 500–544. https://doi.org/10.1016/S0092-8240(05)80004-7 PubMed.

    Article  CAS  Google Scholar 

  • Hoppensteadt, F. C., & Izhikevich, E. M. (1996). Biological Cybernetics. Biological cybernetics, 127(2), 117–127 PubMed.

    Article  Google Scholar 

  • Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070. https://doi.org/10.1109/TNN.2004.832719 PubMed.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598. https://doi.org/10.1073/pnas.0712231105 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. The Journal of general physiology, 59(6), 734–766. https://doi.org/10.1085/jgp.59.6.734 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov, Y., (1998) Elements of Applied Bifurcation Theory: Springer-Verlag New York. 591 p.

  • Lee, M. G., Manns, I. D., Alonso, A., & Jones, B. E. (2004). Sleep-Wake Related Discharge Properties of Basal Forebrain Neurons Recorded With Micropipettes in Head-Fixed Rats. Journal of Neurophysiology, 1182–1198.

  • Lemieux, M., Chen, J.-Y., Lonjers, P., Bazhenov, M., & Timofeev, I. (2014). The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation. The Journal of Neuroscience., 34(16), 5689–5703. https://doi.org/10.1523/JNEUROSCI.1156-13.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439. https://doi.org/10.1016/0896–6273(95)90020-9 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The Sleep Slow Oscillation as a Traveling Wave. The Journal of Neuroscience., 24(31), 6862–6870. https://doi.org/10.1523/JNEUROSCI.1318-04.2004.

    Article  CAS  PubMed  Google Scholar 

  • Massimini, M., Ferrarelli, F., Esser, S. K., Riedner, B. A., Huber, R., Murphy, M., et al. (2007). Triggering sleep slow waves by transcranial magnetic stimulation. Proceedings of the National Academy of Sciences., 104(20), 8496–8501. https://doi.org/10.1073/pnas.0702495104.

    Article  CAS  Google Scholar 

  • McCormick, D. A. (1992). Neurotransmitter Actions in the Thalamus and Cerebral Cortex and Their Role in Neuromodulation of Thalamocortical Activity. Pogress in Nuerobiology, 39, 337–388 PubMed.

    Article  CAS  Google Scholar 

  • McCormick, D. A., Pape, H. C., & Williamson, A. (1991). Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Progress in Brain Research, 293–305.

  • Molle, M., Marshall, L., Gais, S., & Born, J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. Journal of Neuroscience, 10941–10947.

  • Redman, S. (1990). Quantal Analysis of Synaptic Potentials in Neurons of the Central Nervous System. Physiological reviews, 70(1), 165–198 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Rulkov, N. F. (2002). Modeling of spiking-bursting neural behavior using two-dimensional map. Physical Review E, 65(4), 041922. https://doi.org/10.1103/PhysRevE.65.041922 PubMed.

    Article  Google Scholar 

  • Rulkov, N. F., & Bazhenov, M. (2008). Oscillations and Synchrony in Large-scale Cortical Network Models. Journal of Biological Physics, 34(3–4), 279–299. https://doi.org/10.1007/s10867-008-9079-y PubMed.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rulkov, N. F., Timofeev, I., & Bazhenov, M. (2004). Oscillations in large-scale cortical networks: map-based model. Journal of Computational Neuroscience, 17(2), 203–223. https://doi.org/10.1023/B:JCNS.0000037683.55688.7e PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Rulkov, N. F., Hunt, A. M., Rulkov, P. N., & Maximov, A. G. (2016). Quantization of Map-Based neuronal model for embedded simulations of neurobiological networks in real-time. American Journal of Engineering and Applied Sciences, 9(4), 973–984.. https://doi.org/10.3844/ajeassp 2016.973.984.

  • Runfeldt, M. J., Sadovsky, A. J., & MacLean, J. N. (2014). Acetylcholine functionally reorganizes neocortical microcircuits. Journal of Neurophysiology, 112(5), 1205–16.

  • Salin, P. A., & Prince, D. A. (1996). Spontaneous GABAA Receptor-Mediated Inhibitory Currents in Adult Rat Somatosensory Cortex. Journal of neurophysiology, 75(4), 1573–1588 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature neuroscience, 3(10), 1027–1034. https://doi.org/10.1038/79848 PubMed PMID: Sanchez-Vives2000.

    Article  CAS  PubMed  Google Scholar 

  • Sheroziya, M., & Timofeev, I. (2014). Global Intracellular Slow-Wave Dynamics of the Thalamocortical System. Journal of Neuroscience, 34(26), 8875–8893. https://doi.org/10.1523/JNEUROSCI.4460-13.2014 PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. Internation Journal of Bifurcation and Chaos, 13(11), 3325–3340 PubMed.

  • Shilnikov, A. L., & Rulkov, N. F. (2004). Subthreshold oscillations in a map-based neuron model. Physics Letters A, 328(2–3), 177–184. https://doi.org/10.1016/j.physleta.2004.05.062 PubMed.

    Article  CAS  Google Scholar 

  • Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., & McCormick, D. A. (2003). Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons. The Journal of Neuroscience., 23(32), 10388–10401.

    CAS  PubMed  Google Scholar 

  • Sigvardt, K. A., & Miller, W. L. (1998). Analysis and modeling of the locomotor central pattern generator as a network of coupled oscillators. Annals of the New York Academy of Sciences, 860, 250–265. https://doi.org/10.1111/j.1749-6632.1998.tb09054.x PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. D., & Sherman, S. M. (2002). Detectability of excitatory versus inhibitory drive in an integrate-and-fire-or-burst thalamocortical relay neuron model. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(23), 10242–10250 PubMed.

    CAS  Google Scholar 

  • Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of neurophysiology, 83(1), 588–610 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience, 13(1), 334–350 PubMed.

  • Steriade, M., Nuñez, A., & Amzica, F. (1993a). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo : depolarizing and hyperpolarizing components. The Journal of Neuroscience, 13, 3252–3265.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Nuez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of neuroscience, 13(8), 3266–3283 PubMed.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Contreras, D., Curro Dossi, R., & Nunez, A. (1993c). The Slow (<1 Hz) Oscillation in Reticular Thalamic and Thalamocortical Neurons: Scenario of Sleep Rhythm Generation in Interacting Thalamic and Neocortical Networks. The Journal of Neuroscience. p., 3284–3299.

  • Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993d). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of neurophysiology, 85(5), 1969–1985. https://doi.org/10.1016/j.neuroimage.2009.03.074 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe, M., Ghwiler, B. H., & Gerber, U. (1998). L-Type Ca2+ channels mediate the slow Ca2+−dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. Journal of neurophysiology, 80(5), 2268–2273 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Bazhenov, M. (2005). Mechanisms and biological role of thalamocortical oscillations. Frank Columbus ed. Trends in Chronobiology Research: Nova Sceince Publishers, Inc.;p. 1-47.

  • Timofeev, I., & Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology, 76(6), 4152–4168 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Contreras, D., & Steriade, M. (1996). Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. Journal of Physiology, 494(Pt 1), 265–278.

  • Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000a). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral cortex, 10(12), 1185–1199. https://doi.org/10.1093/cercor/10.12.1185 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., & Steriade, M. (2000b). Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J Physiol (Paris), 343–355.

  • Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: An intracellular study. Proceedings of the National Academy of Sciences., 98(4), 1924–1929. https://doi.org/10.1073/pnas.98.4.1924.

    Article  CAS  Google Scholar 

  • Traub, R. D., Wong, R. K., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66(2), 635–650 PubMed.

    Article  CAS  PubMed  Google Scholar 

  • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology (Vol. 2). Nonlinear and stochastic theries: Cambridge University Press.

    Book  Google Scholar 

  • Volgushev, M., Chauvette, S., Mukovski, M., & Timofeev, I. (2006). Precise Long-Range Synchronization of Activity and Silence in Neocortical Neurons during Slow-Wave Sleep. The Journal of Neuroscience., 26(21), 5665–5672. https://doi.org/10.1523/JNEUROSCI.0279-06.2006.

    Article  CAS  PubMed  Google Scholar 

  • Volgushev, M., Chauvette, S., & Timofeev, I. (2011). Long-range correlation of the membrane potential in neocortical neurons during slow oscillation. Progress in brain research, 193, 181–199. https://doi.org/10.1016/B978-0-444-53839-0.00012-0 PubMed.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Krishnan, G. P., & Bazhenov, M. (2016). Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. The Journal of Neuroscience., 36(15), 4231–4247. https://doi.org/10.1523/jneurosci.3648-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, T. L., & Bowtell, G. (1997). The calculation of frequency-shift functions for chains of coupled oscillators, with application to a network model of the lamprey locomotor pattern generator. Journal of Computational Neuroscience, 4(1), 47–55 PubMed.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ONR (MURI: N000141310672), NIH (MH099645) and Canadian Institutes of Health Research (MOP-136969, MOP-136967). MK and NR also appreciate partial support from ONR grant N00014-16-1-2252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giri Krishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Alain Destexhe

Author Summary

In this study, we developed a novel class of the computationally efficient neuron models that allow for large-scale simulation (based on the millions of neurons and billions of connections) of sleep and wake brain dynamics. This new model implements intrinsic properties similar to those found in conductance based neuronal models. Analysis of the cortical network dynamics during slow-wave sleep, based on the new model, revealed a close agreement between model predictions and experimental data. The study predicted the critical role of synaptic noise and intrinsic cellular adaptation for spike sequence replay during sleep related memory consolidation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, M., Krishnan, G., Chauvette, S. et al. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J Comput Neurosci 44, 1–24 (2018). https://doi.org/10.1007/s10827-017-0663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0663-7

Keywords

Navigation