Skip to main content
Log in

Phase model-based neuron stabilization into arbitrary clusters

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) is a common method of combating pathological conditions associated with Parkinson’s disease, Tourette syndrome, essential tremor, and other disorders, but whose mechanisms are not fully understood. One hypothesis, supported experimentally, is that some symptoms of these disorders are associated with pathological synchronization of neurons in the basal ganglia and thalamus. For this reason, there has been interest in recent years in finding efficient ways to desynchronize neurons that are both fast-acting and low-power. Recent results on coordinated reset and periodically forced oscillators suggest that forming distinct clusters of neurons may prove to be more effective than achieving complete desynchronization, in particular by promoting plasticity effects that might persist after stimulation is turned off. Current proposed methods for achieving clustering frequently require either multiple input sources or precomputing the control signal. We propose here a control strategy for clustering, based on an analysis of the reduced phase model for a set of identical neurons, that allows for real-time, single-input control of a population of neurons with low-amplitude, low total energy signals. After demonstrating its effectiveness on phase models, we apply it to full state models to demonstrate its validity. We also discuss the effects of coupling on the efficacy of the strategy proposed and demonstrate that the clustering can still be accomplished in the presence of weak to moderate electrotonic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamchic, I., Hauptmann, C., Barnikol, U.B., Pawelczyk, N., Popovych, O., Barnikol, T.T., Silchenko, A., Volkmann, J., Deuschl, G., Meissner, W.G., Maarouf, M., Sturm, V., Freund, H.-J., Tass, P.A. (2014). Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Movement Disorders, 29(13), 1679–1684.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benabid, A.L., Benazzous, A., Pollak, P. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17(SUPPL. 3), 19–38.

    Google Scholar 

  • Beric, A., Kelly, P.J., Rezai, A., Sterio, D., Mogilner, A., Zonenshayn, M., Kopell, B. (2002). Complications of deep brain stimulation surgery. Stereotactic and Functional Neurosurgery, 77(1–4), 73–78.

    Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.

    Article  PubMed  Google Scholar 

  • Cagnan, H., Brittain, J.S., Little, S., Foltynie, T., Limousin, P., Zrinzo, L., Hariz, M., Joint, C., Fitzgerald, J., Green, A.L., Aziz, T., Brown, P. (2013). Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain: A Journal of Neurology, 136(10), 3062–3075.

    Article  Google Scholar 

  • Chen, C.C., Litvak, V., Gilbertson, T., Ku̇hn, A., Lu, C.S., Lee, S.T., Tsai, C.H., Tisch, S., Limousin, P., Hariz, M., Brown, P. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205(1), 214–221.

    Article  PubMed  Google Scholar 

  • Danzl, P., Hespanha, J., Moehlis, J. (2009). Event-based minimum-time control of oscillatory neuron models: Phase randomization, maximal spike rate increase, and desynchronization. Biological Cybernetics, 101(5-6), 387–399.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Ermentrout, G.B., & Terman, D.H. (2010). Mathematical foundations of neuroscience, volume 35 of interdisciplinary applied mathematics. New York: Springer.

    Google Scholar 

  • Galan, R.F., Ermentrout, G.B., Urban, N.N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, 94(15), 1–4.

    Article  CAS  Google Scholar 

  • Golomb, D., & Hansel, D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Computation, 12(5), 1095–1139.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, C., Bergman, H., Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hua, S.E., Lenz, F. a., Zirh, T. a., Reich, S.G., Dougherty, P.M. (1998). Thalamic neuronal activity correlated with essential tremor. Journal of Neurology, Neurosurgery, and Psychiatry, 64(2), 273–276.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston, D., & Wu, S. M.-S. (1995). Foundations of cellular neurophysiology, 1st edn. Cambridge: MIT Press.

    Google Scholar 

  • Keener, J., & Sneyd, J. (2009). Mathematical physiology. Interdisciplinary applied mathematics. New York: Springer.

    Google Scholar 

  • Khalil, H. (2015). Nonlinear control, 1st edn. New York: Pearson.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence, volume 19 of springer series in synergetics. Springer: Berlin.

    Book  Google Scholar 

  • Levy, R., Hutchison, W., Lozano, A., Dostrovsky, J. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. The Journal of Neuroscience, 20(20), 7766–7775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J.-S., Dasanayake, I., Ruths, J. (2013). Control and synchronization of neuron ensembles. IEEE Transactions on Automatic Control, 58(8), 1919–1930.

    Article  Google Scholar 

  • Lu̇cken, L., Yanchuk, S., Popovych, O.V., Tass, P.A. (2013). Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Frontiers in Computational Neuroscience, 7, 63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lysyansky, B., Popovych, O.V., Tass, P.A. (2011). Desynchronizing anti-resonance effect of m: n ON-OFF coordinated reset stimulation. Journal of Neural Engineering, 8(3), 036019.

    Article  PubMed  Google Scholar 

  • Lysyansky, B., Popovych, O.V., Tass, P.A. (2013). Optimal number of stimulation contacts for coordinated reset neuromodulation. Frontiers in Neuroengineering, 6(July), 5.

    PubMed Central  PubMed  Google Scholar 

  • Matchen, T., & Moehlis, J. (2017). Real-time stabilization of neurons into clusters. In American controls conference (pp. 2805–2810). Seattle.

  • Rodriguez-Oroz, M.C., Obeso, J.A., Lang, A.E., Houeto, J.L., Pollak, P., Rehncrona, S., Kulisevsky, J., Albanese, A., Volkmann, J., Hariz, M.I., Quinn, N.P., Speelman, J.D., Guridi, J., Zamarbide, I., Gironell, A., Molet, J., Pascual-Sedano, B., Pidoux, B., Bonnet, A.M., Agid, Y., Xie, J., Benabid, A.L., Lozano, A.M., Saint-Cyr, J., Romito, L., Contarino, M.F., Scerrati, M., Fraix, V., Van Blercom, N. (2005). Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain: A Journal of Neurology, 128(10), 2240–2249.

    Article  CAS  Google Scholar 

  • Rosenblum, M., & Pikovsky, A. (2004). Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Physical Review E, 70(4), 041904.

    Article  CAS  Google Scholar 

  • Rubin, J.E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.

    Article  PubMed  Google Scholar 

  • Sacrė, P., & Sepulchre, R. (2014). Sensitivity analysis of oscillator models in the space of phase-response curves: oscillators as open systems. IEEE Control Systems, 34(2), 50–74.

    Article  Google Scholar 

  • Savica, R., Stead, M., Mack, K.J., Lee, K.H., Klassen, B.T. (2012). Deep brain stimulation in Tourette syndrome: a description of 3 patients with excellent outcome. Mayo Clinic Proceedings, 87(1), 59–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt, G.S., Wilson, D., Allgower, F., Moehlis, J. (2014). Selective averaging with application to phase reduction and neural controls. Nonlinear Theory and Its Application IEICE, 5(4), 424–435.

    Article  Google Scholar 

  • Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6(4), 285–96.

    Article  CAS  PubMed  Google Scholar 

  • Tass, P.A. (2003a). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89(2), 81–88.

    Article  PubMed  Google Scholar 

  • Tass, P.A. (2003b). Desynchronization by means of a coordinated reset of neural sub-populations - a novel technique for demand-controlled deep brain stimulation. Progress of Theoretical Physics Supplement, 150(150), 281–296.

    Article  Google Scholar 

  • The Deep-Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New England Journal of Medicine, 345(13), 956–963.

    Article  Google Scholar 

  • Uhlhaas, P.J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D., & Moehlis, J. (2014). Optimal chaotic desynchronization for neural populations. SIAM Journal on Applied Dynamical Systems, 13(1), 276–305.

    Article  Google Scholar 

  • Wilson, D., & Moehlis, J. (2015). Clustered desynchronization from high-frequency deep brain stimulation. PLoS Computational Biology, 11(12), 1–26.

    Article  CAS  Google Scholar 

  • Wilson, C.J., Beverlin, B., Netoff, T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in Systems Neuroscience, 5, 50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao, C., Wang, L., Netoff, T., Yuan, L.L. (2011). Dendritic mechanisms controlling the threshold and timing requirement of synaptic plasticity. Hippocampus, 21(3), 288–297.

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik, A., & Li, J.-S. (2014). Optimal subharmonic entrainment of weakly forced nonlinear oscillators. SIAM Journal on Applied Dynamical Systems, 13(4), 1654–1693.

    Article  Google Scholar 

  • Zlotnik, A., Nagao, R., Kiss, I.Z., Li, J.-S. (2016). Phase-selective entrainment of nonlinear oscillator ensembles. Nature Communications, 7, 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work by National Science Foundation Grants No. NSF-1264535/1631170 and NSF-1635542 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Matchen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Steven J. Schiff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matchen, T.D., Moehlis, J. Phase model-based neuron stabilization into arbitrary clusters. J Comput Neurosci 44, 363–378 (2018). https://doi.org/10.1007/s10827-018-0683-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0683-y

Keywords

Navigation