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Abstract

Point process regression models, based on generalized linear model (GLM) technology, have been 

widely used for spike train analysis, but a recent paper by Gerhard et al. described a kind of 

instability, in which fitted models can generate simulated spike trains with explosive firing rates. 

We analyze the problem by extending the methods of Gerhard et al. First, we improve their 

instability diagnostic and extend it to a wider class of models. Next, we point out some common 

situations in which instability can be traced to model lack of fit. Finally, we investigate distinctions 

between models that use a single filter to represent the effects of all spikes prior to any particular 

time t, as in a 2008 paper by Pillow et al., and those that allow different filters for each spike prior 

to time t, as in a 2001 paper by Kass and Ventura. We re-analyze the data sets used by Gerhard et 

al., introduce an additional data set that exhibits bursting, and use a well-known model described 

by Izhikevich to simulate spike trains from various ground truth scenarios. We conclude that 

models with multiple filters tend to avoid instability, but there are unlikely to be universal rules. 

Instead, care in data fitting is required and models need to be assessed for each unique set of data.
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1 Introduction

Point process regression models based on the framework of generalized linear models 

(GLMs) have been applied to a wide variety of spiking neuron data (Kass et al (2014), 

Weber and Pillow (2017), and references therein). These models, which may be considered 

non-linear Hawkes processes (Chen et al, 2017; Eichler et al, 2017), allow neural firing rates 

to depend on spiking history. Recently, however, Gerhard et al (2017) reported that models 
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fitted to real data sets could be unstable in the sense that their firing rates could evolve to 

become arbitrarily large, generating unrealistic spike trains, even when standard goodness-

of-fit tests fail to identify lack of fit (see Figure 1 for two examples). In this paper we 

identify several factors that can lead to this problem, we provide additional analysis for 

diagnosing it, and we present methods to improve model stability.

In some circumstances, causes of instability are easy to identify and easy to fix. The problem 

of stability, however, leads naturally to an interesting detail in GLM-type modeling of spike 

trains. When spike trains are modeled as point processes, the firing rate is defined by the 

conditional intensity function

λ t Ht = lim
Δt 0

ℙ ΔN t, t + Δt = 1 Ht
Δt (1)

where Ht is the set of spikes prior to time t, known as the spiking history up to time t, and 

ΔN(t,t+Δt] is the number of spikes in the interval (t, t+Δt]. This succinct representation can 

also incorporate stimulus effects and coupling effects and its implementation can take 

advantage of a large body of knowledge about generalized regression models (Kass et al, 

2014). Here we only consider the history effects without external stimulus and coupling 

neurons. There are many ways to capture the effects of the history Ht on the intensity. 

Letting tj* be the jth spike time counting backwards prior to time t, a concise and intuitive 

assumption, for steady-state scenarios (where the baseline rate is constant), takes the 

intensity to have the form

log λ t Ht = β0 +
j

h t − t j * (2)

where h(u) is a smooth function, and the summation extends to all spikes that precede time t 
(within a given trial, if there are trials). This is the form used by Pillow et al (2008) and by 

Gerhard et al (2017). Pillow et al (2008) referred to h(u) as a post-spike filter. An alternative 

model, used by Kass and Ventura (2001), instead allows the effects of each previous spike to 

be different:

log λ t Ht = β0 +
j = 1

k
h j t − t j * (3)

If each function hj involves separate free parameters, then the model in (3) would typically 

have more parameters than the model in (2). A main contribution of this paper is to describe 

situations under which this additional flexibility can be useful. In particular, we suggest that, 

in realistic scenarios, models of the form (3) tend to be stable.

One issue in using (3) is that the number of terms k must be selected. In theory the number 

could be infinite as long as a suitable condition is placed on the functions hj, such as 
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M j < ∞, where Mj = maxu hj(u), but in practice Kass and Ventura (2001) selected k by 

applying the likelihood ratio test; here, in Section 4, we will suggest another criterion, based 

on stability. Similarly, in practice, the summation in (2) extends over a fixed window of time 

preceding t, having length we label Th (at most, the total length of the experiment), leading 

to the alternative representation

log λ t Ht = β0 +
t j * ∈ t − Th, t

h t − t j * . (4)

We refer to a model described by (4) as Fixed Length Filter (FLF), and those described by 

(3) as Fixed Number Filter (FNF), where the fixed number refers to the fixed number of 

spikes. In our analysis we have found it useful to further categorize FNF models by 

considering the special case in which hj(u) = h1(u), for all j and all u. These models we write 

these as FNFS, where S stands for single filter. The more general case we write as FNFM, 

with M for multiple. Note that FNFS differs from FLF in that the number of spikes is fixed 

rather than the length of the time interval, but both models use a single filter while FLFM 

uses multiple filters.

We begin, in Section 2, by giving some analytical stability results along the lines of those in 

Gerhard et al (2017). In Section 3 we identify several kinds of model mis-specification that 

lead to instability, and we note potential solutions. In Section 4 we focus on FNF models and 

the variation that replaces the constant β0 with a time-varying function β(t). An analytical 

diagnostic method is then used to select the number of previous spikes to be considered in 

the model, i.e., the number of terms k in (3). In section 5, we compare FLF and FNF models. 

We close in Section 6 with advice on the use of these models.

2 Stability analysis

Figure 1 shows two examples of unstable simulations from FLF models (equation 4) fitted to 

the Monkey-PMv and Human-Cortex datasets described in Table 1, Appendix A, using the 

smooth basis method of Pillow et al (2008). The fitted FLF models pass the original and 

discrete KS goodness of fit tests (Brown et al, 2002; Haslinger et al, 2010) but they are 

unstable, in the sense that the firing rates of some or all the simulated spike trains evolve to 

become arbitrarily large, generating unrealistic spike trains. We emphasize that instability is 

not a matter of extrapolation to unseen data outside the experimental range of time. Rather, 

if a model is unstable, in simulations it can evolve to producing firing rates far in excess of 

those seen in real data, which makes it patently unrealistic as a representation of neural 

physiology.

Gerhard et al (2017) argue that a reliable diagnostic of model instability can be obtained 

from the relationship between the firing rate A0 before the last spike at t1* in an interval, and 

the firing rate after t1*. They approximate A0 with the average firing rate in the interval (t – 

Th, t1*). Then they rewrite the fitted FLF model (Equation 4) as
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log λ t Ht = β0 + h t − t1 * +
t j * ∈ t − Th, t1 *

h t − t j * ,

and approximate the summation by its expectation under the assumption that the point 

process in the interval (t – Th, t1*) is homogeneous Poisson, yielding

log λ t Ht ≈ β0 + h t − t1 * + A0 t − t1 *

Th
eh u − 1 du . (5)

Gerhard et al (2017) then use (5) to derive the approximate PDF of the future ISI t* – t1*, 

where t* is the time of the next spike after t1*, and calculate the firing rate after t1* as the 

reciprocal of the mean future ISI:

ℒh A0 = 1
𝔼 t* − t1 *

. (6)

Equation 6 is a function of A0 because Equation 5 is a function of A0. The instability 

diagnostic is obtained by plotting ℒh A0  versus A0, as in Figure 2B, for A0 ∈ [0, λmax], 

where λmax is the maximum possible firing rate. Without loss of generality, in this paper we 

do not build a refractory period in the models we consider, except to reproduce Gerhard et al 

(2017) Figure 4 (see Appendix B Figure 9), so λmax is our simulation resolution of 1000 

spikes per second. We examine intersections of the diagnostic curve with the secant line 

ℒh A0 = A0 referring to them as cross points.

Note that the diagnostic green curve in Figure 2B exceeds the first secant for small values of 

A0, which is desirable because otherwise the firing rate would eventually decrease down to 

zero. A divergent model yields unstable simulations, whereas spike trains simulated from a 

fragile model might first look stable and then degenerate. Therefore the difference between 

divergent and fragile models is the duration it takes for spike trains to become unstable. 

Without loss of generality of our results, we do not distinguish between divergent and fragile 

models, and consider them both unstable.

Gerhard et al (2017) validated their model stability diagnostic against spike train data: they 

considered a model family Fθ parametrized by θ, and for each value of θ in a range, they (i) 

simulated a 10 sec. long spike train from Fθ (e.g. using algorithm 2 in Appendix C), and 

deemed the spike train unstable if the model generated over 0.9 · λmax spikes in the last 

second, (ii) produced the diagnostic curve and determined from it if the model was stable, 

fragile, or divergent and (iii) plotted θ against the outcomes in (i) and (ii). Figure 9, 

Appendix B, shows these plots for two model families Fθ. Figure 9A shows the same 

stability map as in Gerhard et al (2017) Figure 4, where Fθ is an FLF model (Equation 4) 

with baseline rate β0 = −5.3 and filter h(t) = β1 · B1(t) + β2 · B2(t) + Dip(t), θ = (β1, β2), 

B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the smooth basis functions used in Pillow et al (2008) 
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and shown in the insert in Figure 2A, Dip(t) is a negative window function modeling a 2 

msec. refractory period, and the filter length is Th = 0.2 sec. In Figure 9C, Fθ is an FLF 

model with baseline rate β0 = −4, filter h(t) = β1 · B1(t) + β2 · B2(t) with B1(t) and B2(t) 
defined above, and filter length Th = 0.35 sec.

The stability maps in Figure 9A,C suggest that the diagnostic is mostly reliable, except in 

small regions of the parameter spaces. This happens because Gerhard et al (2017) replaced 

h(u) by the Taylor expansion (exp h(u) – 1) in (5), which is accurate only when h(u) is small. 

Without this approximation, (5) becomes

log λ t Ht ≈ β0 + h t − t1 * + A0 t − t1 *

Th
h u du, (7)

and the diagnostic is still tractable, as shown in Appendix D. Figure 9B,D show the updated 

stability maps based on (7). The agreement between diagnostic and simulation is very close, 

and closer than in Figures 9A,C, so we use the updated diagnostic in the rest of the paper. 

Figure 9D is reproduced in Figure 2C.

To solve the stability problem when a model is found to be divergent or fragile, Gerhard et al 

(2017) suggest stabilizing it by refitting to the data with the constraint that its parameters lie 

in the stable region of the parameter space. In the next section, we identify three data 

features that might lead to unstable simulation models, namely small sample size, time 

varying firing rates, and trial to trial variability or outlier trials, and we provide alternative 

suggestions for stabilization: collecting more data, fitting inhomeogeneous rate models, and 

removing outliers, respectively.

3 Special cases of FLF model instability

A feature that might lead to unstable models is a small sample size. Indeed fitting a model to 

a small dataset yields parameter estimates that have large variances and, therefore, that could 

lie in unstable regions of the parameter space by chance, even if the true parameters lie in 

stable regions. Collecting more data, if possible, would reduce the variability of parameter 

estimates and stabilize the model.

Next, consider the Monkey-PMv, shown in Figure 1A. An FLF model fitted to the data 

satisfies the KS goodness-of-fit tests (Figure 1B), yet simulations from the model diverge 

(Figure 1C). Because the peri-stimulus time histogram (PSTH) in Figure 1A appears to 

increase, we fit a time-varying baseline rate β(t) in place of β0 in (4). That model fits the 

data somewhat better according to a likelihood ratio test (p = 0.046), and data simulated 

from it do not diverge (Figure 3C). (To simulate data past the maximum experimental time 

of one second, we set β(t) = β(1) for t ≥ 1 sec.) Figure 3D,E,F shows a similar outcome 

when we apply the same analysis to synthetic data generated from an inhomogeneous 

Izhikevich model (algorithm 1, Appendix B). Hence, in the presence of a time-varying trial-

averaged rate, fitting a constant rate term can produce instability and fitting a time-varying 

rate can rectify the problem.
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Finally, consider the Human-Cortex data displayed in Figure 1D. An FLF model fitted to the 

data satisfies the KS goodness-of-fit tests (Figure 1E) but two out of ten spike trains 

simulated from it diverge (Figure 1F). Figure 4A shows that trials 8, 9, and 10 have rather 

large spike counts compared to the others, so there might be excess trial-to-trial variability or 

outlier trials that might cause the instability. To examine the extent to which some trials may 

be unusually different than others, we compute the distance of each spike train from a 

central spike train ST (defined below) based on a spike train metric devised by Wu and 

Srivastava (2011). This metric measures the discrepancy between two spike trains by 

counting the number of spikes in one spike train that can be matched by spikes in the other 

spike train using a smooth deformation of time, or “time-warping function.” If there are N1 

and N2 spikes in two spike trains ST1 and ST2, the distance between the two spike trains is 

defined as

d ST1, ST2 = inf
γ ∈ Γ

N1 + N2 − 2
i = 1

N1

j = 1

N2
I

ti = γ(s j)
+ η

0

T
1 − γ′ t 2dt , (8)

where I is the indicator function, ti and sj are spike times from ST1 and ST2, respectively, 

and Γ (t) is the set of all continuous and piecewise differentiable time warping functions γ 
such that γ(0) = 0, γ(T ) = T, and 0 < γ′ T < ∞. In practice γ is approximated by a 

piecewise linear function from [0, 0] to [T, T] in a discrete grid and the tuning parameter η is 

set to (N1 + N2) · c/2T, with 5 ≤ c ≤ 25 (Wu and Srivastava, 2011). The choice of c in this 

range has little impact on results. The first term on the right hand side of (8) measures how 

close ST1 is to the time wrapped ST2, and the second penalizes the deviation of the time 

warping transformation from the identity function γ(t) = t. The central spike train ST, is 

defined as

ST = argmin
C ∈ 𝒮 i = 1

n
d STi, C ,

where S is the set of all spike trains. We then compute each distance

di = d ST , STi , i = 1, …, n

and use di to identify unusually discrepant trials.

The deviations di for the Human-Cortex spike trains are shown in Figure 4A. Trials 8 and 9 

have the largest values of di, and they also have large spike counts. After removing them, the 

fitted FLF model becomes stable, according to the diagnostic plot in Figure 4C. Figure 4B 

shows that the filter fitted after excluding the outliers lies mostly below the initial filter, 

which reduces the chance of simulation divergence. We note that if we remove only one of 

these trials the fitted model is again unstable. Furthermore, if we remove any other 2 trials 

the fitted model is unstable. Figure 4D,E,F shows that a similar analysis applied to data 

generated from Izhikevich models with two different firing rates – 16 spike trains have a 
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large firing rate and four have a small firing rate – yields similar conclusions: that is, outlier 

trials can destabilize models, and careful data pre-processing to remove them might improve 

stability.

Different kinds of outliers may have to be treated differently. Outlier trials resulting from 

bad recordings should be removed. But absent such experimental difficulties it remains 

important to consider unusual features of the data, and to avoid models that fail to account 

for those features. In the synthetic two-rate Izhikevich dataset, for example, four trials are 

noticeably sparse, making a common rate model fit poorly. Methods based on models that 

allow for excess trial-to-trial variability are available (Ventura et al, 2005).

4 Stability of FNF models

To evaluate the performance of FNF models, we extend the method of Gerhard et al (2017) 

to obtain a stability diagnostic, further allowing the baseline rate to be a time-varying 

function β(t), as in Kass and Ventura (2001). If we approximate the firing rate before the last 

spike t1* with the reciprocal of the mean ISI, A0 = 1/τ, and replace the ISIs by their 

expectation in (6), we obtain:

log λ t Ht ≈ β t +
k = 1

k
h j(t − t1 * + k − 1 τ) . (9)

As in Section 2, we then use this approximation to derive the approximate PDF of the future 

ISI t* −t1*, and calculate the firing rate ℒh A0  after t1* as the reciprocal of the mean future 

ISI (see (6)). The diagnostic for a fitted model is again based on a plot of ℒh A0  against A0, 

and its stability determined using the rules in the boxed text in Section 2. For example, 

Figure 5 shows the diagnostics of three FNFS models fitted to the Human-Cortex dataset 

described in Table 1, using the smooth basis in (Pillow et al, 2008). The largest model (panel 

A) is unstable, in the sense that spike trains generated from that model could have 

unrealistically large number of spikes; the other two models are stable.

Just as in Gerhard et al (2017), we can validate our FNF model stability diagnostic against 

spike train data. For example, Figure 5 shows the stability map for the FNFS family of 

models with firing rate β0 + ∑ j = 1
5 h t − t j * , where β0 = −4, h(t) = β1B1(t) + β2B2(t), and 

B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the basis functions shown in the inset of Figure 2A. For 

each value of (β1, β2), we (i) simulated a 10 sec. long spike train from the model and 

deemed the model divergent if it generated over 900 spikes in the last second, (ii) produced 

the diagnostic curve and determined from it if the model was stable, fragile, or divergent, 

and (iii) plotted (β1, β2) against the outcomes in (i) and (ii): the two match, which suggests 

that our diagnostic is reliable. The many FNFM models we investigated also suggest that the 

diagnostic is reliable; we did not provide an example diagnostic map here because all these 

models were stable across the entire parameter space.

Chen et al. Page 7

J Comput Neurosci. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figures 5 and 7C,F show that all FNFS models with k ≤ 4 and all FNFM models fitted to the 

Human-Cortex dataset are stable. They also all pass the two KS tests so they are not 

obviously deficient. With many simulation stable models available, it may be desirable to 

choose one that also fits the data best according to some criterion. Figure 7C,F shows the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for all these 

models. Small AIC and BIC values are desirable because AIC is an estimate of prediction 

risk, and BIC is inversely related to the posterior probability of fitting the correct model, in 

an asymptotic sense; BIC tends to prefer models with fewer parameters (Kass et al, 2014). 

Both criteria suggest that the FNFS model with k = 1 fits best; it is also simulation stable. 

Figure 7 shows results from two additional examples. Among the stable models fitted to the 

bursty Goldfish dataset, the FNFM model with k = 6 filters fits best based on AIC, and FNFS 

model with k = 9 fits best based on BIC. The synthetic Izhikevich-burst dataset is bursty as 

well; see Figure 10A. Its best simulation stable models are FNFM models with k = 7 and k = 

4 according to AIC and BIC, respectively.

To summarize, our general strategy is to fit FNF models for several values of k and choose a 

model that is simulation stable and also fits the data well according to criteria such as the KS 

tests, and AIC or BIC. (Note that because AIC and BIC are obtained from a finite data 

sample, they have variability, so that similar values should be considered equal.) If no stable 

model can be found, a model that provides a good fit may be used after constraining its 

parameters to lie in the parameter subspace corresponding to stability, as Gerhard et al 

(2017) suggest.

5 Comparison of FNF and FLF models

A key feature of FLF models is that they sum the effect of all spikes in the filter window of 

length Th, which puts no limitation on the number of past spikes influencing the firing rate at 

t, even if Th is short. Therefore, if a fitted intensity function has a rising trend, an increasing 

number of spikes could fall within the filter window, and this could increase the firing rate, 

eventually yielding unstable simulated spike trains. In contrast, FNF models (Equation 3) 

and also the extension to time-varying baseline rates) model history with a fixed number of 

spikes, k, and if the baseline rate β(t) and all of the individual filters are bounded above, the 

firing rate will be bounded. Furthermore, by allowing multiple filters, FNFM models can 

diminish the effects of multiple spikes that occur, somewhat infrequently, in close temporal 

proximity. Thus, in principle, FNFM models tend to be stable, and we did not find any cases 

in which FNFM models were unstable. See, for example, the results in Figure 7. However, 

we have also seen that, in some cases, the fitted FNFS firing rates can be large enough to 

become unstable (see Figures 5A and panels C and F of Figure 7), and for that reason we 

developed a stability diagnostic and a strategy to stabilize a divergent FNF model in Section 

4. We could apply a similar strategy to FLF models, using several filter window lengths Th 

in place of several values of k. Gerhard et al (2017) fitted an FLF model with Th = 0.35 sec 

to the Human-Cortex dataset, which was unstable. Figure 7C,F shows the stability status, 

AIC, and BIC values of fitted FLF models for several values of Th. (FLN and FNFS models 

have similar AIC and BIC values that are hard to distinguish from one another on the plots.) 

The FLF model with a very short filter length of Th = 0.177 fits the data well (it passes both 

KS tests and has smallest AIC and BIC) and is stable. Thus, while FNFM models seem to be 

Chen et al. Page 8

J Comput Neurosci. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inherently less likely to be unstable, we cannot make any universal comparative statement 

about stability, and, importantly, fitting with either type of model requires care. A remaining 

issue is whether there are interesting cases in which the additional flexibility of FNFM 

models is useful. We now present a few additional comparative results.

Figure 7 provides a summary of fits for the Human-Cortex dataset. We see that FNFS models 

have AIC and BIC values similar to, or smaller than FLF models. The FNFM models have 

higher AIC, presumably because the additional flexibility of using several filters is not 

needed to fit the data well yet it increases complexity. On the other hand, the FNF models 

fitted to the Izhikevich-burst data set have smaller AIC and BIC values than the FLF models, 

and FNFM models have smaller AIC and nearly all smaller BIC values than FNFS models, 

presumably because the data are bursty and thus are not fitted adequately with simpler 

models. We also used a real data set, labeled Goldfish, which consists of recordings from 

retinal ganglion cells in vitro that exhibit bursting firing (Levine, 1991; Tokdar et al, 2010); 

see Table 1 and Figure 8A. The AIC and BIC values are again smaller for most FNF models.

These comparisons are substantiated in Figures 8 and 10. Figure 8A displays the Goldfish 
data spike trains together with simulated spike trains from a FLF model fitted to the data, 

having filter length Th = 0.19 seconds containing five past spikes on average, as well as from 

fitted FNFS and FNFM models with k = 5: despite modeling the effects of past spiking 

differently, both type of models can generate busts similar to those observed in the data. 

Figure 8B displays the filters of FNFS models fitted to the Goldfish dataset with past number 

of spikes k = 1 to 9. When k ≥ 5, the filters are almost identical, suggesting that effects of 

spikes prior to 5 spikes back do not contribute much to the fits. The overlayed fitted FLF 

filter with Th = 0.19 sec. overlaps with the FNFS filters with k ≥ 5, suggesting that these 

models are functionally similar (although, based on our previous analysis, FNFS models are 

more likely to be stable).

Models with a single filter, as in Figure 8B, assume that the effect of any past spike tj* on the 

firing rate at time t depends only on the elapsed time t – tj* without considering the number 

of spikes that may have occurred between tj* and t. For the Goldfish data, this is a 

questionable assumption: a likelihood ratio test (LRT) comparing FNFS and FNFM models 

with k = 5 strongly favors the latter (p ≪ 0.001). Furthermore, the fitted filters of the FNFM 

model, shown in Figure 8C, are substantially different, suggesting that burst behavior is 

captured better by differentially weighing the contribution of previous spikes according to 

their timing and ordering. We may interpret these multiple distinct filters by observing 

several characteristics of the data (see Tokdar et al (2010)): the average burst length is 

roughly 25ms, a burst ISI is around 7ms, the median number of spikes in a burst is 4, and 

bursts occur, on average, roughly every 200 ms. With these in mind, the narrowness and 

height of the first filter suggests that the effect of the first spike back is strongly influenced 

by bursting, i.e., when a spike occurs less than 25 ms in the past it is likely that the cell is in 

a bursting state and the probability of spiking is increased; filters 2 to 4, corresponding to the 

2nd to 4th spikes back, diminish the firing rate starting around 25 ms in the past, which 

presumably signals that when these multiple spikes back are spaced further than 25 ms in the 

past, the neuron has transitioned to a “down” state; the effect of the 5th spike back is to 

increase the firing rate after a longer duration, peaking around 200 ms in the past, reflecting 
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an expectation that the neuron has already finished its pause after a burst and has now 

returned to the bursting state. Figure 10 in the appendix contains the corresponding plots for 

the synthetic Izhikevich-inhomo dataset, from which similar conclusions can be drawn.

In summary, FNFM models do, sometimes, provide better fits than FLF or FNFS models, but 

this is an empirical question that must be answered for each set of data separately. We 

should also note that models that incorporate hidden burst and non-burst states, as in Tokdar 

et al (2010), may provide even better descriptions of bursting spike train data.

6 Discussion

We have attempted to provide a thorough analysis of the instability phenomenon identified 

by Gerhard et al (2017). We improved the diagnostic of Gerhard et al (2017) and extended it 

to FNF models; we noted that time-varying baseline rates and excess trial-to-trial variability 

can cause instability of models that do not account for these effects; we introduced a method 

to detect outlier trials and illustrated its use; and we compared FNF with FLF models in 

several examples.

It is perhaps worth emphasizing that FNFM models, with sufficiently large k, were always 

stable in the examples we investigated, regardless of whether there were stable FLF or FNFS 

models. See, for example, Figure 7. That figure, together with Figures 8 and 10, also 

illustrate the way differing variations in spiking behavior may suggest different numbers of 

filters to use in an FNF model, according to standard model-fitting procedures.

Overall, we concluded that FNFM models tend to avoid instability, and can provide helpful 

flexibility in some cases, but we cautioned that selection among the different FLF and FNF 

models must be done carefully based on the unique characteristics of particular data sets.

Appendix A: Datasets

Table 1:

Details of the datasets used in this paper. The Monkey and Human datasets (Gerhard et al, 

2017) consist of single unit recordings from monkey cortex PMv and M1 areas, and from the 

neocortex of a person with a pharmacologically intractable focal epilepsy, respectively. The 

Goldfish dataset (Levine, 1991; Tokdar et al, 2010) consists of recordings from retinal 

ganglion cells in vitro that exhibit bursting firing.

Data Monkey Human Goldfish

Feature inhomogeneous trial-to-trail variability bursty

# Trials 10 10 1

Trial duration (sec) 1 10 30

Mean firing rate (Hz) 24.0 1.0 32.4

Source Gerhard et al. Gerhard et al. Tokdar et al.
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Appendix B: Diagnostic Maps

Fig. 9: 
Stability maps for two FLF models (Equation 4) Fθ using the diagnostic of Gerhard et al 

(2017) and our updated diagnostic. For each value of θ, we (i) simulated a 10 sec. long spike 

train from Fθ, and deemed the model unstable if it generated over 900 spikes in the last 

second, (ii) produced the diagnostic curve and determined from it if the model was stable/

fragile/divergent, and (iii) plotted θ against the outcomes in (i) and (ii). (A) Reproduction of 

the stability map in Gerhard et al (2017) Figure 4, where Fθ is an FLF model with β0 = −5.3 

and h(t) = β1 · B1(t) + β2 · B2(t) + Dip(t), where B1(t) = e−t/0.02, B2(t) = e−t/0.1 and Dip(t) is a 

negative window function modeling a 2 msec. refractory period, θ = (β1, β2), and filter 

length Th = 0.2 sec. The maps suggest that the diagnostic is mostly reliable, except in small 

regions of the parameter spaces. (B) Our updated diagnostic for the same model matches the 

simulation better. (C) Stability map using the diagnostic of Gerhard et al (2017) for Fθ an 
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FLF model with with β0 = −4, h(t) = β1 · B1(t)+ β2 · B2(t). Basis B1(t) and B2(t) are the 

same as Figure 2A. θ = (β1, β2), and filter length Th = 0.35 sec. (D) Our updated diagnostic 

for the same model matches the simulation better.

Appendix C: Simulation algorithms

Algorithms 1, 2, and 3 generate Izhikevich-xx, FLF, and FNF datasets, respectively.

Appendix D: Misc. results

Derivation of Equation 7

t
j * ∈ t − Th, t1 *

h t − t j * ≈ 𝔼
N t − Th

t1 *
h t − τ dN τ (10)
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Fig. 10: 
(A) Izhikevich-burst synthetic dataset spike trains and simulated spike trains from FLF, 

FNFS(k=4), FNFM (k=4). Both type of models can generate busts similar to those in the 

dataset. (B) Fitted filters of the FNFS models with number of spikes k = 1, …, 9. When k > 
3, the filters are very close to each other since further spikes will not make too much 

contribution to the future firing rate, thus will only affect the filter shape slightly. The fitted 

FLF filter overlaps with the FNFS filters with k ≥ 5, suggesting that these models are 

functionally similar. (C) Fitted filters of an FNFM model with k = 4: the filters are 

substantially different, which suggests that past spikes of different order have different 

effects on the firing rate. A likelihood ratio test comparing the FNFS(k=5) and FNFM (k=5) 

models favors the FNFM model (p ≪ 0.001).
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= 𝔼
NΔ

𝔼
N NΔ

t − Th

t1 *
h t − τ dN τ NΔ (11)

=t − τ = u 𝔼
NΔ

NΔ
t1 * − t + Th t − t1 *

Th
h u du (12)

= A0 t − t1 *

Th
h u du (13)

where NΔ = N
t − Th, t1 *

 is the number of spikes in (t – Th, t1*), and A0 is the mean firing 

rate in that time window. In equation 11, the inner expectation is taken over spike count 

conditioned on a fixed number of spikes in the interval (t – Th, t1*). If the filter h(u) is 

estimated by eh(u) – 1 in (Gerhard et al, 2017), the error will be larger if h(u) is not close to 

0. Because the point process itself is unknown, the firing rate function is approximated under 

the assumption that it is a homogeneous Poisson process. For homogeneous Poisson process, 

if the number of events is fixed, they distribute evenly in the interval, which leads to 

equation 12.

The time rescaling theorem Let Zi = ti − 1

ti λ0 t dt where ti are spike times, Zi are time 

integral transformed intervals. Time rescaling theorem states that if λ0(t) is the firing rate of 
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the true model, then Zi are iid and Zi ∼ Exp(1). The goodness-of-fit test checks how close 

the distribution of transformed intervals from estimated model is to the unit exponential 

distribution.
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A model is deemed

• divergent if all cross points exceed λthr or ℒh A0  is always larger than A0 

(e.g. Figure 2B, red curve), where λthr is a threshold rate judged too high 

physiologically; here we used λthr = 0.9 · λmax spikes/sec;

• stable if the number of cross points is odd and they are all below λthr (green 

curve);

• fragile otherwise (blue curve).
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Fig. 1: 
Simulation divergence of FLF models (equation 4) fitted to data. (A,D) Spike time raster 

plot and PSTH for datasets Monkey-PMv and Human-Cortex. (B,E) The fitted FLF models 

pass the original and discrete KS tests of Brown et al (2002) and Haslinger et al (2010); the 

two tests overlap so they are hard to distinguish. (C,F) Spike time raster plot and PSTH of 

spike trains simulated from the fitted FLF models, using algorithm 2 in Appendix C. (C) If 

the simulation lasts longer than the training session, the firing rate keeps growing to produce 

ISIs that are shorter than the refractory period. (F) The simulated spike trains resemble the 

observed data except for trials 2 and 4, which have many more spikes than the observed 

spike trains.
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Fig. 2: 
(B) Three diagnostic curves corresponding to the three FLF models (equation 4) with 

baseline rates β0 = −4 and filters h(t) shown in (A) in matching colors, where h(t) = β1 · 
B1(t) + β2 · B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the smooth basis functions used in 

Pillow et al (2008) and shown in the insert in (A), and Th = 0.35 sec. The values of (β1, β2) 

for the three models are marked as crosses in (C). (C) Diagnostic map for the above model 

as β1 and β2 vary.
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Fig. 3: 
Stability of FLF models (equation 4) with constant and time varying baseline firing rates. 

(A) Constant (blue) and time varying (red) baseline rates of FLF models fitted to the 

Monkey-PMv data: the baseline appears to vary. A likelihood ratio test confirms that the 

time varying baseline model fits the data significantly better (p = 0.046). (B) Fitted filters of 

the constant and time-varying baseline models. (C) PSTHs of the observed data and of data 

simulated from the fitted homogeneous and inhomogeneous FLF models: the homogeneous 

model simulates unstable spike trains; the inhomogeneous model is simulation stable. (D, E, 

F) Same analysis applied to artificial data generated from an inhomogeneous Izhikevich 
model (algorithm 1 in Appendix C). (D) Data raster plot. (E) Fitted filters of the 

homogeneous and inhomogeneous baseline FLF models: the latter is mostly below the 

former, which may reduce the chance of unstable simulated spike trains. (F) Indeed, the 

homogeneous model produces data whose rate diverges; the inhomogeneous model appears 

to be stable. Note that the inhomogeneous model fits the data significantly better according 

to a likelihood ratio test (p ≪ 0.001).
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Fig. 4: 
Trial-to-trial variability affects simulation stability. (A) Spike train counts and deviations 

from the central spike train for the Human-Cortex dataset. Trials 8 and 9 might be outliers. 

(B) Filters of FLF models (Equation 4) fitted to data with and without suspected outliers. 

The latter remains mostly below the former for all t, which reduces the possibility of 

simulating unstable spike trains. (C) Diagnostic curves for models fitted before and after 

removing the suspected outliers: the model becomes stable after removal. Synthetic spike 

trains simulated from that more are indeed stable (not shown). (D,E,F) Same analysis 

applied to spike trains generated from a two-rate Izhikevich model. (D) The dataset is 

composed of 16 spike trains with a high firing rate, and four with a low firing rate. (E) spike 

counts and deviations from the central spike train clearly identify two groups of spike trains. 

(F) Diagnostic curves of FLF models fitted to the full datasets (blue), and to the dataset after 

the four unusual spike trains are removed. The former diagnoses an unstable model, the 

latter a stable model. Spike trains simulated from the latter model are indeed stable (not 

shown).
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Fig. 5: 
Diagnostic curves of FNFS models with k = 2, 4, 5 fitted to the Human-Cortex dataset. The 

dashed red lines are the models’ maximum firing rates. The largest model with k = 5 is 

unstable because the diagnostic curve is above the first sequent after it last intersects it. The 

two other models are stable.
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Fig. 6: 

Stability map for FNFS models with firing rates logλ t |Ht = β0 + ∑ j = 1
5 h t − t j * , where β0 

= −4, h(t) = β1B1(t) + β2B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1. For each value of (β1, β2), 

we (i) simulated a 10 sec. long spike train from the model and deemed the model unstable if 

it generated over 900 spikes in the last second, (ii) produced the diagnostic curve and 

determined from it if the model was stable, fragile, or divergent, and (iii) plotted (β1, β2) 

against the outcomes in (i), with unstable simulations indicated by black dots, and (ii), in 

colors. Our diagnostic is reliable because it matches the simulation well.
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Fig. 7: 
(A,B,C) AIC and (D,E,F) BIC values for several FLF, FNFS, and FNFM models fitted to 

three datasets. (FNFS and FLF values are equal in panel F, and the latter mask the former.) 

Simulation unstable models and models that failed the original and/or the discrete KS test 

are indicated by red squares and crosses. Many models are simulation stable; the FNFM 

models fitted here are all simulation stable. Stable models that achieve a desirable criterion, 

e.g. low AIC, could be chosen.
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Fig. 8: 
(A) Goldfish dataset spike trains and simulated spike trains from FLF, FNFS (k = 5), and 

FNFM (k = 5) models fitted to the dataset: despite modeling the effects of past spiking 

differently, both type of models can generate busts similar to those in the dataset. (B) Filters 

of the FNFS models fitted to the Goldfish dataset with past number of spikes k = 1, … , 9. 

When k ≥ 5, the filters are almost identical, suggesting that effects of spikes prior to 5 spikes 

back do not contribute much to the fits. The fitted FLF filter has length Th = 0.19 sec., which 

contains 4 past spikes on average; it overlaps with the FNFS filters with k ≥ 5, suggesting 

that these models are functionally similar (although FNFS models are more likely to be 

stable). (C) Fitted filters of an FNFM model with k = 5: the filters are substantially different, 

suggesting that burst behavior is captured by differentially weighing the contribution of 

previous spikes according to their timing and ordering. A likelihood ratio test comparing the 

FNFS and FNFM models with k = 5 strongly favors the latter (p ≪ 0.001).
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