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Abstract

Prominent models of spike trains assume only one source of variability – stochastic (Poisson) 

spiking – when stimuli and behavior are fixed. However, spike trains may also reflect variability 

due to internal processes such as planning. For example, we can plan a movement at one point in 

time and execute it at some arbitrary later time. Neurons involved in planning may thus share an 

underlying time-course that is not precisely locked to the actual movement. Here we combine the 

standard Linear-Nonlinear-Poisson (LNP) model with Dynamic Time Warping (DTW) to account 

for shared temporal variability. When applied to recordings from macaque premotor cortex, we 

find that time warping considerably improves predictions of neural activity. We suggest that such 

temporal variability is a widespread phenomenon in the brain which should be modeled.
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Introduction

A central goal in computational neuroscience is to build predictive models of neural activity 

and variability. Some variability comes from the stimuli and behaviors used in experiments 

(Hubel and Wiesel, 1962; Wurtz, 1969a,b). But even when experimental conditions are 

matched, neural activity can vary considerably (Reich et al, 1997; Steveninck et al, 1997; 

Kisley and Gerstein, 1999; Ventura et al, 2005; Carandini, 2004; Lin et al, 2015). Some of 

this variability is due to the stochastic (Poisson) nature of spiking, but other potential 

sources exist. For example, neurons often share variability with their neighbors due to 

connectivity (Shenoy et al, 2013; Okun et al, 2015; Stevenson et al, 2012, 2008; Pillow et al, 

2008) and common input (Vidne et al, 2012; Nordstrom et al, 1992). Crucially, internal brain 

states such as attentional state vary from trial to trial in spite of our best efforts to perform 

controlled experiments. At the neuronal level, this may mean that a population of neurons 

receives varying inputs on a trial-to-trial basis, leading to different activity patterns (Cohen 
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and Maunsell, 2009; Mitchell et al, 2009; Rabinowitz et al, 2015). We are only beginning to 

appreciate these non-Poisson sources of variability.

One approach that has improved our understanding of trial-to-trial variability is the latent 

variable model (LVM) (Vidne et al, 2012; Yu et al, 2009; Goris et al, 2014; Chase et al, 

2010; Lawhern et al, 2010; Pfau et al, 2013). LVMs attempt to model influences on neural 

activity that are difficult to measure or control directly. For example, one can model the 

effect of unobserved common input or gain modulation on a neural population (Vidne et al, 

2012; Goris et al, 2014), leading to better model fits. Although typical LVMs can model 

considerable variability, it can be difficult to interpret the latent variables themselves since 

they don’t correspond to experimental variables.

Some types of neural activity can be dissociated from behavioral outputs. That is, there can 

be jitter between neural activity and events in the world such as movement or sensation 

(Kollmorgen and Hahnloser, 2014; Aldworth et al, 2011, 2005; Gollisch, 2006). For 

example, we can plan an arm movement at one point in time and subsequently choose the 

time of execution (Haith et al, 2016). This simple example reminds us that only primary 

input and output neurons need be closely coupled to the outside world. The retina most 

directly reflects the photons entering the eye, and spinal motoneurons reflect muscle 

activation. For brain areas in between, however, the temporal coupling to external factors 

could be much weaker; the time course of behavior-related neural activity in higher-level 

brain areas may instead vary from one trial to another. This temporal variability is likely to 

be shared across neurons that jointly solve a computational task such as generating behavior. 

Modeling such variability promises to lead to better models of neural activity.

Here we present a model for shared neural activity whose time course varies from trial to 

trial. We combine two well-known techniques: the Linear-Nonlinear-Poisson (LNP) model 

and Dynamic Time Warping (DTW). We label the corresponding variability time-warp 

variability. This model is appealing because it combines the interpretational simplicity of 

LNPs with population-level temporal dynamics. We first present a generative model for 

time-warp variability, which is an extension of the LNP. We develop a method for recovering 

the DTW and LNP parameters, and explore its behavior with simulations. We then apply our 

algorithm to simultaneously recorded neurons in macaque dorsal premotor cortex (PMd) 

during a reaching task. We find that accounting for time-warp variability improves model 

predictions, and explains an amount of variability comparable to spike history and reach-

direction tuning.

Results

Our research is partially motivated by anecdotal observations of shared temporal variability. 

Such variability can be seen in example data from a reaching task (Fig. 1). Four stripes of 

activity are visible, which correspond to four reaching movements. The time course of 

activity is quite similar across neurons, but varies from one reach to another reach. Both the 

temporal offset (relative to the onset of movement; Fig. 1, interval indicated by blue line) 

and the width of the stripe vary (Fig. 1, interval indicated by orange shading). It is this 

temporal variability that we seek to model in this paper.
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Generative Model

The standard Linear-Nonlinear-Poisson Model (Poisson Generalized Linear 
Model)—Here we extend the Linear-Nonlinear-Poisson (LNP) framework, a prominent 

model of neural activity, to accommodate time-warp variability. The LNP model essentially 

generalizes multiple linear regression to spike (Poisson) data, making it possible to ask what 

factors predict spiking. We begin with the generative process of the LNP (Fig. 2). First, 

explanatory covariates such as reach direction, xt
(k) are linearly combined with scalar 

weights, θk. Here, xt
(k) is the value of covariate k at time t, in a time bin of size dt; x(k) is a T 

× 1 vector representing the time series of covariate k; X is a T × K matrix representing the 

collection of all K covariate time series; θk is a scalar weight corresponding to covariate k; Θ 
is a K × 1 vector of weights.

∑
k = 1

K
θkx(k) = XΘ (1)

Next, these weighted covariates are passed through a nonlinear function, typically exp(). The 

exponential function is the canonical inverse link function of the Poisson Generalized Linear 

Model (GLM) (Nelder and Baker, 1972), so called because it links the covariates (positive- 

or negative-valued) with the domain of the Poisson distribution (non-negative-valued). This 

step yields a time series of the mean firing rate, λ which is a T × 1 array.

λ X, Θ = exp(XΘ) (2)

Spike count nspikes in each time bin of duration dt is then modeled as Poisson given this 

firing rate.

nspikes λ ∼ Poisson(λ) (3)

This leads to the following likelihood function for a single spike train:

Likelihood = ∏
t = 1

T
Poisson nt λt = ∏

t = 1

T λt
ntexp −λt

nt!
(4)

log Likelihood = ∑
t = 1

T
ntlog λt − λt − log nt! (5)

Data points are written as conditionally independent given the covariates, X. Spiking history, 

for example, can be accounted for as a covariate in X.
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It is important to note that this type of model is typically fit across reaches (the analog of a 

trial in our study). Using only regressors that relate to the nature and timing of external 

variables, e.g. sensory stimuli or movement kinematics, this model cannot account for 

internal reach-by-reach variability. In other words, the model will approximate the average 

response of the neuron to features in the outside world. This is the property of the LNP 

which we aim to improve.

But how can we model activity that differs in time course from reach to reach but that 

doesn’t depend on stimuli or behavior? Our intuition is that neural activities during one 

reach may start earlier or later than during another reach, or last longer or shorter. More 

generally, time may be nonlinearly warped between population neural activity and variables 

of the outside world. Although it may be different on each reach, we hypothesize that it is 

shared across neurons and can be modeled.

Dynamic Time Warping—There exists an algorithm that addresses such timing 

problems: Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978). DTW has been used in 

a variety of applications (Berndt and Clifford, 1994), including neuroscience (Reich et al, 

1997; Perez et al, 2013; Victor, 2005; Victor and Purpura, 1996), to understand how two 

time-varying signals relate to one another. More specifically, DTW finds the optimal 

transformation to align one signal and its counterpart when the signals differ by a time warp. 

Intuitively, for every time bin in signal 1, the algorithm will find the time bin in signal 2 with 

the best correspondence. If both signals are of length T, this requires T2 comparisons. It is 

convenient to view these T2 comparisons as a matrix (Fig. 3) which measures the 

compatibility between the two signals for each possible alignment.

The goal of the DTW algorithm then becomes to find the best path through this T×T matrix 

that begins with both signals at t = 1 and ends with both signals at t = T. Because the two 

signals are discrete, this path will take the form of steps (between time bins). In the simplest 

case, individual steps can be horizontal, vertical, or diagonal (Fig. 3B). Diagonal steps (up 1 

and over 1) do not produce a warp because time moves forward at the same rate in both 

signals. A horizontal step introduces a delay in Signal 2 relative to Signal 1 (Fig. 3B). 

Similarly, a vertical step introduces a delay in Signal 1 relative to Signal 2. By delaying time 

in one signal relative to the other, non-diagonal steps can effectively produce either an offset 

or scaling operation in time a time warp (offset and scaling operations are conceptually 

useful for understanding the algorithm, but are not explicitly modeled beyond allowing non-

diagonal steps). The full path is a series of these steps, and can therefore produce a complex 

combination of multiple offset and scaling operations.

Further, DTW constrains that time must not move backwards in either signal. The path 

through this matrix must also be continuous: any step of the path must be possible given the 

previous step. Although allowed steps most often include horizontal (over 1), vertical (up 1), 

and diagonal (up 1 and over 1), other types may be desirable for a given application (e.g., 

over 1, up 2; Fig. 4 and Methods section). In addition, it is possible to specify a prior 

distribution over these steps. This may be desirable if some types of steps are a priori more 

likely, or to avoid overfitting noisy signals. Other than a uniform prior over types of steps, 

the most commonlyused prior expresses a preference for diagonal steps.

Lawlor et al. Page 4

J Comput Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



More formally, the DTW algorithm optimizes the following cost function (Berndt and 

Clifford, 1994; Sakoe and Chiba, 1978):

∑
(t, τ) = (1, 1)

(T , T)
Correspondence Signal1(t), Signal2 τt

+ Prior τt τt − 1

(6)

The sum is taken over the entire DTW path, for each time bin t of T in signal 1, and each 

time bin τ of T in signal 2. We will summarize the DTW path with the parameter t = {t1, t2, 
…, tT} and τ = {τ1, τ2, …, τT}. Together they specify the coordinates (t, τ) of the path in the 

alignment matrix. ‘Correspondence()’ is some metric of agreement (or distance) between 

signal 1 and signal 2. The global optimum can be found using dynamic programming (see 

Supplemental Methods for intuition) (Berndt and Clifford, 1994; Sakoe and Chiba, 1978). 

Here, we extend DTW to accommodate vector-valued signals by choosing the 

Correspondence() function appropriately (see Methods). We will make use of this in the next 

section in order to use DTW with simultaneously recorded spike trains.

Combining Linear-Nonlinear-Poisson and Dynamic Time Warping approaches
—Now we seek a way to combine the LNP model with DTW into a statistical model. The 

goal is to use the LNP model to capture the reach-averaged responses of neurons, and then 

to use DTW to correct the LNP model on a reach-by-reach basis. Intuitively, we accomplish 

this by choosing the DTW input signals appropriately (Fig. 4): signal 1 is the measured 

spike train for a single reach, and signal 2 is the LNP model prediction for that reach. This 

allows us to find the best way to transform the LNP model prediction – which is effectively 

reach averaged – to best agree with the spikes measured in a particular reach.

More formally, we construct a statistical model that specifies the relevant variables, how 

they relate to one another, and their distributions (Fig. 5). We are ultimately interested in 

modeling the number of spikes nt
(c) for cell c that occur at time t in a time bin of duration dt. 

We assume that nt
(c) is Poisson-distributed with a mean given by λτ

(c), which varies in time (a 

binned inhomogeneous Poisson process). λτ
(c), in turn, depends on the parameters of the 

standard LNP process, Θ(c), as well as a time-warp path, τ. The LNP parameters, Θ(c), 

describe a neuron’s dependence on variables (e.g., reach direction), X. Each neuron c is 

described by its own set of parameters Θ(c), which are assumed to be fixed across reaches 

and independent of other cells. The time-warp parameter, τ = {τ1, τ2, …, τT}, is modeled as 

a nonlinear mapping between the LNP model time, τ, and spike time, t. Together, τ and t 
specify the location of the path in the alignment matrix that relates the value of the LNP 

model at time τ and the spike train at time t (we will use τt as shorthand for the (t, τ) ordered 

pair). We assume that τ is shared across neurons, but varies from reach to reach.

To fit this model to data, we seek the values of Θ and τ that are maximally likely given the 

data; i.e., we seek to maximize P(Θ, τ|n). This expression is difficult to optimize directly, so 
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we fit these parameters using an alternating approach similar to Expectation-Maximization 

(Dempster et al, 1977). We fix one set of parameters while fitting the other, and then switch, 

alternating until convergence (see Methods and Supplemental Methods for full description). 

For the LNP portion of the model (corresponding to the simplest possible case of a single 

neuron and a single reach), the parameters are given by

Θ = argmax
Θ

P(Θ | X, τ, n)

= argmax
Θ

P(n | X, τ, Θ)P(Θ)

= argmax
Θ

P(Θ) ∏
t = 1

T
Poisson nt | X, τt, Θ

(7)

This is a Poisson Generalized Linear Model which can be optimized using standard methods 

(the cost function is convex, so the global optimum can be found with gradient ascent). For 

the DTW portion of the model, the parameters are given by

τ = argmax
τ

P τ1, τ2, …, τT Θ, X, n1, n2, …, nT (8)

Which can be written in the same form as the cost function of DTW (Eqn. 6, see Methods).

τ = argmax
τ

∑
t = 1

T
logP nt Θ, Xt, τt + logP τt τt − 1 (9)

Like the DTW cost function, the first term represents the compatibility between the two 

signals (the measured spikes and the time-warped LNP model predictions). The natural 

choice for this term is the Poisson likelihood function

P(n | λ) = λn exp(−λ)
n! (10)

Where λ = exp(XΘ). The second term represents a prior distribution over what types of 

steps are possible and how likely they are. Generalizing to J reaches and C neurons, this 

ultimately leads to the following cost function (see Supplemental Methods).

τ = argmax
τ

∑
j = 1

J
∑

c = 1

C
∑
t = 1

T
nt

(c, j) logλt
(c, j) − λt

(c, j)

− lognt
(c, j)! + ∑

j = 1

J
∑
t = 1

T
logP τt τt − 1

(11)
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The sums are taken over C cells, J reaches, and T time bins per reach. Spike time is indexed 

by t, and LNP model time is indexed by τ. This model can be fit to data and tested using 

cross validation (see Methods).

Simulations

In order to test whether our model could correctly capture time-warp variability, we 

simulated data with known parameters and attempted to recover those parameters. We first 

simulated a population of PMd neurons using an LNP model of movement-related activity. 

We then added shared time-warp variability on a reach-by-reach basis (see Supplementary 

Methods for procedure). We were able to accurately recover 1) the receptive field parameters 

for individual neurons (preferred direction, temporal response properties; Fig. S2), and 2) 

the time-warp parameters which characterize the shared temporal variability (see 

Supplementary Results, Fig S1). These simulations demonstrated that our model behaved as 

expected, and would not give spurious results when applied to real data.

PMd recordings from monkeys during a reaching task

We next applied our model to real neural data in order to quantify the magnitude of time-

warp variability. We analyzed population extracellular recordings from PMd (48 neurons 

from Monkey M, 38 neurons from Monkey T) during a random-target reaching task (Fig. 6). 

In this task, monkeys controlled an on-screen cursor by making reaching movements using a 

planar manipulandum and were rewarded for successfully moving to displayed targets. In 

contrast to center-out reaching tasks with a single target per trial, this task used a sequence 

of four targets per trial. These targets appeared sequentially in any location within the 

workspace and the monkey was rewarded after four successful target acquisitions (reaches). 

There were minimal time restrictions (see Methods), meaning that the monkeys made series 

of smooth, freely-initiated movements. We used this task because it is somewhat more 

naturalistic than a center-out reaching task and spanned a broader range of positions and 

velocities. As a result, we expected less-stereotyped movement planning and execution.

The task was performed by two macaque monkeys with electrode arrays chronically 

implanted in PMd. Using standard spike sorting techniques, we identified 48 neurons in 

Monkey M and 38 neurons in Monkey T.

To assess model performance, we constructed two LNP+DTW models: 1) a basic model to 

gain intuition about time-warp variability, and 2) a comprehensive model to compare time-

warp variability with other known sources of variability.

For the basic LNP model, we analyzed neural activity relative to movement onset (as 

measured by a speed threshold crossing). This model allowed for reach-direction tuning, 

variable temporal responses, as well as a spatially untuned response (i.e., activity locked to 

movement onset but independent of reach direction (Fernandes et al, 2013); see Methods for 

details and Fig. 11 for graphical schematic of model). Note that we did not include model 

components related to target presentation time as this was not precisely recorded during the 

experiments (see Methods and Discussion). We then fit the LNP+DTW model (i.e., 

including time warping) as described in the Methods section.
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We first asked whether accounting for time-warp variability improved model predictions at 

the single-reach level. We therefore visually examined model predictions before and after 

the time-warp correction, and compared them with the measured spiking activity. For many 

reaches, the uncorrected model predictions did not correspond well to the measured spiking 

activity (Fig. 7). The actual spiking activity sometimes preceded or lagged the uncorrected 

model predictions (Fig. 7A). In other cases, bouts of spiking activity were longer lasting 

(Fig. 7B) or briefer (Fig. 7C) than predicted by the uncorrected model. After correcting for 

time-warp variability, however, model predictions better matched the measured activity. By 

eye, a model that accounts for time warp makes better predictions of spiking activity than 

one that does not.

We also examined DTW alignment paths at the single-reach level to understand how the 

algorithm accomplished the transformations we observed. To do this, we plotted the inferred 

DTW path alongside the LNP model predictions and spike trains (Fig. 8). This allowed us to 

visualize the correspondence between the spike trains at time t and model predictions at time 

τ for each point (t, τ) along with DTW path. We also colored the alignment matrix at every 

point according to this correspondence (i.e., according to the Poisson log likelihood 

evaluated at (t, τ)). As expected, the DTW path in each reach traverses the high-

correspondence regions in the alignment matrix, thereby maximizing the path’s log 

likelihood. The shape of the these DTW paths can be understood intuitively by comparing 

them with the simpler examples in Fig. 3. In reach 154, the spikes exhibit a shift to the right, 

which the DTW path accomplishes by skipping time (many horizontal steps) at the 

beginning of the reach (Fig. 8A, Fig. 3B). In reach 315, the spikes exhibit a stretch (Fig. 8B, 

Fig. 3C). And in reach 28, in which little transformation is needed, the DTW path is 

relatively diagonal (Fig. 8D, Fig. 3A). Thus, the we found that the inferred DTW paths made 

sense conceptually given the transformations they produced.

Next, we asked whether correcting for time warp led to improved predictive power. For more 

than half of the neurons modeled, we found that time warping significantly improved 

predictive power (28/48 in Monkey M; 28/38 in Monkey T; at p < .05, bootstrap test) (Fig. 9, 

10 left panel). Further, we found that the median effect size of time-warp variability across 

the population was considerably greater than zero (Fig. 10 right panel, basic model, red 

markers). Accounting for time-warp variability thus improves predictive power beyond that 

of a basic LNP model.

It is possible, however, that accounting for time-warp variability simply improved the 

estimates of neurons’ average temporal responses, rather than improving estimates of reach-

to-reach variability. Although the LNP model allowed for considerable temporal variability, 

it might still not describe all possible temporal responses adequately. For example, DTW 

could be performing some kind of generic operation that better shapes the temporal aspects 

of the LNP model predictions (e.g., by smoothing). If this were true, the calculated time-

warp path should be similar across reaches, and thus interchangeable across reaches. To test 

this, we performed a shuffle analysis in which time-warp paths were calculated on the 

correct reaches, but then applied to other reaches at random (see Methods). We found that 

shuffling reaches in this way led to predictions that were worse than those without time 

warping (Fig. 10, right panel, basic model, brown markers). This suggests that time-warp 
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variability is unique to each reach, and that improvements in model predictions do not result 

from better modeling of the across-reach average neural responses.

Next, after having explored the behavior of the basic LNP+DTW model, we built a more 

comprehensive model. This model was designed to compare the importance of time-warp 

variability with other known sources of reach-to-reach variability. The comprehensive 

model’s LNP portion included the same covariates as the basic model (reach-direction 

tuning, variable temporal responses, spatially untuned response), as well as: instantaneous 

velocity, instantaneous speed, instantaneous acceleration, and spike history (see Methods for 

full model description). To compare the importance of each model component, we computed 

the predictive power lost by leaving it out. We found that the effect size of time-warp 

variability was smaller than, but of approximately the same order as, both spike history and 

directional tuning (Table 1; Fig. 10, right panel, comprehensive model). It is unsurprising 

that the effect is smaller than directional tuning, as movement planning is a primary function 

of PMd (Cisek and Kalaska, 2004). Importantly, the median effect size of time-warp 

variability was only modestly lower in the comprehensive model compared with the basic 

model (Fig. 10; Table 1, see Methods), suggesting that time-warp variability is largely a 

separate source of variability. Time-warp variability is therefore a relatively strong effect 

compared to other sources of variability in spike trains.

Discussion

In this paper, we have developed a model for time-course variability that differs from reach 

to reach and is shared across neurons: time-warp variability. This model is notable for 

combining the simplicity of the single-neuron LNP with population-level temporal coupling. 

We have presented a generative model for this process, tested the inference algorithm with 

simulations, and applied it to real data from the macaque premotor cortex. We find that the 

effect size of time warping is roughly comparable to other well-appreciated sources of 

variability, including directional tuning and spike history.

Previous work in neuroscience has used ideas related to time warping to explore different 

aspects of temporal variability (Aldworth et al, 2011, 2005; Gollisch, 2006). Perez et al 

(2013) asked whether individual neurons better align to stimulus timing or motor timing in 

premotor areas. To do this, they used a model in which neural activity may either be a 

function of time relative to the stimulus, or of rescaled time relative to the movement. Victor 

et al (Victor, 2005; Victor and Purpura, 1996) have used the DTW algorithm to assess spike 

train similarity. Lakshmanan et al examine neuron-specific delays in the nervous system, and 

proposes a LVM to model them (Lakshmanan et al, 2015). In contrast, our work models 

reach-to-reach variability as shared, rather than unique, to each neuron. Our study builds on 

this previous work to formalize an alternative model of temporal variability, and to quantify 

its magnitude. Importantly, it combines the LNP with DTW into a joint model that can be 

efficiently fit to data and benefits from both a model of spiking variability and a model of 

shared temporal variability.

Another recent study used a similar alignment-matrix approach based upon Mixed Pair 

Hidden Markov Models to study spike jitter (Kollmorgen and Hahnloser, 2014). Using 

Lawlor et al. Page 9

J Comput Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulations, Kollmorgen et al found that a model incorporating jitter allowed better receptive 

field estimation. They also applied their model to single-neuron data and found modest 

improvements in fit. Our approach based upon Dynamic Time Warping is theoretically 

similar, but our model applies to a population of simultaneously recorded neurons rather 

than a single neuron. This is important for a number of reasons. First, our approach forms a 

bridge between models of spike jitter (Kollmorgen and Hahnloser, 2014; Aldworth et al, 

2011, 2005; Gollisch, 2006) and latent variable models of shared temporal variability (Vidne 

et al, 2012; Goris et al, 2014; Chase et al, 2010; Lawhern et al, 2010; Pfau et al, 2013; 

Lawhern et al, 2010). Second, modeling a population of neurons makes it possible to 

perform a rigorous cross-validation procedure not possible in their work: we are able to fit 

the reach-specific time-warp path on one subset of neurons, and test it on a separate, held-

out subset; this allows for more accurate estimation of effect size. Third, using simulations, 

we found that time-warp path estimates are quite poor using small numbers of neurons, and 

by extension, using a single neuron (see Supplemental Results, Fig. S1). We also compared 

the effect size of time-warp variability to those of spike history and directional tuning, key 

effects in real data. This is important for contextualizing the degree of LNP+DTW model 

improvement. Their study has the benefit, however, of fitting the DTW-like parameters by 

integrating over all possible alignment paths; we specify the DTW parameters as priors. This 

may mean their model provides somewhat better fits, but we find that the values of these 

DTW parameters become less important with increasing numbers of neurons (see 

Supplemental Results, Fig. S1). While the two studies use similar alignment-matrix 

approaches, we believe that our study builds upon their excellent work in a number of 

important ways.

There are always multiple sources of variability present in spike trains. Other models of non-

Poisson variability, such as latent variable models (Vidne et al, 2012; Yu et al, 2009; Goris et 

al, 2014; Pfau et al, 2013; Buesing et al, 2012; Shenoy et al, 2013), are likely to offer an 

alternative description of some of the variability we describe here. But the same is likely true 

for any study of neural variability (Gold and Shadlen, 2007; Latimer et al, 2015); models 

and interpretations in neuroscience are often formulated at different levels of mechanistic 

abstraction. In any case, by preserving easily interpretable models of single neurons, we 

believe that our model of time-warp variability is conceptually different from LVMs. These 

sources of variability could, in the future, be combined in a single model. For example, a 

gain parameter (as in Goris et al, 2014) may explain some of the same variability as does our 

model (see Supplemental Results for a similar analysis, Fig. S3). Lastly, some of the effect 

of time warp could be attributed to not knowing when each movement starts. Here, we use a 

speed threshold to label movement onset, but this is almost certainly an imperfect model. To 

explore this issue, we examined a variety of different threshold speeds and found the effect 

of time warp in all cases (see Supplemental Results, Fig. S4). Modeling time-warp 

variability is one way to cope with and quantify this type of ignorance. Nevertheless, future 

work should combine the full breadth of known sources of variability into a single model.

A limitation of this study is that we were not able to model the sensory component of our 

task, as target presentation times were not recorded precisely enough. PMd is known to 

encode both sensory and motor variables (Cisek and Kalaska, 2005), meaning that some 

time-warp variability may instead be unmodeled sensory variability (e.g., variable reaction 
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times). However, we believe it is unlikely that this property would explain away all time-

warp variability. PMd includes cells that span a variety of response types, not just those that 

respond to target presentation (Weinrich et al, 1984; Crammond and Kalaska, 2000; Cisek 

and Kalaska, 2004; Churchland and Shenoy, 2007). We believe that internal factors such as 

attention and arousal, in addition to reaction time, are likely to increase time-warp 

variability. Future work should, nonetheless, strive to build more complete models than we 

present here.

Our study emphasizes that the temporal dynamics of higher-order brain activity are quite 

complex. Realistically, no two movements in the natural world are exactly the same, in terms 

of planning or execution. But whereas movement execution is measurable, movement 

planning represents an internal state that has to be inferred. Furthermore, higher-order brain 

areas involved in planning and deliberation are likely to be both multi-modal and highly 

processed compared to lower-order brain areas. It should not be surprising, therefore, that 

we find effects like time warping, especially when considering less-constrained tasks.

Future work could extend our approach in multiple ways. Here we do not seek an 

explanation for the cause of the time warps. It may be possible to identify the factors that 

predict time warp on a reach-by-reach basis, whether they be related to behavior, or to 

circuit mechanisms (Guo et al, 2017). It may also be possible to fit more complicated time-

warp models, e.g., with different time-warp paths for different types of covariates, or with 

different time-warp paths for different subpopulations of neurons. Lastly, time-warp models 

could be combined with other types of models, e.g., latent variable models, to delineate the 

sources of variability in spike trains.

We believe that time warping is a general phenomenon in the brain. Temporal jitter has been 

reported throughout the nervous system (Siegel et al, 2015). We expect that every step away 

from the periphery is likely to add both fixed time delays, as well as variable time delays 

arising from a number of sources: recurrent connections, attractor dynamics, or variability in 

planning among others. This may mean that high-level brain areas are effectively decoupled 

from the periphery. As such, we believe that the need to model time warping may be 

universal in neuroscience.

Methods

Behavioral tasks

Two monkeys (Monkey M, MM; Monkey T, MT) performed a reaching task in which they 

controlled a computer cursor using arm movements (Fig. 6). The monkey was seated in a 

primate chair while operating a two-link planar manipulandum. Hand movements were 

constrained to a horizontal plane within a workspace of 20 cm x 20 cm. In this task, an on-

screen visual cue (2 cm square) specified the target location for each reach, and after making 

a series of four correct reaches to the targets, the monkey was given a liquid reward. The 

location of the target was pseudo-randomly chosen to be located within an annulus (radius = 

5–15 cm, angle = 360 degrees) centered on the current target.
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The timing of target presentation was different for the first reach of each trial (beginning of 

series; made from rest) than for reaches two through four (mid-series). For the first reach, 

the target was presented and the monkey was allowed to move without an instructed delay 

period. For reaches two through four, the monkey initiated the next target by holding the 

cursor briefly within a 2 cm x 2 cm box centered on the current target. Upon reaching the 

current target, the next target was triggered (NB: not displayed) 100 ms later. The time of 

next target appearance was not precisely recorded, but was determined with later 

experiments to appear on average 96 ms after being triggered. Thus, on average, the next 

target appeared approximately 200 ms after the monkey reached the current target. 

Additionally, there was an imposed hold period of 100 ms that began at the same time as the 

triggering of the next target. Thus, there was a 200 ms time interval between when the 

monkey reached the current target and when it was allowed to initiate the next movement. 

This brief hold period had the effect of forcing the monkeys to decelerate as they approached 

the target. In practice, the task led to a series of relatively smooth arm movements of 

variable distance.

All surgical and experimental procedures were consistent with the guide for the care and use 

of laboratory animals and approved by the institutional animal care and use committee of 

Northwestern University.

Data acquisition and processing

MM and MT were both implanted with 100-electrode arrays (Blackrock Microsystems, Salt 

Lake City, UT) in dorsal premotor cortex (PMd). We excluded units with low firing rates (< 
2 spikes/sec), as well as units having high correlations with other units (to guard against 

duplicate units resulting from crosstalk between electrodes and imperfect spike-sorting; 

excluded one unit of each pair with r > 0.4, calculated across binned spike counts). MM 

yielded 95 well-isolated units, of which 47 were excluded, leaving 48 for analysis. MT 

yielded 49 well-isolated units, of which 11 were excluded, leaving 38 for analysis. These 

processing decisions were made independent of the analysis results.

Only successful reaches were included in the analysis (those that were held at the target for 

at least 100 ms). In this study, we built models of movement encoding, and to do this we 

defined movement initiation using a speed threshold. Here we used 8 cm/s, but in order to 

test for sensitivity to this parameter, we fit the model using other values for the threshold 

(see Supplementary Results). To distinguish drift from discrete arm movements, we 

excluded arm movements not meeting a minimum peak speed of 12 cm/s (chosen by eye, but 

independent of neural recordings and analysis results). We also excluded reaches with 

multiple speed peaks to in order to focus on simple reaches.

Neural data analysis and modeling

General—In this study, we modeled temporal variability in spike trains that differs from 

reach to reach but that is shared across neurons (time-warp variability). To do this, we 

combined the Linear-Nonlinear-Poisson (LNP) model of neural activity, and Dynamic Time 

Warping (DTW). We proposed a generative model (outlined in the Results section), tested 

the model with simulations, and then applied the model to PMd data. Model code is 
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available on Github (https://github.com/pnlawlor/LNTWP), and data is available at CRCNS 

(http://crcns.org/datasets/motor-cortex/pmd-1). Here we describe the model in further detail.

Linear-Nonlinear-Poisson (LNP) Model: General—We modeled extracellularly 

recorded spiking activity using the Linear-Nonlinear-Poisson (LNP) model (also known as 

the Poisson Generalized Linear Model). The LNP treats the spike train as a binned 

inhomogeneous Poisson process (i.e., with a time-varying firing rate). To model this non-

negative firing rate, explanatory features are linearly combined and then passed through an 

exponential nonlinearity (the Poisson inverse link function) (Fig. 2; described in Results). 

The number of spikes in each 10 ms time bin is then drawn randomly from a Poisson 

distribution with the mean given by the estimated firing rate in that bin.

To apply our model to real data, we analyzed PMd activity recorded during a reaching task. 

We therefore designed LNP covariates so as to accurately model its activity. Generally 

speaking, PMd neurons are thought to be involved in motor planning (Cisek and Kalaska, 

2005). An individual neuron’s activity is often related to reaches towards a particular 

direction, and occurs with a roughly stereotyped temporal response. We therefore modeled 

both the spatial and temporal aspects of neuronal activity. Details of the parameterization 

and fitting procedure are provided below.

LNP: Spatial tuning parameterization—To model the spatial component of PMd 

activity, we parameterized space using polar coordinates (angle and eccentricity). We used 

cosine tuning for the angular coordinate, and flat tuning for the eccentric coordinate (no 

dependence on reach length). We chose flat eccentric tuning in order to simplify the model, 

although visual examination of PSTHs suggested that this was a reasonable simplification 

(data not shown).

LNP: Temporal response parameterization—Rather than model all data recorded 

during these experiments, we selected a fixed temporal window surrounding each reaching 

movement. (400 ms before reach onset, 200 ms after reach onset; 10 ms bins). This interval 

is large enough to capture the movement-related activity associated with each reach.

The temporal responses of PMd neurons are heterogeneous, so we allowed for substantial 

variability in their shapes. To do this, we used a variety of temporal features that spanned the 

window of interest. More specifically, we convolved the spatial tuning features of each reach 

with a set of temporal basis functions (raised cosines) of multiple widths and temporal 

offsets. Because we sought to build a model of movement, these temporal basis functions 

were aligned to movement onset. This broad set of temporal basis functions allowed us to 

model a variety of temporal responses.

LNP: Basic and Comprehensive models—The basic LNP model of movement 

activity in PMd is as follows (Fig. 11):

1. Baseline firing rate: We used a scalar term, θ0, to model a constant baseline 

firing rate.
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2. Untuned temporal responses: Neurons may have reach-related responses that do 

not depend on the direction of the reach (Fernandes et al, 2013). We accounted 

for this possibility by using separate untuned temporal responses aligned to reach 

onset. Intuitively, these temporal basis functions make it possible to explain 

spiking of variable duration and temporal offset with respect to reach (Fig. 11). 

The untuned reach-related response is given by

∑
i = 1

Bunt
θi

untgi
unt(t) * Erch(t) (12)

The θi
unt are the free parameters, gi

unt(t) are the temporal basis functions (raised cosine 

functions, gi
unt(t) = 1 + cos2π

t − c1
wt

/2; widths = {75,100,150,200} ms; offsets were chosen 

separately for each width and were designed to span the temporal window), and Erch(t) is an 

event function that specifies the time of reach onset (Erch = 1 at reach onset, Erch = 0 

otherwise). We used 20 temporal basis functions in total (Bunt = 20), and thus the untuned 

temporal response was specified by 20 total parameters.

1. Spatiotemporal reach tuning: We modeled the neural activity around a reach 

event as a function of the upcoming reach direction. To do this, we constructed 

the movement covariates as the sine and cosine projections of the upcoming 

reach direction, Ψ. Reach angles were defined as the angle formed by the vector 

connecting the starting position and ending position of the reach (see Fig. 11). 

We did not incorporate previous knowledge of the neuron’s preferred direction 

(PD), Ψ∗. Rather, the neuron’s PD, Ψ∗, can be inferred from the data by using 

the fitted parameters and trigonometric identities:

cos Ψ − Ψ* = cosΨ*cosΨ + sinΨ*sinΨ
= θccosΨ + θssinΨ

(13)

This yields Ψ* = tan−1 θs
θc

. The spatiotemporal reach tuning portion of the model is given 

by

∑
i = 1

Brch
θi

rchxcos(Ψ (t))gi
rch(t) * Erch(t)

+ ∑
i = 1

Brch
θi

rchysin(Ψ (t))gi
rch(t) * Erch(t)

(14)
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The functions gi
rch(t) and Erch(t) are identical to those of the untuned model. The 

spatiotemporal reach response was therefore specified by 40 total parameters (Brch = 20; 2 

reach axes).

Note that our model is not specified as a bilinear model as in Fernandes et al (2013); 

Ramkumar et al (2016), i.e., whose spatiotemporal response is multiplicatively separable. 

Although a bilinear model is more easily interpreted (one preferred direction for all temporal 

basis functions), it is more complicated to fit because it is not linear in the model parameters. 

The model used here is more flexible and easier to fit (linear in parameters), but the 

parameters are more difficult to interpret (potentially a different preferred direction 

associated with each temporal basis function). We have chosen this model because of its 

computational simplicity and because we are not interested in making inferences about PDs. 

We believe that this choice is unlikely to affect our results; if anything, it allows for more 

flexibility in the LNP model than the bilinear model, decreasing the potential explanatory 

power of the DTW model component.

The following model components were included in the comprehensive LNP model in 

addition to components 1–3 in the basic model:

1. Kinematic tuning: We modeled the effects of kinematic variables on neural 

activity, as this is one possible source of reach-to-reach variability. In particular, 

we used the sine and cosine components of instantaneous velocity and 

acceleration, as well as instantaneous speed. This portion of the model is given 

by:

∑
i = 1

Bkin
θi

velxgi
kin(t) * Velocityx(t)

+ ∑
i = 1

Bkin
θi

velygi
kin(t) * Velocityy(t)

+ ∑
i = 1

Bktn
θi

spdgi
kin(t) * Speed(t)

+ ∑
i = 1

Bktn
θi

accxgi
kin(t) * Accelerationx(t)

+ ∑
i = 1

Bk:n
θi

accygi
kin(t) * Accelerationy(t)

(15)

Here, e.g., Velocityx(t) refers to the instantaneous reach velocity in the x direction. The 

gi
kin(t) were again temporal basis functions, and we used two for each kinematic variable 

(raised cosine functions; width = 75 ms, offset = {−150,0} ms with respect to instantaneous 

kinematics). These convolution operations had the effects of a) smoothing the kinematic 

variables and b) allowing them to be offset with respect to neural activity. Modeling the 

offset is important because neural activity related to a reach likely precedes the reach. Thus, 
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if instantaneous velocity is intended to explain the neural activity related to that reach, it 

must be shifted backwards in time. The kinematic tuning portion of the model was specified 

by 10 parameters (Bkin = 2; 5 kinematic variables considered).

1. To explain additional variability, we included spike history terms. We also asked 

whether spike history terms explained away the effects of time-warp variability. 

To model the effect of spike history, we convolved the spike train, y(t), with 5 

raised-cosine temporal basis functions, gi
SH(t) (raised cosine functions; widths = 

{30,40,80,140,270} ms, and corresponding offsets = {10,30,40,70,120} ms from 

spike time) (Pillow et al, 2008). This portion of the model is given by

∑
i = 1

BSH
θi

SHgi
SH * y(t) (16)

The spike history portion of the model was specified by 5 parameters (BSH = 5).

DTW: General and model fitting—To correct the LNP model predictions for time-warp 

variability, we used the Dynamic Time Warping (DTW) algorithm. Given two signals, DTW 

finds the optimal transformation (consisting of multiple, piecewise offset and scaling 

operations) that aligns them (Fig. 3). The computational complexity of finding the globally 

optimal solution is O(T2) per reach of duration T time bins using dynamic programming (see 

Supplemental Methods for intuition) (Berndt and Clifford, 1994; Sakoe and Chiba, 1978).

DTW: Priors—The DTW algorithm finds the optimal alignment transformation between 

two signals by calculating a path through signal1 × signal2 space (Fig. 3). Because the 

signals are discrete, this path consists of discrete steps. The nature of these steps can be 

tweaked using a small number of free parameters in the DTW algorithm (Eqn. 6, second 

term). These parameters can be chosen to prohibit certain types of steps as well as to adjust 

the relative prior probabilities of different types of steps.

In the case of basic DTW, the following types of steps are allowed and equally likely: up 1, 

over 1, and up 1 and over 1 (diagonal). Here, however, we use a slightly different set of 

parameters in order to accommodate our generative model for time-warp variability in spike 

trains. We frame the estimation problem as follows: for every time t in spike train time, we 

would like to estimate the time τ in LNP model-prediction time that is most consistent with 

the observed spikes at (subject to continuity and forward-progression in time; Eqn. 9). In 

other words, we view the spike trains as observed (fixed) data, and would like to warp the 

LNP model predictions to best fit the spike trains. Thus, we chose step parameters to avoid 

warping the spike trains themselves (i.e., no spikes are dropped or added; the model’s 

predictions are warped to be most compatible with the spikes). This amounted to requiring 

that spiketrain time, t, increment by exactly one bin with each step. We allowed the model 

time, τ, to increment by 0 (stretch), 1 (no time warp), or 2 (skip/compression) with each step 

(Fig. 4). These parameters made it possible to warp the LNP model predictions to the spike 

trains as well as to accommodate our generative model.
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LNP + DTW: General—To model time-warp variability, we combined the LNP model 

with DTW into a statistical model. The goal of this model was to use the LNP model to 

capture the average responses of neurons, and then to use DTW to correct the LNP model on 

a reach-by-reach basis (Fig. 4). We are ultimately interested in modeling the number of 

spikes nt
(c) for each cell c that occur in a given time bin t of duration dt. We assume that nt

(c)

is Poisson-distributed with a mean given by λτ
(c), which reflects an underlying firing rate that 

varies in time. The mean, in turn, depends on the parameters of the standard LNP process, 

Θ(c), as well as X, and the time-warp path, τ. The LNP parameters, Θ(c), describe a neuron’s 

dependence on external variables (e.g., reach direction), X (dependence on internal variables 

such as spike history can also be included in the model; see Control Analyses subsection 

below). Each neuron c is described by its own set of parameters Θ(c) which are assumed to 

be fixed across reaches and independent of other neurons. The time-warp parameter, τ = {τ1, 
τ2, …, τT}, is modeled as a nonlinear mapping between the LNP model time, τ, and spike 

time, t. We assume that a single τ(j) is shared across neurons, and varies from reach to reach 

(with reach parameterized by j). We model the covariates X as parameterized in time by τ, 

and the spikes as parameterized in time by t. To summarize, we model spiking as dependent 

upon external covariates that are time warped from reach to reach and shared across neurons.

LNP + DTW: Model fitting—To fit the combined LNP+DTW model, we used an EM-like 

approach in which we alternated between fitting the LNP and fitting the DTW portions of 

the model. I.e., we first fit the LNP; we then fit DTW while holding the LNP parameters 

constant; we then re-fit the LNP parameters while holding the DTW parameters constant, 

and so on. We chose this approach because it is difficult to optimize for both the Θ(c) and τ(j) 

directly. This would amount to solving

Θ(c), τ ( j) =

argmax
Θ, τ

P Θ(c) , τ( j) | X, nt
(c, j)

(17)

See Supplementary Methods for the full derivation of the likelihood equations and inference 

algorithm.

Control analyses and other model components—To rule out the possibility that the 

improvement in model fit of the LNP+DTW algorithm was spurious, we performed a 

number of control analyses.

First, we asked if the addition of DTW simply improved the estimates of neurons’ average 

temporal responses. Although the temporal basis function set we used allowed for 

considerable variability, it might still not describe all possible temporal responses 

adequately. It is possible, then, that DTW could be performing some kind of generic 

operation that better shapes the temporal aspects of the LNP model predictions (e.g., by 

smoothing). If this were true, the calculated time warp should be similar across reaches, and 

thus interchangeable across reaches. To test this, we performed a shuffle analysis in which 

we calculated time warps on the correct reaches, but then applied them to other reaches at 
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random (i.e., corrected the LNP models of other reaches at random). To ensure that this 

randomization procedure was applied fairly, we only shuffled between reaches within the 

same 45 degree range of reach directions.

Next, we asked if other factors could explain away the effect of time warp. The LNP+DTW 

model seeks to explain bouts of spiking activity that are shared across neurons but differ 

from reach to reach. One possibility is that these bouts of activity are better explained by 

spike history terms than time warping. For example, a spike history kernel that favored 

bursting could possibly explain a bout of spiking activity. Another possibility is that reach-

to-reach differences in kinematics could explain reach-to-reach differences in spike trains.

To test these possibilities, we fit a more comprehensive model designed to allow these 

factors to explain away the effect of time warp. In addition to the standard reach covariates 

(see basic LNP model and Fig. 11), we included spike history covariates and kinematic 

covariates (instantaneous velocity, speed, and acceleration) in the LNP portion of the model. 

Time warping was therefore allowed to explain only additional variability above and beyond 

these factors. See comprehensive LNP model for the parameterization of these model 

components.

Model testing and comparison—To avoid overfitting, we used two types of cross 

validation to test our model (Fig. 12). To avoid overfitting the LNP model, we used 2-fold, 

reach-wise cross validation for each neuron (train on half of the reaches, test on the held-out 

half; alternating reaches). To avoid overfitting the DTW part of the model, we used 10fold 

leave-neurons-out cross validation. To do this, we trained the DTW model on one subset of 

neurons, and tested it on the held-out subset (see Supplement for more detail). These cross-

validation procedures helped to ensure that no part of the model was overfit and would thus 

generalize better. Importantly, the fact that similar time-warp paths are found in distinct 

subsets of neurons supports the view that the temporal variability is indeed shared across 

neurons.

To assess model fit we used a metric called PseudoR2, a generalization of the standard R2 to 

target variables other than the Gaussian (here, to the Poisson distribution). It maps a model’s 

log likelihood to a value between 0 and 1 by scaling it to be between that of the simplest 

possible model (a constant/baseline model) and the most complex possible model (a 

saturated model consisting of perfect predictions). It is important to note that the absolute 

values of this metric are not comparable to (are much smaller in magnitude than) typical R2 

for normally distributed variables. Where possible, we have provided reference values. 

Furthermore, all log likelihoods and accuracy metrics were computed on held-out test-set 

data.

Pseudo‑R2 = 1 − logL(n) − logL(λ)
logL(n) − logL(n) (18)
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Here, logL refers to the log likelihood of the model. λ refers to the model in question; n 
refers to the saturated model (perfect predictions); n refers to the baseline model consisting 

only of the mean of the data. To compare two separate models, we used a related metric 

called Relative Pseudo-R2. Instead of comparing the model in question (e.g., model 2) with a 

baseline model, it compares it with another model (model 1). This metric, however, can take 

on negative values if model 1 is better than model 2. Relative Pseudo-R2 is often used to 

compare a more complex model with a simpler, nested model. In this case, Relative 

PseudoR2 would reflect the marginal improvement gained by model 2’s additional 

complexity. In this study, for example, we calculate the Relative Pseudo-R2 between the 

LNP model and the LNP+DTW model.

Relative Pseudo‑R2 = 1 −
logL(n) − logL λ1
logL(n) − logL λ1

(19)

Here, λ2 refers to the mean value predicted by model 2, the more complex model; λ1 refers 

to the mean value predicted by model 1, the simpler or nested model. The other variables are 

the same as in Eqn. 18.

Simulations

Because we proposed a new type of model, we sought to characterize its behavior using 

simulations before applying it to real data. To do this, we simulated spike trains using the 

generative model, and then attempted to recover the model parameters without knowledge of 

the simulations. See Supplementary Methods for the full methodology of the simulation 

design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Single reach time-warp variability in macaque PMd.
The monkey made a sequence of four reaches to targets. The hand speed is shown in the top 

panel. The bottom panel shows a spike raster of 95 simultaneously recorded PMd neurons. 

Four stripes of activity corresponding to four reaches are visible by eye (orange shading, 

drawn by hand to approximately enclose stripe of activity). Both the temporal offset of these 

stripes with respect to movement onset (blue shading, drawn by hand from onset of activity 

to time of movement onset defined by speed threshold) and width of the stripes (orange 

shading) vary from reach to reach. Reaches are not matched for direction and other 

kinematic parameters (kinematics is considered in more depth in the Results section). The 

neural data here simply serves to provide intuition for time-warp variability.
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Fig. 2: Linear-Nonlinear-Poisson model of neural activity. The LNP model.
Explanatory covariates are linearly combined and passed through a nonlinear function to 

yield a non-negative firing rate. Spike counts are then viewed as Poisson noise around this 

underlying firing rate.
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Fig. 3: Time warping schematic.
A) A simple application of the DTW algorithm to find the best alignment between two 

signals. In this case, the signals are well aligned and do not require shifting or scaling. B) In 

this case, however, one signal lags the other, and a transformation is required to align them. 

These transformations are expressed as steps taken through the matrix (because the signals 

are discrete). Diagonal steps correspond to no shifting or scaling. Any other type of step will 

lead to a shift or scale operation. C) In this case, signal 1 is stretched relative to signal 2, 

requiring a scaling operation to align them.
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Fig. 4: LNP+DTW Schematic.
In the combined model, we use DTW to align the reach-averaged LNP model prediction 

with the spikes measured in a particular single reach.
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Fig. 5: Generative model for time-warp variability.
A given neuron’s spiking is a function of the mean firing rate, λ, as in the standard Linear 

Nonlinear Poisson model. The LNP parameter of each neuron, Θ, is fixed across all reaches. 

Spiking is also influenced by a reach-specific time-warp, τ which is shared across neurons. 

For simplicity, we have omitted the superscripts identifying the parameters for each neuron 

and reach.
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Fig. 6: Reaching experiment schematic.
In this task, the monkey controlled a cursor using a manipulandum. A visual target indicated 

the reach target, and the monkey was free to initiate movement. After reaching the target and 

pausing for a brief hold period, another target would appear in a pseudo-random location. 

Four targets were shown per trial.
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Fig. 7: Single-reach corrections for time-warp variability.
Spike rasters (second row) and predicted firing rates (first and third rows) for 48 

simultaneously recorded PMd neurons from Monkey M. Within a raster, each row 

corresponds to a different neuron. Each large column (A-D) corresponds to a different 

example reach. To simplify comparisons across the displayed reaches, all four were chosen 

from the same 45 degree reach direction. As a result, the LNP predictions look similar for 

each of the four (first row). Note that the LNP predictions appear to be smooth because they 

reflect the underlying firing rate. Spikes are viewed as Poisson noise around these smoothly 

varying functions. A) In this reach, the spiking activity (second row) lagged the LNP model 

predictions (first row). The LNP+DTW model thus shifted the predictions to be later in time 

(third row). The fourth row shows the differences in predictions due to time-warp correction. 

B) In this reach, the bout of spiking activity (second row) lasted longer than predicted by the 

LNP model (first row). The LNP+DTW model thus stretched the predictions (third row). C) 
In this reach the bout of spiking activity was briefer than predicted by the LNP model (first 

row). The LNP+DTW model compressed the predictions (third row). D) In this reach, the 
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LNP prediction (first row) was similar to the spiking activity (second row), and little 

correction was needed.
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Fig. 8: Single-reach warp paths.
Warp paths for the four reaches shown in Fig. 7 A-D which correspond to panels A-D here. 

Each panel contains three subpanels: LNP model predictions for all 48 neurons (top left 

subpanel, rotated 90 degrees), spike raster for all 48 neurons (bottom right subpanel), and 

the alignment matrix with warp path (top right subpanel). This plot can be read like Figs. 3 

and 4 with the exception that there are multiple neurons on each time axis rather than a 

single neuron. The alignment matrix is colored by how well position t in the spike raster 

corresponds to position τ in the LNP model predictions in terms of Poisson log likelihood 

(NB: we z-scored the alignment matrix columns for visualization purposes). Superimposed 
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on the alignment matrix is the inferred warp/alignment path (from one cross-validation fold) 

that best matches the LNP model predictions with the spike raster.
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Fig. 9: Summary statistics for time-warp variability: Pseudo-R2.
Predictive performance of LNP+DTW models of neural activity in terms of Pseudo-R2. All 

performance metrics were computed using cross validation (see Methods). A) Scatterplot of 

Pseudo-R2 values before (LNP only) and after including time-warp variability (LNP+DTW). 

Each data point represents a single neuron. Points above the unity line indicate that a model 

including time-warp variability is better than one without it. Error bars represent 

bootstrapped 95% confidence intervals. Data shown for Monkey M (MM) only.
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Fig. 10: Summary statistics for time-warp variability: Relative Pseudo-R2.
Effect sizes measured by Relative Pseudo-R2, a related measure of predictive accuracy that 

compares two models. Positive values indicate improvement, a value of zero indicates no 

change, and negative values indicate worsening. Error bars represent bootstrapped 95% 

confidence intervals. Left panel: In the basic LNP+DTW model, 28/48 individual neurons 

were predicted better by the LNP+DTW model compared to the LNP alone for MM (left 

panel). Right panel: Median effect sizes (across neurons) for two different models: the basic 

LNP+DTW model, and the comprehensive LNP+DTW model. Effect sizes represent 

marginal change in predictive power between the model with all components, and a model 

leaving out one component. In the basic LNP+DTW model, the median effect size of time-

warp variability is considerably greater than zero (red markers). A shuffle control leads to 

worsened predictions (brown markers, see text). In the comprehensive LNP+DTW model, 

we additionally accounted for reach-specific kinematics and spike history. The median effect 

size of time-warp variability remains greater than zero (purple markers), and is comparable 

in magnitude to spike history (green markers) and directional tuning (orange markers). Data 

shown for both Monkey M (MM) and Monkey T (MT).
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Fig. 11: Comprehensive LNP model of neural activity.
We model the spiking activity in a fixed window surrounding each reach (400 ms before, 

200 ms after; 10 ms bins). The comprehensive model includes the following components: 

baseline firing rate; an untuned temporal response to each reach; a spatially tuned temporal 

response to each reach which depends on the direction, but not on the kinematics; 

components that depend directly on reach velocity and acceleration; and spike history terms.

Lawlor et al. Page 35

J Comput Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12: Cross validation procedures.
We used two forms of cross validation to avoid over-fitting the model. To avoid overfitting 

the LNP model, we used reach-wise cross validation (train on one subset of reach, test on 

another). To avoid overfitting the DTW model, we used neuron-wise cross validation (train 

on one subset of neurons, test on another). This made it possible to assess model 

performance on truly naïve test data.
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