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Abstract A functional role of the cerebral cortex is to
form and hold representations of the sensory world
for behavioral purposes. This is achieved by a sheet of
neurons, organized in modules called cortical columns,
that receives inputs in a peculiar manner, with only a
few neurons driven by sensory inputs through thala-
mic projections, and a vast majority of neurons receiv-
ing mainly cortical inputs. How should cortical mod-
ules be organized, with respect to sensory inputs, in
order for the cortex to efficiently hold sensory repre-
sentations in memory? To address this question we in-
vestigate the memory performance of trees of recur-
rent networks (TRN) that are composed of recurrent
networks, modeling cortical columns, connected with
each others through a tree-shaped feed-forward back-
bone of connections, with sensory stimuli injected at
the root of the tree. On these sensory architectures two
types of short-term memory (STM) mechanisms can
be implemented, STM via transient dynamics on the
feed-forward tree, and STM via reverberating activ-
ity on the recurrent connectivity inside modules. We
derive equations describing the dynamics of such net-
works, which allow us to thoroughly explore the space
of possible architectures and quantify their memory
performance. By varying the divergence ratio of the
tree, we show that serial architectures, where sensory
inputs are successively processed in different modules,
are better suited to implement STM via transient dy-
namics, while parallel architectures, where sensory in-
puts are simultaneously processed by all modules, are
better suited to implement STM via reverberating dy-
namics.

Keywords Modular network · Short-term memory ·
Cortical hierarchy

1 Introduction

Neural activity in the neocortex forms sensory repre-
sentations of ongoing stimuli that can be held in mem-
ory for behavioral purposes (Fuster, 1995). Such op-
erations are performed by cortical circuits which pos-

sess a peculiar organization, as described by anatomi-
cal studies. For instance cortical connectivity has been
shown to be spatially clustered, which allows to con-
ceptually segregate the cortical sheet into groups of
neurons called cortical columns (Bosking et al., 1997;
DeFelipe et al., 1986; Gilbert and Wiesel, 1989; Pucak
et al., 1996). Regarding the transmission of sensory in-
formation to cortical circuits, anatomical studies have
suggested that a small subset of neurons are directly
driven by thalamic projections, while a vast majority
are in charge of processing these stimuli (Braitenberg
and Schütz, 1991). This vast majority of neurons are
sometimes called interneurons as they are not directly
under the influence of sensory inputs, nor directly in-
volved in generating a cortical output. In this paper
we investigate how the organization of these interneu-
rons, with respect to sensory inputs, impact the mem-
ory performance of a cognitive architecture. Two ex-
treme types of organization can be considered. A se-
rial organization, where a sensory input is successively
passed to different groups of neurons, with one group
operating on the output of the previous one (Fig. 1a).
A parallel organization, where a sensory input is si-
multaneously sent to all groups of neurons, where it
is processed independently from one group to another
(Fig. 1b). The neural architectures we consider range
from serial to parallel, and consist of modules, made
out of recurrent neural networks modeling cortical columns,
that for simplicity we consider connected in a feed-
forward manner. These neural architectures implement
two kinds of short-term memory mechanisms. First,
the recurrent connectivity inside each module creates
feed-back loops in which neural activity can reverber-
ate leading to sustained patterns of activity coding for
specific stimuli, i.e. modules are attractor neural net-
works (Amit, 1989; Amit and Brunel, 1997; Hopfield,
1982; Tsodyks and Feigel’man, 1988). Second, the feed-
forward connectivity between modules allows to im-
plement delay-lines on which sequences of stimuli prop-
agate. Delay-lines have been shown to be efficient neu-
ral architectures to hold sensory representations in the
transient dynamics of a neural network (Ganguli et al.,
2008; Jaeger and Haas, 2004; Lim and Goldman, 2012;
Maass et al., 2002; White et al., 2004). The advantage
of the attractor neural network scenario is that mem-
ory can be held on a very long timescale. A drawback
is that only a limited number of already learnt sensory
representations can be maintained, since maintenance
of a representation relies on a specific set of synaptic
connections. We will refer to this number as the stor-
age capacity of the architecture. On the opposite, short-
term memory via transient dynamics allows to memo-
rize arbitrary stimuli, but the timescale on which these
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Figure 1 Trees of recurrent networks (TRN) a Purely serial architec-
ture, obtained as a special case of TRN with divergence ratio d = 1.
The root module (squared box), models the thalamus conveying sensory
inputs to modules modeling cortical columns. Sensory inputs propa-
gate from left to right through the feed-forward connections between
modules. b Purely parallel architecture, obtained as a special case of
TRN with divergence ratio d =M , whereM is the number of modules
composing the network. c TRN with divergence ratio d = 2, M = 14
andL = 3. Each module is an attractor network ofN neurons with re-
current connectivity storing αN patterns of activity as fixed points of
the module’s dynamics. Connections between a module and each of its
d children are one-to-one, i.e. a neuron of the parent module projects
to a single neurons in each child module and each neuron of a child
module receives a single projection.

stimuli can be maintained is limited. We will refer to
this time scale as the buffering capacity of the network.

In the first section of this paper we formally define
the class of neural architectures called Tree of Recur-
rent Networks (TRN) that we study. In order to reach a
full comprehension of the memory properties of these
architectures we take the following incremental steps.
We first study the storage capacity of an isolated mod-
ule, as well as the dynamics of memory retrieval (sec-
ond section). We then focus on a single feed-forward
path of a TRN, showing in particular how the recur-
rent connections inside modules degrade stimuli as they
propagate throughout the path. An important phenomenon
that eventually limits the storage and buffering capac-
ity of the path (third section). We finally examine how
these two quantities behave in a full TRN, in particu-
lar we compare the memory properties of the extreme
cases that are the fully serial and fully parallel archi-
tectures (fourth section). To conclude we summarize
our results and discuss how TRN can be mapped onto
cortical sensory hierarchies.

2 Definition of the model

We consider feed-forward trees of M modules (Fig. 1)
such that for each step up the tree, the number of mod-
ules increases by a factor d where d labels the diver-
gence ratio of the TRN. The divergence ratio ranges
from d = 1, defining a purely serial architecture com-
posed of a single path of length L = M (Fig. 1a), to
d = M , defining a purely parallel architecture com-
posed of M paths of length L = 1(Fig. 1b). For inter-
mediate divergence ratios, the length of the paths is
related to M and d as detailed in section 5, and illus-
trated in Fig. 1c.
Each module operates as a fixed-points attractor neu-
ral network in which independent memories are stored
in the recurrent connections Jmij (m = 1, ...,M and i, j =
1, ..., N , where N is the number of neurons in each
module).

2.1 Dynamics of the network

Neuron i in modulem is described by a binary variable
σmi (t) whose dynamics is:

σmi (t+ 1) = Θ (hmi (t)− θ) (1)

where Θ(.) is the Heaviside function, θ an activa-
tion threshold and hmi is the total synaptic input on
the neuron, which is the sum of a feedforward input,
coming from a single neuron of the previous module,
and a recurrent input:

hmi (t) = σ
a(m)
i (t) +

N∑
j=1

Jmij σ
m
j (t) (2)

where module a(m) is the module preceding m in the
feed-forward structure.

2.2 Recurrent connections

The recurrent connections of a module store P random
independent binary patterns, {ξµ,m}, µ = 1, . . . , P with
a coding level f ,

ξµ,mi =

{
1 with probability f
0 with probability 1− f

(3)

Patterns are stored using a covariance learning rule
(Sejnowski, 1977; Tsodyks and Feigel’man, 1988) which
implements feed-back loops allowing activity to rever-
berate such that theP patterns can become fixed points
of the network dynamics
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Jmij =
1

Nf(1− f)

P∑
µ=1

(ξµ,mi − f)(ξµ,mj − f) (4)

We introduce the storage loadα = P/N which quan-
tifies the number of memories stored in each module.
Note that in what follows, the coding level is set to
f = 0.01 unless stated otherwise, we have checked that
other choices of coding levels (f = 0.001 or f = 0.1)
lead to qualitatively similar results.

2.3 Inputs to the network

At each time step, a new input is represented by the
state of the root module σ0. In order to probe short-
term memory properties via transient dynamics and
reverberating activity, we consider the TRN under two
kinds of stimulation. In the first scenario, inputs are
drawn independently of the stored patterns (see Fig. 4a).
In the second scenario, the network receives a similar
stream of inputs, but at t = 0 the root module repre-
sents a pattern stored in module m0 (see Fig. 5a).

3 Storage capacity of a single module

The recurrent connectivity of each module is the sub-
strate allowing TRN to hold stimuli in short-term mem-
ory via reverberating activity. With our choice of con-
nectivity matrix (4), modules operate as attractor neu-
ral networks and αN stimuli can be held in short-term
memory under the form of persistent activity. We quan-
tify the ability of a module to implement such short-
term memory mechanism with the storage capacity (Amit,
1989). It is defined as the maximal storage load α such
that imprinted patterns are stable states of the network’s
dynamics. We also describe the basins of attraction as-
sociated to each stored memory.

3.1 Dynamical equations for macroscopic variables

Without loss of generality we focus on the retrieval
and maintenance of a specific memory, e.g. pattern ξ1.
The state of the module is described by the overlap
m(t) between the instantaneous network state and the
corresponding pattern

m(t) =
1

Nf(1− f)

N∑
i

〈(ξ1i − f)σi(t)〉, (5)
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Figure 2 Short-term memory via reverberating activity in a single
module a The blue curve shows the storage capacity for f = 0.01
obtained by iterating (7). The black curve shows the analytical approx-
imation (9) obtained for f � 1. b Size of the basins of attraction
associated to each stored patterns (full lines), together with the overlap
m∗ between the fixed point of the network and the memory pattern to
be stored (dashed lines). We measure the size of the basins of attraction
as the minimal initial overlap m0min that leads to pattern retrieval
when solving (7) with µ(t = 0) = f .

and the average activity in the module,

µ(t) =
1

N

N∑
i

〈σi(t)〉 (6)

where 〈.〉 corresponds to averaging over different mi-
croscopic initial states (that have the same macroscopic
description). The dynamics of these order parameters
can be derived using standard methods (see Supple-
mentary materials, (Evans, 1989; Sompolinsky and White,
2003)):

m(t+ 1) = H

(
θ − (1− f)m(t)√

αµ(t)

)
−H

(
θ + fm(t)√

αµ(t)

)

µ(t+ 1) = fH

(
θ − (1− f)m(t)√

αµ(t)

)
+

(1− f)H

(
θ + fm(t)√

αµ(t)

)
(7)

where

H(x) =

∫ +∞

x

dz
e−z

2/2

√
2π

. (8)

3.2 Stable states and storage capacity

We label (m∗, µ∗) fixed point of (7) for the overlap and
mean activity. A particular fixed point is the background
state m∗ = 0 and µ∗ = 0. Retrieval states that have a
high overlap with a stored patternm∗ ' 1 exist as long
as the storage load remains below a critical value α <
αc. This critical value is shown by the blue curve in
Fig. 2a that we obtain by numerically finding the fixed
points of equation (7) for f = 0.01. The retrieval states
have been described previously for f � 1 (Tsodyks
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and Feigel’man, 1988; White et al., 2004). In this regime
the storage capacity αc can be approximated by

αc =
f�1

min

[
θ2

2f | log f |
,

1

2f
(1− θ)2

]
(9)

The curve αc(f � 1) vs θ is shown in black in Fig. 2a.
It is composed of two quadratic branches in θ. On the
first one, retrieval states are destabilized by an increase
in the activity of background neurons (neurons i such
that ξ1i = 0), while on the second branch, retrieval
states are destabilized by a silencing of foreground neu-
rons (neurons i such that ξ1i = 1).
By solving equations (7) numerically, we have also found
an ’active’ background state (m∗ = 0, µ∗ � f ) and
’weak’ retrieval states characterized by (m∗ = O(1),µ∗ �
f ). We study such states in Supplementary materials.
Note that these states exist at low activation thresh-
olds, which are sub-optimal for TRN memory prop-
erties, as will be shown in the following.

3.3 Basins of attraction

The state in which the network settles depends on the
two initial values m0 = m(t = 0) and µ0 = µ(t =
0). We measure the size of the basins of attraction by
m0min the minimal value of the overlap that is required
to reach a retrieval state for an initial mean activity
µ0 = f . In Fig. 2b we show m0min as a function of α
for f = 0.01 and θ = 0.4, 0.6 and 0.8. For a given value
of θ, m0min is only weakly modulated by the storage
load, withm0min ' θ. This can be seen from equations
(7), which give, for small f ,

m(t+ 1) ' H

(
θ −m(t)√
αµ(t)

)
(10)

When αµ(t)� 1 we have

m(t+ 1) =

{
1 if m(t) > θ

0 if m(t) < θ
(11)

4 Memory properties of a single path

After isolating a single module from a TRN, we isolate
a single feed-forward path composed of L modules,
from the root module up to one of the leaves of the
tree. Stimuli propagate along the feed-forward struc-
ture from the root module. We first describe the prop-
agation of stimuli orthogonal to the stored patterns.
This allows us to measure the buffering capacity, which
quantifies the ability of the neural activity of the path

to represent a sequence of previously observed stim-
uli (Fig. 4a). We then consider a stimulus that is stored
in one of the module, and describe under which con-
ditions it can trigger a state of persistent activity in
this module, as illustrated in Fig. 5a. This allows us
to quantify the storage capacity of a path of length L.

4.1 Dynamical equations for propagation of activity
patterns

Here modules form a single feed-forward path and are
indexed with l = 1...L. A stream of sensory stimuli
imposes the state of the root module σ0 at all times
with

σ0
i (t) =

{
1 with probability f

0 with probability 1− f
(12)

An input represented in the root module at time t−
l reaches module l at time t. The dynamics of the path
is characterized by {µl(t)}l=1...L the mean activities in
the different modules, and {nl(t)}l=1...L the overlaps
between σ0(t− l) and σl(t)

nl(t) =
1

Nf(1− f)

N∑
i

〈(σ0
i (t− l)− f)σli(t)〉 (13)

The time evolution of these macroscopic variables
is governed by (see Supplementary materials for deriva-
tion)

nl(t+ 1) = nl−1(t)

[
H

(
θ − 1√
αµl(t)

)
−H

(
θ√
αµl(t)

)]
(14)

together with

µl(t+ 1) = µl−1(t)

[
H

(
θ − 1√
αµl(t)

)
−H

(
θ√
αµl(t)

)]

+H

(
θ√
αµl(t)

)
(15)

4.2 Mean activity in steady state

To understand how stimuli propagate throughout the
path, it is informative to first examine the profile of
mean activity the path settles into under the influence
of the stream of stimuli. At the macroscopic level this
profile is given by the steady states of (14)(15).
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Figure 3 Propagation of stimuli throughout the path. a Mean activity
in a path. Regions in the θ − α plane where the different regimes are
found for f � 1. In regime I, the orange region above the oblique line,
µl is increasing with l. In regime II, green region below the oblique
line, µl is decreasing with l. The parabolic line represents the storage
capacity αc. b Top: average activities in steady state for a path of L =
100 modules. Bottom: overlap nl between a pattern sent at time t and
the state of module l at time t + l. c Same as b for regime II. d Lc as
a function of the normalized storage load α

αc
for θ = 0.4. e Lc as a

function of θ for α = 1.2.

At the microscopic level a neuron i in module l is
active if

1 +Qli > θ if neuron i of module l − 1 is active (16)

Qli > θ if neuron i of module l − 1 is silent (17)

where Qli corresponds to the recurrent noise com-
ing from the storage of patterns in module l.Qli is drawn
from a normal distribution N

(
0,
√
αµl
)

. Depending

on the value of θ and the standard deviation
√
αµl,

two behaviors are possible, either the average activity
in each module, µl, increases along the path (regime I),
either it decreases (regime II).
In the first regime the increase is characterized by a
critical depth Lc from which activity explodes in the
network: µl<Lc = O(f) and µl>Lc � f . The α − θ re-
gion of parameters in which this behavior is observed
is shown in orange in Fig. 3a. The frontiers of this re-
gion can be derived analytically for small coding lev-
els f � 1 (see Appendix 7.1). It corresponds to low
activation thresholds (θ < 1

2 ) or high activation thresh-
old paired with high recurrent noise (θ > 1

2 and α >
(2θ−1 − θ−2)αc). An example of profile of average ac-
tivity µl, l = 1...L is shown in the top panel of Fig. 3b.
Values of Lc can also be derived analytically (see Ap-
pendix 7.1) and its dependence on α and θ are shown
in Fig. 3d. As the storage load α is increased the recur-
rent noise becomes more effective at activating neu-
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Figure 4 Buffering of arbitrary input sequences. a Illus-
tration of a path buffering the sequence of stimuli: ’ma-
genta,brown,blue,red,yellow,green’, with the ’green’ stimulus
presented at time t in the root module. The buffering capacity of a path
of length L is measured by the area under the curve nl, measuring the
overlap between the activities in individual modules and patterns of
activity previously presented in the root module. b Area as a function
of the amount of recurrent connections α/αc(θ) for L = 100.
c Normalized buffering capacity as a function of θ, L = 100. d
Buffering capacity as a function of path length for θ = 0.6 and α = 2.
Insets shows how the normalized buffering capacity slightly decreases
with L.

rons and the explosion of activity occurs at modules
closer to the root module (top panel). As the activa-
tion threshold θ is increased, it becomes more difficult
for the recurrent noise to activate neurons and Lc in-
creases (bottom panel).
In the complementary region of parameter space (green
in Fig. 3a), the mean activity µl decreases with l. In this
regime the recurrent noise mainly affects the mean ac-
tivity with a negative input. An example of µl, l = 1...L
in this case is shown in the top panel of Fig. 3c.

4.3 Short-term memory via transient activity in a path

In this section we quantify the ability of a path to main-
tain a memory of a sequence of stimuli in its transient
neural activity, i.e. its buffering capacity. When there
are no recurrent connections (α = 0), inputs propa-
gate through the path without being corrupted, with
the input sent at time t by the root module being per-
fectly represented in module l at time t+l (i.e. nl(t) = 1
for all l, t). The transient state of the path thus buffers
memory sequences that last L time steps, where L is
the total number of modules in the path. In the pres-
ence of recurrent connections feed-forward inputs car-
rying the stimuli are in competition with recurrent in-
puts acting as random noise (because stimuli are un-
correlated with Jm,lij ). Stimuli are thus progressively
degraded as they travel along the path, according to
(14). This is illustrated in the bottom panels of Fig. 3b-
c, where we show nl in the different regimes of mean
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activity described above. In regimes I, patterns are slightly
degraded by their travel through each module, until
they reach module l ≥ Lc where nl>Lc drops to a value
close to zero. Before reaching this critical module, the
overlap decreases moderately since degradation mainly
occurs by activating silent neurons, which does not
dramatically affect the overlaps for the small coding
levels considered here. In regime II, the overlap de-
creases with l, smoothly but relatively fast, since si-
lencing neurons that should be active has a strong im-
pact on the value of the overlaps. In order to quan-
tify the ability of a path to buffer inputs, we define
the buffering capacity as the area under the nl versus l
curve (White et al., 2004). In Fig. 4b we show how this
area decreases with the amount of recurrent connec-
tions for different values of θ, and L = 100. For θ = 0.4,
the profile of mean activity corresponds to regime I
and the area under the nl curve is close to L (L inputs
are perfectly represented in the path of length L) until
Lc(α) becomes smaller than L and the area decreases
sharply with the amount of recurrent connections. For
θ = 0.6 and 0.8 the observed decrease occurs in regime
II. The specific effect of θ on the buffering capacity is
shown in Fig. 4c. The optimal value of θ varies from
θ = 1

2 at α ' 0 to θ ' 0.65 at α = 4.6, the storage ca-
pacity of a single module. Finally in Fig. 4d, we show
how the buffering capacity scales with L for fixed pa-
rameters θ = 0.6 and α = 2.

4.4 Short-term memory via reverberating activity in a
path

In this section the root module conveys a stream of
random stimuli, except at t = 0 for which the root
module is set in the state σ0(t = 0) = ξµ0,l0 corre-
sponding to a pattern stored in the synaptic matrix of
module l0. This scenario is illustrated in Fig. 5a. To de-
scribe the propagation and retrieval of this pattern we
introduce ml(t), the overlap between σl(t), the state of
module l at time t, and ξµ0,l0

ml(t) =
1

Nf(1− f)

N∑
i

〈(ξµ0,l
i − f)σli(t)〉 (18)

In modules l < l0, pattern ξµ0,l0 has the same sta-
tus than a random stimulus, and the order parame-
ter ml<l0(t) is governed by equation (14). In module
l = l0, recurrent connections tend to sustain the pat-
tern ξµ0,l0 , and the overlap obeys equation (28) which
can be found in the Appendix 7.2. Once the pattern is
retrieved in module l0, it propagates further in deeper
modules l > l0.

Retrieval in module l0 differs from the single mod-
ule case in two aspects: first, the retrieval state has to
persist despite the presence of feed-forward noise caused
by random patterns of activity that enter the path at
t 6= 0. And second, at t = l0, module l0 is cued with
a noisy version of ξµ0,l0 . Below we study these two ef-
fects separately and then show how they impact the
storage capacity of a path.

4.4.1 Effect of feed-forward inputs on the existence of a
retrieval state

The ongoing stream of stimuli in the path tends to desta-
bilize a retrieved pattern by activating neurons that
should not be active. This increase of activity (µl ' 2f
in modules close to the root module) mediates an in-
crease in recurrent noise since the recurrent connec-
tions also reflect the storage of patterns ξµ,m0 6= ξµ0,m0 .
In order to accommodate this higher recurrent noise,
modules embedded in a path need to have a storage
load smaller than αc. The specific condition is given
by (see Appendix 7.3 for derivation):

α <
αc

1 + µl0
f

(19)

where µl0 is the mean activity in module l0 induced
by the random stream of inputs, before retrieval, which
is obtained from the steady-state solution of equation
(15), and αc is the storage capacity of an isolated mod-
ule. For modules close to the root module for which
µl0 ' f , equation (19) leads to a maximal storage load
αc
2 under the presence of feed-forward noise. In deeper

modules, the value of the maximal storage load for
which the retrieval state is stable depends on the pro-
file of mean activity µl, l = 1...L. In regime I (Fig. 3a),
for modules close to the critical module l . Lc, where
the mean activity is larger than f , the maximal stor-
age load will be even more reduced. In regime II, the
mean activity decreases with l and the maximal stor-
age load compatible with the feed-forward drive can
in principle be higher than for the initial module. Note
however that we do not take advantage of this effect in
the present work, since for simplicity we only consider
equal storage load in each module.

4.4.2 Retrieval from corrupted signal

The signal eliciting retrieval in module l0 is a corrupted
version of pattern ξµ0,l0 , i.e. ml0(t = l0) = m0 < 1.
The success of retrieval thus depends on whether this
corrupted version is within the basin of attraction of
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ξµ0,l0 . Similarly to the single module case, assuming
µl0 = O(f) and f � 1, the condition for retrieval is:

ml0(t = l0 + 1) '

{
1 ifm0 > θ

0 ifm0 < θ
(20)

4.4.3 Storage capacity of a path

Because of the two phenomenons described above, mod-
ules of the TRN should have a storage load lower than
the storage capacity of an isolated module (α < αc) in
order for a path to serve as an auto-associative mem-
ory. We have iterated the dynamical equations (28) (see
Appendix 7.2) in order to measure the storage capacity
of paths of length L

αL = L ∗ αP (L) (21)

Where αL quantifies the total number of patterns
that can be retrieved by cueing from the root mod-
ule. In the definition of αL we also impose that re-
trieved memories can be read-out in the last module
of the path, which we define as mL(t � L) > 1

2 (see
Discussion). αL crucially depends on the parameter θ
because i) it controls the size of the basins of attrac-
tions, cf (20); ii) the single module storage load αc de-
pends on θ; and iii) the corruption of patterns during
feed-forward propagation strongly depends on θ (e.g.
Fig. 4c). In Fig. 5b we show the storage capacity αL=100

as a function of θ, a maximum of αL ' 0.3 ∗ αc ∗ L
is reached for θ ' 0.6. In other words, to accommo-
date all the constraints related to having an attractor
network embedded in a feed-forward path of length
L = 100, the storage load of each module αP = αL

L

has to be reduced by ' 1/3 compared to the case of
an isolated module. This ratio decreases further as the
length of the path increases (Fig. 5c), going from a ra-
tio of 1

2 for L = 1 (maximal ratio that allows to sustain
a pattern with a mean activity 2f in the presence of
feed-forward inputs aacording to (19)) to ' 0.23 for
L = 50, 000 (not shown). Figure 5d shows how the ca-
pacity of a path αL increases sub-linearly with L.

5 Memory properties of the full TRN

As seen in the previous section, the memory properties
of a path crucially depends on its length L. The buffer-
ing capacity scales with the length of the path, if work-
ing with appropriate parameters, e.g. avoiding explo-
sion of mean activity with storage load small enough
to have Lc > L. And the maximal storage load per

 *
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Figure 5 Storage capacity of a path. a Illustration of retrieval in a
path, a sequence of stimuli ’magenta,brown,blue,red,yellow,green’ is
presented by the root module. The recurrent connectivity of the second
module is designed to maintain the magenta stimulus in short-term
memory. Once retrieval has been elicited in this module, the activity
in this module and subsequent ones represent the magenta stimulus
together with the ongoing sequence. b Optimal single module storage
load as a function of θ for a path of length L = 100. c Optimal sin-
gle module storage load as a function of path’s length. d Sub-linear
increase of storage capacity as a function of path’s length. Storage ca-
pacity is optimized over θ for each value of L here.

moduleαP (L) decreases withL due to increasing noise
accumulation with paths lengths. We now use these re-
sults to describe the memory properties of full TRNs of
M modules. TRN are composed of feed-forward paths
of length L, where L is related to M through the diver-
gence ratio d, measuring the ratio between the num-
bers of modules in two successive levels of the TRN
(see Fig. 1):

L(M,d) =
log
(
1 + M(d−1)

d

)
log (d)

(22)

5.1 Storage capacity of TRN

The TRN being composed of feed-forward paths of length
L, its storage capacity is given by

αTRN =MαP (L(M,d)) (23)

as defined above αP (L) is the maximal storage load
of a single module that ensures proper working of a
path of length L. As shown in Fig. 5b, αP (L) is a de-
creasing function of L, and as such the capacity of the
TRN is maximized for a fully parallel architecture L =
1 (d = M ) and minimized for a fully serial architec-
ture L = M (d = 1). This is shown in Fig. 6 where we
show αTRN as a function of d for a TRN ofM = 50, 000

modules, which would for instance correspond to a
sensory-hierarchy of 500 ∗ 106 neurons with columns
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Figure 6 Memory properties of full TRNs of M = 50, 000 modules.
On the x-axis d = 100 corresponds to a fully serial architecture as
shown in Fig. 1a, while d = M corresponds to a fully parallel archi-
tecture as shown in Fig. 1b. a Storage capacity as a function of the
expansion ratio. b Lower and upper bounds (cyan and blue curves) on
the buffering capacity as a function of the expansion ratio, for θ = 0.4,
α = 0.85.

composed of 104 neurons. From the fully serial to the
fully parallel organization, the total capacity αTRN is
increased by a factor ' 3.

5.2 Buffering inputs in the TRN

The ability of the TRN to buffer inputs is strongly de-
pendent on the length of its paths, as shown in Fig. 4d.
In principle the buffering capacity of a TRN of depth L
is larger than the buffering capacity of a path of length
L, since the same patterns are represented in multi-
ple paths and this redundancy could be exploited by
a readout. On the other hand the buffering capacity
is upper bounded by the length of the paths L. This
lower and upper bounds correspond to the cyan and
blue curves in Fig. 6b, which decreases sharply with d.

6 Conclusion

In this paper, we have studied the short-term mem-
ory properties of trees of recurrent networks (TRN).
For this neural architecture the feed-forward tree-like
backbone of modules supports short-term memory via
transient dynamics (Ganguli et al., 2008; Jaeger and
Haas, 2004; Lim and Goldman, 2012; Maass et al., 2002;
White et al., 2004), and the recurrent connectivity in-
side each module supports short-term memory via re-
verberating activity (Amit, 1989; Amit and Brunel, 1997;
Hopfield, 1982; Tsodyks and Feigel’man, 1988). The abil-
ity of TRN to memorize sequences of stimuli via tran-
sient dynamics has been quantified using the buffering
capacity (White et al., 2004), a measure of how many
stimuli, successively presented at the first module, are
well represented in the pattern of activity of the TRN at
a given time. Networks with feed-forward structures

have been shown to be optimal to implement such mem-
ory mechanisms, since they avoid interference between
patterns presented at different times (Ganguli et al.,
2008; Lim and Goldman, 2012). In TRN, stimuli prop-
agate in a feed-forward manner and reach modules of
increasing depth as time is incremented. The buffering
capacity of a TRN is thus circumscribed by its depth,
and crucially depends on a faithful propagation of stim-
uli along the network. We have shown that such a faith-
ful propagation is mainly controlled by two factors.
The amount of recurrent connections in each module,
controlling the strength of the recurrent inputs elicited
by a given level of activity in each module ; those in-
puts act as noise by competing with the feed-forward
inputs. The activation threshold of neurons, which sets
the levels of activity in the modules, as well as tunes
signal corruption, by controlling whether recurrent noise
tends to activate neurons that should be silent or active
according to the incoming feed-forward input.
The ability of TRN to hold a stimulus in memory via
reverberating activity has been quantified with the stor-
age capacity, i.e. the number of patterns of activity that
modules can maintain in persistent activity, see e.g.
(Amit, 1989). Compared to standard studies of an iso-
lated attractor network, the capacity analysis of TRN
requires to take into account two additional constraints.
First, a state of persistent activity in a module needs to
be robust to feed-forward inputs that act as a source
of noise. The consequence of this noise is an increased
mean activity in the module, leading to more recurrent
noise. This requires to decrease the amount of stored
patterns per modules compared to the case of an iso-
lated network. Second, the network is cued with a cor-
rupted signal, due to noisy propagation of signals along
a TRN. This requires to be able to compute the extent
to which patterns of activity are corrupted when trav-
eling through a TRN, as well as to compute the size
of the basins of attractions associated to each stored
memory pattern. Again the activation threshold plays
here a crucial role, since it controls signal propagation,
the size of the basins of attractions, as well as the single
module storage capacity. Because a pattern of activity
is all the more corrupted as it has travelled through
many modules, TRN with low depth are better suited
to reach high storage capacities.
TRNs are able to support both kinds of short-term mem-
ory mechanisms, with the non trivial observation that
similar values of a key parameter, the activation thresh-
old, are optimal in both settings. Although both kinds
of short-term memory are optimized by similar values
of the activation threshold, the buffering and storage
capacity of a TRN depend strongly on its depth, with a
purely serial TRN architecture being optimal for short-
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term memory via transient dynamics and a purely par-
allel architecture being optimal for short-term memory
via reverberating activity.

We have introduced TRN in order to investigate mem-
ory properties of sensory cortices, which can be de-
scribed as made of a few neurons driven by sensory
stimuli via thalamic inputs, and a vast majority of in-
terneurons mainly receiving cortical inputs (Braiten-
berg and Schütz, 1991). Cortico-cortical connectivity
has been shown to be spatially clustered (Bosking et al.,
1997; DeFelipe et al., 1986; Gilbert and Wiesel, 1989;
Pucak et al., 1996), leading to the notion of cortical col-
umn. These columns are modeled by the modules of
our network, which we have taken to be attractor neu-
ral networks, a class of networks whose connectivity
profile is consistent with local connectivity in sensory
cortices (Brunel, 2016), and that has been shown to ef-
ficiently encode sensory stimuli (Tkačik et al., 2010).
The extent to which cortical columns are organized in
series or in parallel with respect to the thalamic inputs
is not known, although, in the visual hierarchy, avail-
able data makes it clear that there is some form of serial
feed-forward organization. Anatomy has shown that
as the depth in the hierarchy is increased, networks
are less and less under the influence of the thalamus,
with ' 0.2% of inputs to V1 neurons having a thala-
mic origin, versus ' 0.1% for V2 and ' 0.05% for V4
neurons (Markov et al., 2010). It has also been shown
that activity in V2 is strongly dependent on activity in
V1, as suggested by lesions of V1 suppressing activity
in V2 (Girard and Bullier, 1989). Moreover, along the
visual hierarchy, stimuli are processed with increas-
ing delays, with 40 ms and 80 ms delays in V1 and
infero-temporal cortex respectively, suggesting a form
of serial processing (Thorpe and Fabre-Thorpe, 2001).
However, whether such serial organization supports
short-term memory via transient dynamics is not obvi-
ous since this difference in processing delays between
V1 and infero-temporal cortex is much smaller than
the behavioral time scales associated with short-term
memory. Nevertheless it can be argued that more ad-
vanced analysis could reveal short-term memory via
transient dynamics at the scale of a brain area (Klampfl
et al., 2012; Nikolić et al., 2009).

Neural activity in a TRN forms sensory representa-
tions of ongoing stimuli that can be held in short-term
memory. A question we have not discussed so far is
the one of the reading of such representations by a
read-out system. For short-term memory with rever-
berating activity, once a stimulus has elicited a pat-
tern of persistent activity in one of the module, this

pattern propagates down to sub-sequent modules (see
Fig. 5a). A natural read-out for such a representation
would be the last module of each path, which would
correspond to associative areas in a cortical hierarchy.
In Supplementary materials we show how reading-out
through the last module of a path is done at the ex-
pense of reducing the storage load to avoid dramatic
signal degradation from the module maintaining per-
sistent activity to the end of the paths. Regarding short-
term memory with transient dynamics, which buffers
sequences of stimuli encoded on the whole depth of a
TRN, a read-out system has to be connected to mod-
ules of all depths in order for reading such sensory
representations (White et al., 2004). In a cortical setting
such a read-out system could also be implemented by
areas on the top of sensory hierarchies, with feed-back
connections, not modeled in a TRN, sampling from ar-
eas lower in the hierarchy.

Anatomical studies reveal a cortical architecture that
is much richer than the simple architecture of TRN,
which include neither feed-back nor shortcuts between
modules. Other simplifications are the one-to-one pro-
jections from one layer to the next, and the fact that
patterns stored in different layers have no semantic re-
lationships. While these simplifications allowed us to
quantify the memory properties of such networks in
depth, it remains to be investigated how these prop-
erties will be affected in more realistic networks. Nev-
ertheless it is remarkable that it has remained possi-
ble to track analytically the dynamics of such cellular-
resolution large-scale networks, and evaluate the com-
putational performance of various connectivity schemes,
such as serial or parallel. Such an approach, linking
structural and functional properties of this type of net-
work models, together with the advent of large-scale
single-cell resolution connectomes, will allow to shed
new lights on the computational roles of cortical net-
works.

7 Appendix

7.1 Steady-state mean activity profiles for f � 1

We consider a module with mean activity µ = O(f)

receiving feed-forward inputs from a module whose
mean activity is g = f

s . From equations (15), the fixed
point equations relating µ and g is

µ = gH

(
θ − 1

λ
√
αµ

)
+ (1− g)H

(
θ

λ
√
αµ

)
(24)
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Using the estimate H(x) '
x�1

1
x
√
2π
e

−x2
2 ' e

−x2
2 ,

and f | log f |
g| log g| '

f
g the fixed point equation can be rewrit-

ten

µ ≈ g
(
1 + gsx−1 − gsx(1−θ

−1)2
)

(25)

with x = θ2

2λ2αf | log f | . Comparing the two last terms
of equation (25) allows to understand whether µ in-
creases or decreases compared to g and thus to de-
scribe the two regimes of mean activity profiles of sec-
tion 4.2. Moreover, for the regime of increasing activ-
ity along the path, the transition from µ = O(f) to
µ = O(1) arises for s = 1/x, i.e. g = xf . By differen-
tiating (24) as shown in Supplementary materials, this
allows to give expressions for the depth Lc at which
the transition occurs. For θ < 1

2

Lc = 2

√
π

xf2(x−1)| log f |
(26)

and for θ > 1
2 and α > (2θ−1−θ−2)αc the critical depth

scale as

1/Lc ∝
1

(θ−1 − 1)
√
x| log f |

fx(1−θ
−1)2− 1√

x| log f |
fx−1

(27)

7.2 Dynamical equations for memory retrieval in a
path

In order to describe the retrieval of pattern ξl0,1 in a
module l0 receiving feed-forward inputs from mod-
ule l0 − 1 (see section 4.4), we have used the follow-
ing dynamical equations, whose derivation is detailed
in Supplementary Materials. ml0 (resp. ml0−1) is the
overlap between the activity in module l0 (resp. l0− 1)
and ξl0,1.

ml0(t+ 1) = ml0−1(t){(1− f)[It(1, 1)− It(1, 0)]
+f [It(0, 1)− It(0, 0)]}
+µl0−1(t){It(1, 1)− It(1, 0)
−[It(0, 1)− It(0, 0)]}
+It(1, 0)− It(0, 0) (28)

and

µl0(t+ 1) = ml0−1(t)f(1− f){It(1, 1)− It(1, 0)
−[It(0, 1)− It(0, 0)]}
+µl0−1(t){f [It(1, 1)− It(1, 0)]
+(1− f)[It(0, 1)− It(0, 0)]}
+fIt(1, 0) + (1− f)It(0, 0) (29)

with

It(a, b) = H

(
θ − (a− f)ml0(t)− b√

αµl0(t)

)
(30)

7.3 Impact of feed-forward noise on persistent activity

The random sequence of inputs is a form of noise that
reduces the capacity for retrieval states. To evaluate the
existence of a retrieval state ξµ0,m0 under these con-
ditions, we examine the stability of the module l as-
suming that it receives random feed-forward inputs
from the module l−1 with a steady state mean activity
µl−1eq . We re-write the equations for retrieval in module
l in terms of the order parameters f l0 and f l1, which
measure the fraction of background neurons (neurons
i such that ξµ0,m0

i = 0) that are active and the fraction
of foreground (neurons i such that ξµ0,m0

i = 1) neurons
that are active. These order parameters are related to
ml and µl by ml = f l1−f l0 and µl = f ∗f l1+(1−f)∗f l0.

f l1(t+ 1) = µl−1eq H

(
θ −ml(t)− 1√

αµl(t)

)
+

(1− µl−1eq )H

(
θ −ml(t)√
αµl(t)

)
, t ≥ 1

f l0(t+ 1) = µl−1eq H

(
θ − 1√
αµl(t)

)
+

(1− µl−1eq )H

(
θ√
αµl(t)

)
, t ≥ 1 (31)

If we assume that a pattern has been retrieved, i.e.
ml(t = 1) ' 1 and µl(t = 1) = f + µleq . This pattern re-
mains stable if f l1 remains of order 1 and f l0 remains
of order f , which comes down to have, for µl−1eq =
O(f)� 1,

H

 θ − 1√
α(f + µleq)

 = 1− f
x(1−θ−1)2

1+
µleq
f = O(1)

H

 θ√
α(f + µleq)

 = f

x

1+
µleq
f

−1

� 1

(32)

For f � 1 this is satisfied if x > 1 +
µleq
f , hence the

condition (19) on α.
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