Skip to main content

Advertisement

Log in

Mitochondrial dysfunction and role in spreading depolarization and seizure

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The effect of pathological phenomena such as epileptic seizures and spreading depolarization (SD) on mitochondria and the potential feedback of mitochondrial dysfunction into the dynamics of those phenomena are complex and difficult to study experimentally due to the simultaneous changes in many variables governing neuronal behavior. By combining a model that accounts for a wide range of neuronal behaviors including seizures, normoxic SD, and hypoxic SD (HSD), together with a detailed model of mitochondrial function and intracellular Ca2+ dynamics, we investigate mitochondrial dysfunction and its potential role in recovery of the neuron from seizures, HSD, and SD. Our results demonstrate that HSD leads to the collapse of mitochondrial membrane potential and cellular ATP levels that recover only when normal oxygen supply is restored. Mitochondrial organic phosphate and pH gradients determine the strength of the depolarization block during HSD and SD, how quickly the cell enters the depolarization block when the oxygen supply is disrupted or potassium in the bath solution is raised beyond the physiological value, and how fast the cell recovers from SD and HSD when normal potassium concentration and oxygen supply are restored. Although not as dramatic as phosphate and pH gradients, mitochondrial Ca2+ uptake has a similar effect on neuronal behavior during these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiba, I., & Noebels, J.L. (2015). Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse sudep models. Science Translational Medicine, 7(282), 282ra46–282ra46.

    PubMed  PubMed Central  Google Scholar 

  • Aitken, P.G., & Schiff, S.J. (1986). Selective neuronal vulnerability to hypoxia in vitro. Neuroscience Letters, 67(1), 92–96.

    CAS  PubMed  Google Scholar 

  • Aldakkak, M., Stowe, D.F., Heisner, J.S., Spence, M., Camara, A.K. (2008). Enhanced na+/h+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. Journal of Cardiovascular Pharmacology, 52(3), 236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, T.R., & Andrew, R.D. (2002). Spreading depression: imaging and blockade in the rat neocortical brain slice. Journal of Neurophysiology, 88(5), 2713–2725.

    CAS  PubMed  Google Scholar 

  • Andersson, B., Aw, T., Jones, D.P. (1987). Mitochondrial transmembrane potential and ph gradient during anoxia. American Journal of Physiology-Cell Physiology, 252(4), C349–C355.

    CAS  Google Scholar 

  • Andrew, R.D., Hsieh, Y.T., Brisson, C.D. (2017). Spreading depolarization triggered by elevated potassium is weak or absent in the rodent lower brain. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1735–1747.

    CAS  Google Scholar 

  • Attwell, D., & Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145.

    CAS  Google Scholar 

  • Avoli, M., Drapeau, C., Louvel, J., Pumain, R., Olivier, A., Villemure, J.G. (1991). Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Annals of Neurology:, Official Journal of the American Neurological Association and the Child Neurology Society, 30(4), 589–596.

    CAS  Google Scholar 

  • Ayata, C., & Lauritzen, M. (2015). Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiological Reviews, 95(3), 953–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar, S., Fayuk, D., Somjen, G., Aitken, P., Turner, D. (2000). Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. Journal of Neurophysiology, 84 (1), 311–324.

    CAS  PubMed  Google Scholar 

  • Bahar, S., Suh, M., Zhao, M., Schwartz, T.H. (2006). Intrinsic optical signal imaging of neocortical seizures: the ?epileptic dip?. Neuroreport, 17(5), 499–503.

    PubMed  Google Scholar 

  • Bahari, F., Ssentongo, P., Liu, J., Kimbugwe, J., Schiff, S.J., Gluckman, B.J. (2018). Spreading depression and seizure unification experimentally observed in epilepsy. bioRxiv p 455519.

  • Bayeva, M., Gheorghiade, M., Ardehali, H. (2013). Mitochondria as a therapeutic target in heart failure. Journal of the American College of Cardiology, 61(6), 599–610.

    CAS  PubMed  Google Scholar 

  • Bikson, M., Hahn, P.J., Fox, J.E., Jefferys, J.G. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408.

    PubMed  Google Scholar 

  • Brisson, C.D., & Andrew, R.D. (2012). A neuronal population in hypothalamus that dramatically resists acute ischemic injury compared to neocortex. Journal of Neurophysiology, 108(2), 419–430.

    CAS  PubMed  Google Scholar 

  • Brisson, C.D., Lukewich, M.K., Andrew, R.D. (2013). A distinct boundary between the higher brain?s susceptibility to ischemia and the lower brain?s resistance. PloS One, 8(11), e79589.

    PubMed  PubMed Central  Google Scholar 

  • Camara, A.K., Lesnefsky, E.J., Stowe, D.F. (2010). Potential therapeutic benefits of strategies directed to mitochondria. Antioxidants & Redox Signaling, 13(3), 279–347.

    CAS  Google Scholar 

  • Chang, J.C., Brennan, K.C., He, D., Huang, H., Miura, R.M., Wilson, P.L., Wylie, J.J. (2013). A mathematical model of the metabolic and perfusion effects on cortical spreading depression. PloS One, 8(8), e70469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, P., Wollman, H., Alexander, S., Chase, P., Behar, M. (1964). Cerebral carbohydrate metabolism in man during halothane anesthesiaeffects of paco2 on some aspects of carbohydrate utilization. Anesthesiology:, The Journal of the American Society of Anesthesiologists, 25(2), 185–191.

    CAS  Google Scholar 

  • Conte, C., Lee, R., Sarkar, M., Terman, D. (2018). A mathematical model of recurrent spreading depolarizations. Journal of Computational Neuroscience, 44(2), 203–217.

    PubMed  Google Scholar 

  • Cressman, J.R., Ullah, G., Ziburkus, J., Schiff, S.J., Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: i. single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.

    PubMed  PubMed Central  Google Scholar 

  • Czéh, G., Aitken, P.G., Somjen, G.G. (1993). Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization. Brain Research, 632(1-2), 195–208.

    PubMed  Google Scholar 

  • Diekman, C.O., Fall, C.P., Lechleiter, J.D., Terman, D. (2013). Modeling the neuroprotective role of enhanced astrocyte mitochondrial metabolism during stroke. Biophysical Journal, 104(8), 1752–1763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreier, J.P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nature Medicine, 17(4), 439.

    CAS  PubMed  Google Scholar 

  • Dreier, J.P., & Reiffurth, C. (2015). The stroke-migraine depolarization continuum. Neuron, 86(4), 902–922.

    CAS  PubMed  Google Scholar 

  • Dreier, J.P., Körner, K., Ebert, N., Görner, A., Rubin, I., Back, T., Lindauer, U., Wolf, T., Villringer, A., Einhäupl, K.M., et al. (1998). Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when k + is increased in the subarachnoid space. Journal of Cerebral Blood Flow & Metabolism, 18(9), 978–990.

    CAS  Google Scholar 

  • Dreier, J.P., Major, S., Pannek, H.W., Woitzik, J., Scheel, M., Wiesenthal, D., Martus, P., Winkler, M.K., Hartings, J.A., Fabricius, M., et al. (2011). Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain: A Journal of Neurology, 135(1), 259–275.

    Google Scholar 

  • Dreier, J.P., Isele, T., Reiffurth, C., Offenhauser, N., Kirov, S.A., Dahlem, M.A., Herreras, O. (2013). Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? The Neuroscientist, 19(1), 25–42.

    PubMed  Google Scholar 

  • Dreier, J.P., Fabricius, M., Ayata, C., Sakowitz, O.W., William Shuttleworth, C., Dohmen, C., Graf, R., Vajkoczy, P., Helbok, R., Suzuki, M., et al. (2017). Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the cosbid research group. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1595–1625.

    Google Scholar 

  • Enger, R., Tang, W., Vindedal, G.F., Jensen, V., Johannes Helm, P., Sprengel, R., Looger, L.L., Nagelhus, E.A. (2015). Dynamics of ionic shifts in cortical spreading depression. Cerebral Cortex, 25(11), 4469–4476.

    PubMed  Google Scholar 

  • Fabricius, M., Fuhr, S., Willumsen, L., Dreier, J.P., Bhatia, R., Boutelle, M.G., Hartings, J.A., Bullock, R., Strong, A.J., Lauritzen, M. (2008). Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. Clinical Neurophysiology, 119(9), 1973–1984.

    PubMed  PubMed Central  Google Scholar 

  • Feuerstein, D., Backes, H., Gramer, M., Takagaki, M., Gabel, P., Kumagai, T., Graf, R. (2016). Regulation of cerebral metabolism during cortical spreading depression. Journal of Cerebral Blood Flow & Metabolism, 36(11), 1965–1977.

    CAS  Google Scholar 

  • Friberg, H., & Wieloch, T. (2002). Mitochondrial permeability transition in acute neurodegeneration. Biochimie, 84(2-3), 241–250.

    CAS  Google Scholar 

  • Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A., Zeller, M., Meencke, H.J., Cavalheiro, E.A., et al. (2004). Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. Journal of Neuroscience, 24(46), 10416–10430.

    CAS  PubMed  Google Scholar 

  • Galeffi, F., Somjen, G.G., Foster, K.A., Turner, D.A. (2011). Simultaneous monitoring of tissue po2 and nadh fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices. Journal of Cerebral Blood Flow & Metabolism, 31 (2), 626–639.

    CAS  Google Scholar 

  • Gault, L.M., Lin, C.W., LaManna, J.C., Lust, W.D. (1994). Changes in energy metabolites, cgmp and intracellular ph during cortical spreading depression. Brain Research, 641(1), 176–180.

    CAS  PubMed  Google Scholar 

  • Gloor, S.M. (1997). Relevance of Na,kATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Letters, 412(1), 1–4.

    CAS  PubMed  Google Scholar 

  • Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R.D., Whittington, M.A., Buhl, E.H. (2005). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. The Journal of Physiology, 562(1), 131–147.

    CAS  PubMed  Google Scholar 

  • Grinberg, Y.Y., van Drongelen, W., Kraig, R.P. (2012). Insulin-like growth factor-1 lowers spreading depression susceptibility and reduces oxidative stress. Journal of Neurochemistry, 122(1), 221–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grinberg, Y.Y., Dibbern, M.E., Levasseur, V.A., Kraig, R.P. (2013). Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. Journal of Neurochemistry, 126(5), 662–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hablitz, J.J., & Heinemann, U. (1989). Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Developmental Brain Research, 46(2), 243–252.

    CAS  PubMed  Google Scholar 

  • Hansen, A. (1984). The role of spreading depression in acute brain disorders. Anais da Academia Brasileira de Ci?ncias, 56, 457–479.

    CAS  Google Scholar 

  • Hansen, A.J., & Zeuthen, T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiologica, 113(4), 437–445.

    CAS  Google Scholar 

  • Hartings, J.A., Shuttleworth, C.W., Kirov, S.A., Ayata, C., Hinzman, J.M., Foreman, B., Andrew, R.D., Boutelle, M.G., Brennan, K., Carlson, A.P., et al. (2017). The continuum of spreading depolarizations in acute cortical lesion development: examining leão?s legacy. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1571–1594.

    Google Scholar 

  • Hawrysh, P.J., & Buck, L.T. (2019). Mitochondrial matrix ph acidifies during anoxia and is maintained by the f1f0-atp ase in anoxia-tolerant painted turtle cortical neurons. FEBS Open Bio pp. https://doi.org/10.1002/2211--5463.12612.

  • Hazelton, J.L., Petrasheuskaya, M., Fiskum, G., Kristián, T. (2009). Cyclophilin d is expressed predominantly in mitochondria of γ-aminobutyric acidergic interneurons. Journal of Neuroscience Research, 87(5), 1250–1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Homer, L.D., Shelton, J.B., Williams, T.J. (1983). Diffusion of oxygen in slices of rat brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 244(1), R15–R22.

    CAS  Google Scholar 

  • Hosseini-Zare, M.S., Gu, F., Abdulla, A., Powell, S., žiburkus, J. (2017). Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression. Experimental Neurology, 295, 155–161.

    CAS  PubMed  Google Scholar 

  • Hübel, N., & Dahlem, M.A. (2014). Dynamics from seconds to hours in hodgkin-huxley model with time-dependent ion concentrations and buffer reservoirs. PLos Computational Biology, 10(12), e1003941.

    PubMed  PubMed Central  Google Scholar 

  • Hübel, N., & Ullah, G. (2016). Anions govern cell volume: a case study of relative astrocytic and neuronal swelling in spreading depolarization. Plos One, 11(3), e0147060.

    PubMed  PubMed Central  Google Scholar 

  • Hübel, N., Andrew, R.D., Ullah, G. (2016). Large extracellular space leads to neuronal susceptibility to ischemic injury in a na+/k+ pumps–dependent manner. Journal of Computational Neuroscience, 40(2), 177–192.

    PubMed  Google Scholar 

  • Hübel, N., Hosseini-Zare, M.S., žiburkus, J., Ullah, G. (2017). The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLos Computational Biology, 13(10), e1005804.

    PubMed  PubMed Central  Google Scholar 

  • Ingram, J.M., Zhang, C., Xu, J., Schiff, S.J. (2013). Fret excited ratiometric oxygen sensing in living tissue. Journal of Neuroscience Methods, 214(1), 45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, J., Aitken, P.G., Somjen, G.G. (1994). Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. Journal of Neurophysiology, 71(6), 2548–2551.

    CAS  PubMed  Google Scholar 

  • Jitschin, R., Hofmann, A.D., Bruns, H., Gießl, A., Bricks, J., Berger, J., Saul, D., Eckart, M.J., Mackensen, A., Mougiakakos, D. (2014). Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood, 123(17), 2663–2672.

    CAS  PubMed  Google Scholar 

  • Kager, H., Wadman, W., Somjen, G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84(1), 495–512.

    CAS  PubMed  Google Scholar 

  • Kager, H., Wadman, W., Somjen, G. (2002). Conditions for the triggering of spreading depression studied with computer simulations. Journal of Neurophysiology, 88(5), 2700–2712.

    CAS  PubMed  Google Scholar 

  • Kager, H., Wadman, W., Somjen, G. (2007). Seizure-like after discharges simulated in a model neuron. Journal of Computational Neuroscience, 22(2), 105–128.

    CAS  PubMed  Google Scholar 

  • Köhling, R., Koch, U., Hagemann, G., Redecker, C., Straub, H., Speckmann, E.J. (2003). Differential sensitivity to induction of spreading depression by partial disinhibition in chronically epileptic human and rat as compared to native rat neocortical tissue. Brain Research, 975(1-2), 129–134.

    PubMed  Google Scholar 

  • Kovács, R., Schuchmann, S., Gabriel, S., Kann, O., Kardos, J., Heinemann, U. (2002). Free radical–mediated cell damage after experimental status epilepticus in hippocampal slice cultures. Journal of Neurophysiology, 88(6), 2909–2918.

    PubMed  Google Scholar 

  • Kovács, R., Kardos, J., Heinemann, U., Kann, O. (2005). Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures. Journal of Neuroscience, 25(17), 4260–4269.

    PubMed  Google Scholar 

  • Krishnan, G.P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31(24), 8870–8882.

    CAS  PubMed  Google Scholar 

  • Lauf, P.K., & Adragna, N.C. (2000). K − Cl cotransport: properties and molecular mechanism. Cellular Physiology and Biochemistry, 10(5-6), 341–354.

    CAS  PubMed  Google Scholar 

  • Lauritzen, M., Dreier, J.P., Fabricius, M., Hartings, J.A., Graf, R., Strong, A.J. (2011). Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 31(1), 17–35.

    Google Scholar 

  • Lee, B.H., Seo, H.W., Yi, K.Y., Lee, S., Lee, S., Yoo, S.E. (2005). Effects of kr-32570, a new na+/h+ exchanger inhibitor, on functional and metabolic impairments produced by global ischemia and reperfusion in the perfused rat heart. European Journal of Pharmacology, 511(2-3), 175–182.

    CAS  PubMed  Google Scholar 

  • Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497.

    CAS  PubMed  Google Scholar 

  • Li, Y.X., & Rinzel, J. (1994). Equations for insp 3 receptor-mediated [Ca 2+]i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical Biology, 166(4), 461–473.

    CAS  PubMed  Google Scholar 

  • Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79(4), 1431–1568.

    CAS  PubMed  Google Scholar 

  • Liu, F., Lu, J., Manaenko, A., Tang, J., Hu, Q. (2018). Mitochondria in ischemic stroke: New insight and implications. Aging and Disease, 9(5), 924.

    PubMed  PubMed Central  Google Scholar 

  • Lothman, E., LaManna, J., Cordingley, G., Rosenthal, M., Somjen, G. (1975). Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Research, 88(1), 15–36.

    CAS  PubMed  Google Scholar 

  • Magnus, G., & Keizer, J. (1997). Minimal model of beta-cell mitochondrial Ca 2+ handling. American Journal of Physiology. Cell Physiology, 273(2), C717–C733.

    CAS  Google Scholar 

  • Major, S., Petzold, G.C., Reiffurth, C., Windmüller, O., Foddis, M., Lindauer, U., Kang, E.J., Dreier, J.P. (2017). A role of the sodium pump in spreading ischemia in rats. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1687–1705.

    CAS  Google Scholar 

  • Mayevsky, A., Zarchin, N., Friedli, C.M. (1982). Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Research, 236(1), 93–105.

    CAS  PubMed  Google Scholar 

  • Mody, I., Lambert, J., Heinemann, U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. Journal of Neurophysiology, 57(3), 869–888.

    CAS  PubMed  Google Scholar 

  • Murphy, M.P., & Hartley, R.C. (2018). Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery.

  • Nicholls, D.G., & Budd, S.L. (2000). Mitochondria and neuronal survival. Physiological Reviews, 80(1), 315–360.

    CAS  PubMed  Google Scholar 

  • Østby, I., Øyehaug, L., Einevoll, G.T., Nagelhus, E.A., Plahte, E., Zeuthen, T., Lloyd, C.M., Ottersen, O.P., Omholt, S.W. (2009). Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLos Computational Biology, 5(1), e1000272.

    PubMed  PubMed Central  Google Scholar 

  • Øyehaug, L., Østby, I., Lloyd, C.M., Omholt, S.W., Einevoll, G.T. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of Computational Neuroscience, 32(1), 147–165.

    PubMed  Google Scholar 

  • Payne, J.A., Rivera, C., Voipio, J., Kaila, K. (2003). Cation–chloride co-transporters in neuronal communication, development and trauma. Trends in Neurosciences, 26(4), 199–206.

    CAS  PubMed  Google Scholar 

  • Piilgaard, H., Witgen, B.M., Rasmussen, P., Lauritzen, M. (2011). Cyclosporine a, FK506, and NIM811 ameliorate prolonged cbf reduction and impaired neurovascular coupling after cortical spreading depression. Journal of Cerebral Blood Flow & Metabolism, 31(7), 1588–1598.

    CAS  Google Scholar 

  • Pomper, J.K., Haack, S., Petzold, G.C., Buchheim, K., Gabriel, S., Hoffmann, U., Heinemann, U. (2006). Repetitive spreading depression-like events result in cell damage in juvenile hippocampal slice cultures maintained in normoxia. Journal of Neurophysiology.

  • Rosenthal, M., & Martel, D.L. (1979). Ischemia-induced alterations in oxidative ?recovery? metabolism after spreading cortical depression in situ. Experimental Neurology, 63(2), 367–378.

    CAS  PubMed  Google Scholar 

  • Russo, E., Nguyen, H., Lippert, T., Tuazon, J., Borlongan, C.V., Napoli, E. (2018). Mitochondrial targeting as a novel therapy for stroke. Brain Circulation, 4(3), 84.

    PubMed Central  Google Scholar 

  • Scanlon, J., Brocard, J., Stout, A., Reynolds, I. (2000). Pharmacological investigation of mitochondrial Ca 2+ transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial na +Ca 2+ exchanger. Cell Calcium, 28(5-6), 317–327.

    CAS  PubMed  Google Scholar 

  • Schechter, M., Sonn, J., Mayevsky, A. (2009). Brain oxygen balance under various experimental pathophysiologycal conditions. In Oxygen Transport to Tissue (pp. 293–299). Berlin: Springer.

    Google Scholar 

  • Schild, L., Blair, P.V., Davis, W.I., Baugh, S. (1999). Effect of adenine nucleotide pool size in mitochondria on intramitochondrial ATP levels. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1413(1), 14–20.

    CAS  Google Scholar 

  • Somjen, G.G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiological Reviews, 81(3), 1065–1096.

    CAS  PubMed  Google Scholar 

  • Somjen, G.G. (2004). Ions in the brain New york: Oxford UP.

  • Sonn, J., & Mayevsky, A. (2000). Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Research, 882(1-2), 212–216.

    CAS  PubMed  Google Scholar 

  • Syková, E., & Nicholson, C. (2008). Diffusion in brain extracellular space. Physiological Reviews, 88(4), 1277–1340.

    PubMed  PubMed Central  Google Scholar 

  • Toglia, P., & Ullah, G. (2016). The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer s disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore. Cell Calcium, 60 (1), 13–24.

    CAS  PubMed  Google Scholar 

  • Toglia, P., Cheung, K.H., Mak, D.O.D., Ullah, G. (2016). Impaired mitochondrial function due to familial Alzheimer s disease-causing presenilins mutants via Ca 2+ disruptions. Cell Calcium, 59(5), 240–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toglia, P., Demuro, A., Mak, D.O.D., Ullah, G. (2018). Data-driven modeling of mitochondrial dysfunction in alzheimer’s disease. Cell Calcium, 76, 23–35.

    CAS  PubMed  Google Scholar 

  • Traub, R.D., Jefferys, J., Miles, R., Whittington, M.A., Tóth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. The Journal of Physiology, 481(1), 79–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traynelis, S.F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59(1), 259–276.

    CAS  PubMed  Google Scholar 

  • Ullah, G., Jung, P., Cornell-Bell, A.H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium, 39(3), 197–208.

    CAS  PubMed  Google Scholar 

  • Ullah, G., Cressman, J.R. Jr, Barreto, E., Schiff, S.J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: Ii. network and glial dynamics. Journal of Computational Neuroscience, 26(2), 171–183.

    PubMed  Google Scholar 

  • Ullah, G., Wei, Y., Dahlem, M.A., Wechselberger, M., Schiff, S.J. (2015). The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization. PLos Computational Biology, 11(8), e1004414.

    PubMed  PubMed Central  Google Scholar 

  • Vaillend, C., Mason, S.E., Cuttle, M.F., Alger, B.E. (2002). Mechanisms of neuronal hyperexcitability caused by partial inhibition of na+-k+-atpases in the rat ca1 hippocampal region. Journal of Neurophysiology, 88 (6), 2963–2978.

    CAS  PubMed  Google Scholar 

  • Wacquier, B., Combettes, L., Van Nhieu, G.T., Dupont, G. (2016). Interplay between intracellular Ca 2+ oscillations and Ca 2+-stimulated mitochondrial metabolism. Scientific Reports, 6, 19316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmeier, P.C., Feldtrauer, J.J., Qian, T., Lemasters, J.J. (2002). Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Molecular Pharmacology, 62(1), 22–29.

    CAS  PubMed  Google Scholar 

  • Wang, J., Chambers, G., Cottrell, J., Kass, I. (2000). Differential fall in ATP accounts for effects of temperature on hypoxic damage in rat hippocampal slices. Journal of Neurophysiology, 83(6), 3462–3472.

    CAS  PubMed  Google Scholar 

  • Wasterlain, C.G., Thompson, K.W., Suchomelova, L., Niquet, J. (2010). Brain energy metabolism during experimental neonatal seizures. Neurochemical Research, 35(12), 2193–2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Ullah, G., Ingram, J., Schiff, S.J. (2014a). Oxygen and seizure dynamics: II. computational modeling. Journal of Neurophysiology, 112(2), 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Ullah, G., Schiff, S.J. (2014b). Unification of neuronal spikes, seizures, and spreading depression. Journal of Neuroscience, 34(35), 11733–11743.

    CAS  PubMed  Google Scholar 

  • Yang, H., Wu, J., Guo, R., Peng, Y., Zheng, W., Liu, D., Song, Z. (2013). Glycolysis in energy metabolism during seizures. Neural Regeneration Research, 8(14), 1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Lipton, P. (1999). Cytosolic Ca 2+ changes during in vitroischemia in rat hippocampal slices: Major roles for glutamate and na +-dependent Ca 2+ release from mitochondria. Journal of Neuroscience, 19(9), 3307–3315.

    CAS  PubMed  Google Scholar 

  • Zhou, N., Gordon, G.R., Feighan, D., MacVicar, B.A. (2010). Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cerebral Cortex, 20 (11), 2614–2624.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a startup grant from Collage of Arts and Sciences awarded to Ghanim Ullah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanim Ullah.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Maxim Bazhenov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toglia, P., Ullah, G. Mitochondrial dysfunction and role in spreading depolarization and seizure. J Comput Neurosci 47, 91–108 (2019). https://doi.org/10.1007/s10827-019-00724-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00724-6

Keywords

Navigation