Skip to main content

Advertisement

Log in

Spontaneous synaptic drive in detrusor smooth muscle: computational investigation and implications for urinary bladder function

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The detrusor, a key component of the urinary bladder wall, is a densely innervated syncytial smooth muscle tissue. Random spontaneous release of neurotransmitter at neuromuscular junctions (NMJs) in the detrusor gives rise to spontaneous excitatory junction potentials (SEJPs). These sub-threshold passive signals not only offer insights into the syncytial nature of the tissue, their spatio-temporal integration is critical to the generation of spontaneous neurogenic action potentials which lead to focal contractions during the filling phase of the bladder. Given the structural complexity and the contractile nature of the tissue, electrophysiological investigations on spatio-temporal integration of SEJPs in the detrusor are technically challenging. Here we report a biophysically constrained computational model of a detrusor syncytium overlaid with spatially distributed innervation, using which we explored salient features of the integration of SEJPs in the tissue and the key factors that contribute to this integration. We validated our model against experimental data, ascertaining that observations were congruent with theoretical predictions. With the help of comparative studies, we propose that the amplitude of the spatio-temporally integrated SEJP is most sensitive to the inter-cellular coupling strength in the detrusor, while frequency of observed events depends more strongly on innervation density. An experimentally testable prediction arising from our study is that spontaneous release frequency of neurotransmitter may be implicated in the generation of detrusor overactivity. Set against histological observations, we also conjecture possible changes in the electrical activity of the detrusor during pathology involving patchy denervation. Our model thus provides a physiologically realistic, heuristic framework to investigate the spread and integration of passive potentials in an innervated syncytial tissue under normal conditions and in pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andersson, K. E., Chapple, C., & Wein, A. (2001). The basis for drug treatment of the overactive bladder. World Journal of Urology, 19(5), 294–298.

    Article  CAS  PubMed  Google Scholar 

  • Appukuttan, S., Brain, K. L., & Manchanda, R. (2015). A computational model of urinary bladder smooth muscle syncytium. Journal of Computational Neuroscience, 38(1), 167–187.

    Article  PubMed  Google Scholar 

  • Bennett, M. R. (1973). Structure and electrical properties of the autonomic neuromuscular junction. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 265(867), 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Brading, A. F. (1997). A myogenic basis for the overactive bladder. Urology, 50(6), 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Brading, A. F. (2005). Overactive bladder: Why it occurs. Women's Health Medicine, 2(6), 20–23.

    Article  Google Scholar 

  • Bramich, N. J., & Brading, A. F. (1996). Electrical properties of smooth muscle in the Guinea-pig urinary bladder. The Journal of Physiology, 492(1), 185–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cash, S., & Yuste, R. (1998). Input summation by cultured pyramidal neurons is linear and position-independent. Journal of Neuroscience, 18(1), 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Cash, S., & Yuste, R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron, 22(2), 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Crane, G. J., Hines, M. L., & Neild, T. O. (2001). Simulating the spread of membrane potential changes in arteriolar networks. Microcirculation, 8(1), 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Drake, M. J., Gardner, B. P., & Brading, A. F. (2003). Innervation of the detrusor muscle bundle in neurogenic detrusor overactivity. BJU International, 91(7), 702–710.

    Article  CAS  PubMed  Google Scholar 

  • Drake, M. J., Kanai, A., Bijos, D. A., Ikeda, Y., Zabbarova, I., Vahabi, B., & Fry, C. H. (2017). The potential role of unregulated autonomous bladder micromotions in urinary storage and voiding dysfunction; overactive bladder and detrusor underactivity. BJU International, 119(1), 22–29.

    Article  PubMed  Google Scholar 

  • Fry, C. H., Cooklin, M., Birns, J., & Mundy, A. R. (1999). Measurement of intercellular electrical coupling in Guinea-pig detrusor smooth muscle. The Journal of Urology, 161(2), 660–664.

    Article  CAS  PubMed  Google Scholar 

  • Fry, C. H., Sui, G. P., Severs, N. J., & Wu, C. (2004). Spontaneous activity and electrical coupling in human detrusor smooth muscle: Implications for detrusor overactivity? Urology, 63(3), 3–10.

    Article  PubMed  Google Scholar 

  • Gabella, G. (1995). The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat. Journal of Neurocytology, 24(3), 159–187.

    Article  CAS  PubMed  Google Scholar 

  • Gabella, G. (2012). Cells of visceral smooth muscles. Journal of Smooth Muscle Research, 48(4), 65–95.

    Article  PubMed  Google Scholar 

  • Goto, K., Millecchia, L. L., Westfall, D. P., & Fleming, W. W. (1977). A comparison of the electrical properties and morphological characteristics of the smooth muscle of the rat and Guinea-pig vas deferens. Pflügers Archiv, 368(3), 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Hashitani, H. B. N. J., Bramich, N. J., & Hirst, G. D. S. (2000). Mechanisms of excitatory neuromuscular transmission in the Guinea-pig urinary bladder. The Journal of Physiology, 524(2), 565–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashitani, H., Fukuta, H., Takano, H., Klemm, M. F., & Suzuki, H. (2001). Origin and propagation of spontaneous excitation in smooth muscle of the Guinea-pig urinary bladder. The Journal of Physiology, 530(2), 273–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashitani, H., Brading, A. F., & Suzuki, H. (2004a). Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the Guinea-pig bladder. British Journal of Pharmacology, 141(1), 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Hashitani, H., Yanai, Y., & Suzuki, H. (2004b). Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the Guinea-pig urinary bladder. The Journal of Physiology, 559(2), 567–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayase, M., Hashitani, H., Kohri, K., & Suzuki, H. (2009). Role of K+ channels in regulating spontaneous activity in detrusor smooth muscle in situ in the mouse bladder. The Journal of Urology, 181(5), 2355–2365.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, R., & Brading, A. F. (1990). The properties of the ATP-induced depolarization and current in single cells isolated from the Guinea-pig urinary bladder. British Journal of Pharmacology, 100(3), 619–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, L., Cunningham, R. M., Young, J. S., Fry, C. H., McMurray, G., Eccles, R., & McCloskey, K. D. (2012). Altered distribution of interstitial cells and innervation in the rat urinary bladder following spinal cord injury. Journal of Cellular and Molecular Medicine, 16(7), 1533–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnoperov, V. G., Bittner, M. A., Beavis, R., Kuang, Y., Salnikow, K. V., Chepurny, O. G., Little, A. R., Plotnikov, A. N., Wu, D., Holz, R. W., & Petrenko, A. G. (1997). α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron, 18(6), 925–937.

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra, C., Brain, K. L., & Manchanda, R. (2018). A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One, 13(7), e0200712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manchanda, R. (1995). Membrane current and potential change during neurotransmission in smooth muscle. Current Science, 69(2), 140–150.

    CAS  Google Scholar 

  • Manchanda, R., Appukuttan, S., & Padmakumar, M. (2019). Electrophysiology of syncytial smooth muscle. Journal of Experimental Neuroscience, 13, 1179069518821917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, E., Young, J. S., & Brading, A. F. (2008). Spontaneous activity of mouse detrusor smooth muscle and the effects of the urothelium. Neurourology and Urodynamics: Official Journal of the International Continence Society, 27(1), 79–87.

    Article  Google Scholar 

  • Neuhaus, J., Wolburg, H., Hermsdorf, T., Stolzenburg, J.-U., & Dorschner, W. (2002). Detrusor smooth muscle cells of the Guinea-pig are functionally coupled via gap junctions in situ and in cell culture. Cell and Tissue Research, 309(2), 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Padmakumar, M., Brain, K. L., Young, J. S., & Manchanda, R. (2018). A four-component model of the action potential in mouse detrusor smooth muscle cell. PLoS One, 13(1), e0190016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palani, D., & Manchanda, R. (2006). Effect of heptanol on noradrenaline-induced contractions in rat vas deferens. Journal of Smooth Muscle Research, 42(1), 49–61.

  • Palani, D., Ghildyal, P., & Manchanda, R. (2006). Effects of carbenoxolone on syncytial electrical properties and junction potentials of Guinea-pig vas deferens. Naunyn-Schmiedeberg's Archives of Pharmacology, 374(3), 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Poirazi, P., Brannon, T., & Mel, B. W. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron, 37(6), 977–987.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, N., Brain, K. L., & Manchanda, R. (2015, August). Spatiotemporal dynamics of synaptic drive in urinary bladder syncytium: A computational investigation. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 8074–8077). IEEE.

  • Sengupta, N., Brain, L. K., & Manchanda, R. (2018, July). Cellular Environment in a Bundle Modulates SEJP Characteristics in Detrusor Smooth Muscle. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5842–5845). IEEE.

  • Sourav, S., & Manchanda, R. (2000). Influence of the size of syncytial units on synaptic potentials in smooth muscle. Medical and Biological Engineering and Computing, 38(3), 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, T. (1976). Electrophysiology of mammalian smooth muscle. Progress in Biophysics and Molecular Biology, 30, 185–203.

    Article  Google Scholar 

  • Wang, H. Z., Brink, P. R., & Christ, G. J. (2006). Gap junction channel activity in short-term cultured human detrusor myocyte cell pairs: Gating and unitary conductances. American Journal of Physiology-Cell Physiology, 291(6), C1366–C1376.

    Article  CAS  PubMed  Google Scholar 

  • Wüst, M., Averbeck, B., Reif, S., Bräter, M., & Ravens, U. (2002). Different responses to drugs against overactive bladder in detrusor muscle of pig, Guinea pig and mouse. European Journal of Pharmacology, 454(1), 59–69.

    Article  PubMed  Google Scholar 

  • Young, J. S., Brain, K. L., & Cunnane, T. C. (2007). The origin of the skewed amplitude distribution of spontaneous excitatory junction potentials in poorly coupled smooth muscle cells. Neuroscience, 145(1), 153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, J. S., Meng, E., Cunnane, T. C., & Brain, K. L. (2008). Spontaneous purinergic neurotransmission in the mouse urinary bladder. The Journal of Physiology, 586(23), 5743–5755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Department of Biotechnology (DBT), India (BT/PR12973/MED/122/47/2016) and the UK-India Education and Research Initiative, UKIERI (UKUTP20110055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Manchanda.

Ethics declarations

Conflict of interest

None.

Additional information

Action Editor: Upinder Singh Bhalla

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, N., Manchanda, R. Spontaneous synaptic drive in detrusor smooth muscle: computational investigation and implications for urinary bladder function. J Comput Neurosci 47, 167–189 (2019). https://doi.org/10.1007/s10827-019-00731-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00731-7

Keywords

Navigation