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Abstract

Decision-making in dynamic environments typically requires adaptive evidence accumulation that 

weights new evidence more heavily than old observations. Recent experimental studies of dynamic 

decision tasks require subjects to make decisions for which the correct choice switches 

stochastically throughout a single trial. In such cases, an ideal observer’s belief is described by an 

evolution equation that is doubly stochastic, reflecting stochasticity in the both observations and 

environmental changes. In these contexts, we show that the probability density of the belief can be 

represented using differential Chapman-Kolmogorov equations, allowing efficient computation of 

ensemble statistics. This allows us to reliably compare normative models to near-normative 

approximations using, as model performance metrics, decision response accuracy and Kullback-

Leibler divergence of the belief distributions. Such belief distributions could be obtained 

empirically from subjects by asking them to report their decision confidence. We also study how 

response accuracy is affected by additional internal noise, showing optimality requires longer 

integration timescales as more noise is added. Lastly, we demonstrate that our method can be 

applied to tasks in which evidence arrives in a discrete, pulsatile fashion, rather than continuously.
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1 Introduction

Natural environments are fluid, and living beings need to accumulate evidence adaptively in 

order to make sound decisions (Behrens et al. 2007; Ossmy et al. 2013). Theoretical models 

suggest, and experiments confirm, that in changing environments animals use decision 

strategies that value recent observations more than older ones (Yu and Cohen 2008; Brea et 

al. 2014; Urai et al. 2017). For instance, adaptive evidence accumulation has been explored 
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using a dynamic version of the random dot motion discrimination (RDMD) task (Glaze et al. 

2015). In this task, subjects must determine the predominant direction (left or right) of a 

field of randomly moving dots while this direction switches stochastically according to a 

continuous time Markov process. Since switches are unpredictable, an ideal observer 

discounts old information in favor of new evidence. Furthermore, this discounting rate 

increases with the rate of environmental changes. This strategy has been observed in humans 

and other animals performing dynamic tasks (Glaze et al. 2015, 2018; Piet et al. 2018).

Normative models and their approximations have been used successfully to understand how 

subjects make decisions (Ratcliff 1978; Gold and Shadlen 2007). In simple cases these 

models are tractable and make concrete predictions about response statistics that can be 

compared to experimental data (Bogacz et al. 2006; Drugowitsch 2016; Ratcliff and 

McKoon 2008). However, determining when subjects use approximately normative decision 

strategies, and when and how they fail to do so, can be computationally challenging. For 

instance, one may wish to study how a subject’s estimate of the environmental timescale 

impacts their response accuracy, or how heuristic evidence-discounting strategies compare to 

optimal ones (Glaze et al. 2018; Radillo et al. 2019). To address these questions, previous 

work has primarily relied on Monte Carlo simulations (Veliz-Cuba et al. 2016; Piet et al. 

2018), which can be computationally expensive.

Here, we show how to reframe dynamic decision models by deriving corresponding 

differential Chapman-Kolmogorov (CK) equations (See Eq. (6)). This approach allows us to 

quickly compute observer beliefs and performance, and compare models. Realizations of our 

models are described by stochastic differential equations with a drift term that switches 

according to a two-state Markov process, and leak terms that discount evidence. To describe 

these models using CK equations, we treat the switching process as a source of dichotomous 

noise, and condition on its state to track conditional belief densities. These methods allow us 

to quickly answer questions about how characteristics of optimal models and their 

approximations vary across ranges of task parameters.

Nonlinear, normative models can thus be compared to approximate linear and cubic 

discounting models, models with internal noise, and explicitly solvable bounded 

accumulation models with no flux boundaries. These models all can obtain near-optimal 

response accuracy, but each has very different belief distributions. This suggests that subject 

confidence reports could be used to distinguish subject decision strategies in data.

Detailed analyses, including belief distribution calculations, can be performed rapidly and 

accurately with our methods, allowing us to see why each approximate model performs 

better at different task difficulty levels. Monte Carlo methods fare much worse in terms of 

computation time and accuracy (See Fig. 9). Our methods also extend to tasks with pulsatile 

evidence, where drift and diffusion are replaced by jump terms. Our work thus demonstrates 

how partial differential equation descriptions of stochastic decision models, previously 

successful in understanding decision making in static environments (Busemeyer and 

Townsend 1992; Moehlis et al. 2004; Bogacz et al. 2006), can be extended to dynamic 

environments.
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2 Normative models for dynamic decision-making

We begin by considering the dynamic RDMD task (Glaze et al. 2015; Veliz-Cuba et al. 

2016); an observer looks at a screen of dots which move, on average, right or left. The 

average direction of motion, which we call the state s(t), switches in time between states s+ 

(right-moving) and s− (left-moving) as a two-state continuous time Markov process with 

hazard rate h, so P (s(t+Δt) ≠ s(t)) = hΔt+o(Δt).1 The observer is interrogated at a random 

time, T, and reports their belief about the current direction of motion, s(T). The most reliable 

state estimate is obtained by computing the log-likelihood ratio (LLR) between choices from 

(noisy) observations, ξ(t), of the moving dot stimulus. Assuming the observer maintains a 

fixed estimate of the environmental hazard rate, ℎ, this evidence-accumulation process 

converges to a single stochastic differential equation (SDE) for the belief (or LLR) 

y(t) = log
P s+|ξ(t)
P s−|ξ(t)  of the observer (See Veliz-Cuba et al. 2016 and Appendix A for modeling 

assumptions and details):

dy(t) = g(t)dt + ρdW t − 2ℎsinh(y(t))dt, (1)

where g(t) is a telegraph process that switches between two values, ±g, defined as the 

expected LLR update from a new observation given the environmental state, with transition 

rate h; this provides evidence about the current state, s(t). The increment of a Wiener process 

dWt is scaled by ρ, defined as the standard deviation of the LLR update from a new 

observation given the environmental state. The observer’s assumed hazard rate ℎ shapes the 

evidence discounting process. If we assume observations of the state s(t) are drawn from 

normal distributions, the input to the evidence accumulation model can be described by a 

single parameter (Veliz-Cuba et al. 2016). Combining our assumptions and rescaling time as 

ht ↦ t, we obtain the following SDE for the observer’s belief (See Appendix A) in rescaled 

time (different from the units in Eq. (1)):

dy(t) = x(t) ⋅ m ⋅ dt
drift 

+ 2mdW t
noise 

− 2ℎ
ℎ sinh(y(t))dt
nonlinear leak 

, (2)

where x(t) ∈ ± 1 is a telegraph process with switching rate equal to 1. The parameter m gives 

the mean information gain of the observer over the average length of time the environment 

remains the same (h−1 in original units, 1 in rescaled units). As m increases the task becomes 

easier. Thus, we refer to m as the evidence strength. If we take ℎ = ℎ, the explicit 

dependence of Eq. (2) on h vanishes, and, as we show, the observer obtains maximal 

response accuracy.

We are primarily interested in how variations of the evidence strength, m, true hazard rate, h, 

and the observer’s hazard rate estimate, ℎ, impact the response accuracy of an observer 

whose belief is represented by Eq. (2). These quantities can be changed by varying 

1The notation o(Δt) means all other terms are of smaller order than Δt. More precisely, o(Δt) represents a function f (Δt) with the 

property lim
Δt 0

f Δt
Δt = 0.
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psychophysical task parameters (Glaze et al. 2015, 2018; Piet et al. 2018), and so provide a 

means of validating Eq. (2) and its approximations. In addition, a thorough understanding of 

the normative model’s performance can provide insights into task parameter ranges in which 

a subject’s belief, y(t), is sensitive to the strategy they use (Radillo et al. 2019). Obtaining 

statistics of the solutions to Eq. (2) requires estimating the distribution of the stochastically 

evolving belief y(t) across time. Monte Carlo approaches can require many realizations to 

accurately characterize belief distributions (See Fig. 9 in Appendix C), and can thus be 

computationally prohibitive.

2.1 Expressing models using differential Chapman Kolmogorov equations

An alternative to sampling is to derive differential CK equations corresponding to Eq. (2) 

and evolve them to obtain time-dependent probability distributions, p(y, t), of observer 

belief, y(t), directly. For instance, for a fixed realization of x(t), the evolution of p(y, t) is 

described by the following differential CK equation:

∂p(y, t)
∂t = − x(t)m∂p(y, t)

∂y + 2ℎ
ℎ

∂
∂y [sinh(y)p(y, t)] + m∂2p(y, t)

∂y2 . (3)

Here the drift terms involve non-autonomous forcing by x(t) and evidence discounting, while 

the diffusion term arises from the Wiener process. This equation could be useful for model 

fitting, since an experimenter would know the realization of x(t), and could then fit the 

single free parameter ℎ using response data. A simulation using a fixed realization of x(t) 
shown in Fig. 1a, reveals how the belief density tracks the state changes, and the peak of the 

distribution tends towards the fixed points y± of Eq. (2) where 0 = ∓ m + 2ℎ
ℎsinh(y±).

The evolution of the belief and performance across trials is determined by extending our 

model to include the distribution of possible realizations of x(t). Treating x(t) as 

dichotomous noise and defining the joint probability densities p±(y, t) ≔ p(y, t|s(t) = s±), we 

obtain a set of coupled differential CK equations(Gardiner 2004):

∂p+
∂t = − m∂p+

∂y + 2ℎ
ℎ

∂
∂y sinh(y)p+ + m∂2p+

∂y2 + p− − p+ , (4a)

∂p−
∂t = +m

∂p−
∂y

drift 

+ 2ℎ
ℎ

∂
∂y sinh(y)p−

nonlinear leak 

+ m
∂2p−
∂y2

noise 

+ p+ − p−
switching 

. (4b)

The jump terms that exchange probability between p+ and p− in Eq. (4a), (4b) arise from the 

switches in state, as schematized in Fig. 1b. Equation (4a), (4b) describe the joint evolution 

of the density of beliefs across all realizations of x(t). We assume symmetric priors, 

p ± (y, 0) = 1
2δ(y). As we will show, this and the symmetry of Eq. (4a), (4b) leads to 
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symmetric solutions p+(y, t) = p−(−y, t). For more details on deriving Eq. (4a), (4b) and the 

expressions that follow, see Appendix B.

Response accuracy – the probability of a correct response – is a common measure of subject 

performance in decision making tasks (Gold and Shadlen 2007; Ratcliff and McKoon 2008). 

Experimentally, response accuracy is defined as the fraction of correct responses at a 

specific interrogation time T (Glaze et al. 2015; Piet et al. 2018). In our model, optimal 

observers make choices in accordance with the sign of their belief, sign[y(t)], and response 

accuracy can be computed from solutions to Eq. (4a), (4b) by computing

Acc(T) = ∫
0

∞
p+(y, T )dy + ∫

−∞

0
p−(y, T )dy . (5)

The belief, y(t), is correct if it has the same sign as s(t). This fact along with the inherent odd 

symmetry of Eq. (4a), (4b) suggests a change of variables −y ↦ y in Eq. (4b). The sum, 

ps(y, t) ≔ p+(y, t) + p−(−y, t), then evolves according to

∂ps
∂t = −m∂ps

∂y
drift 

+ 2ℎ
ℎ

∂
∂y sinh(y)ps(y, t)

nonlinear leak 

+ m∂2ps
∂y2

noise 

+ ps( − y, t) − ps(y, t)
switching 

.
(6)

The new density ps(y, t) defines all belief values y > 0 as correct, since the sign of beliefs in 

the state s− have been flipped, −y ↦ y, while the sign of all beliefs in state s+ remain the 

same. The density ps(y, t) thus describes beliefs relative to the state, s(t), with each 

environmental change flipping the sign of the belief, y(t) (See Fig. 1b). Equation (5) can 

therefore be rewritten more simply as Acc(T) = ∫0
∞ps(y, T )dy. By symmetry, we can recover 

the two original densities as p ± (y, t) = 1
2 ps( ± y, t).

Solving the CK equations numerically, we observe several notable features of p±(y, t) and 

ps(y, t) (Fig. 1c). First, the densities p±(y, t) are reflections of one another (p+(y, t) = p−(−y, 

t)) due to the symmetry of Eq. (4a), (4b).Second, all densities obtain stationarity on the 

timescale h−1 of the environment, so each is a unimodal function peaked on the correct side 

of y = 0. Stationary is reached due to the eventual equilibration between the drift and state 

switching. Most of the mass of the stationary densities is on the correct side of y = 0, and 

Acc(T) > 0.5. The long tail of the distribution ps(y, t) is due to both the constant transfer of 

probability from y to −y due to the switching and the Wiener process noise. Both the 

nonlinear leak and switching cause the accuracy Acc(T) to saturate over time.

Before going further, we note that Eq. (6) satisfies the conditions for existence of an ergodic 

process (Gardiner 2004): The nonzero jump probabilities, and a positive diffusion 

coefficient, ensure that the differential CK equation converges to a unique stationary density 

as t → ∞. This occurs in a relatively short time period; we therefore focus the remainder of 

our study on steady-state cases. Typically, experimental dynamic decision trials are 

sufficiently long to make this assumption of stationarity reasonable (Glaze et al. 2015; Piet 

et al. 2018).
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2.2 Evaluating accuracy for mistuned evidence-discounting

Subjects performing decision tasks often must learn the task parameters online to improve 

their performance. Our model can be extended to consider hazard rate learning (Radillo et al. 

2017; Glaze et al. 2018), but for now we assume that the observer uses a fixed estimate ℎ of 

the hazard rate for their evidence discounting strategy (Glaze et al. 2015).

How does the response accuracy of an observer whose belief is described by Eq. (2) change 

when ℎ is mistuned? Veliz-Cuba et al. (2016) addressed this question using Monte Carlo 

sampling, but computational costs prevented a complete answer. Since Eq. (2) is rescaled, 

we take h = 1 for the remainder of our investigation; all other cases can be recovered by 

rescaling time. Before asking how changing ℎ alters accuracy, we first briefly mention how 

accuracy varies with evidence strength, fixing ℎ = ℎ = 1. The density ps(y, t) computed 

using Eq. (6) rapidly converges to the stationary solution, with most of its mass above zero 

(Fig. 2a). As m, increases, more mass of the stationary distribution moves to positive values 

(Fig. 2b), but the total mass, equal to limT→∞ Acc(T), always saturates at a valueless than 

1 due to discounting and state switching.

When the observer misestimates the hazard rate, ℎ ≠ ℎ, we expect the long term accuracy to 

suffer. Effects on accuracy are subtle, but do follow a general pattern: overestimating the 

hazard rate ℎ > ℎ  causes the observer to discount prior evidence too strongly, resulting in 

more errors driven by observation noise (Fig. 2c). On the other hand, observers that 

underestimate the hazard rate 0 < ℎ < ℎ  discount evidence too slowly and are less adaptive 

to change points. Change point triggered response accuracy plots show both of these trends 

(Fig. 2d). Accuracy obtains a lower ceiling value during longer epochs without 

environmental changes when the discounting rate ℎ is too high. On the other hand, accuracy 

recovers more slowly following changes when the discounting rate ℎ is too low. This bias-

variance tradeoff is common to binary choice experiments in dynamic environments (Glaze 

et al. 2015, 2018): Low discounting rates lead to averaging over longer sequences of 

observations thus reducing the effect of observational noise while increasing bias. On the 

other hand, high discounting rates decrease bias but increase susceptibility to observational 

noise, resulting in higher variability. An optimal observer balances these two sources of 

inaccuracy at a given environmental hazard rate.

An experimenter may not be able to change the discounting rate a subject uses, but can 

control the strength of evidence the subject integrates. We therefore asked how the accuracy 

of both ideal and mistuned observers is impacted by changes in m. Not surprisingly, 

accuracy increases as the strength of evidence increases (Fig. 2e). More interestingly, the 

sensitivity (or curvature) of the accuracy function at the optimum, where ℎ = ℎ, varies 

nonmonotonically with m, obtaining a peak at m ≈ 5 (Fig. 2f). Thus response accuracy is 

most sensitive to model mistuning for tasks of intermediate difficulty. Intuitively, an 

observer will always perform close to chance (Acc ≈ 0.5) when the task is hard (m is low), 

regardless of the ℎ they use. The observer will perform well (Acc ≈ 1), again regardless of ℎ, 

if the task is easy (m is high). At intermediate values of m, the observer’s performance is 

sensitive to changes in the model. See Radillo et al. (2019) for a similar analysis for a 

dynamic decisions using pulsatile evidence.
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This example illustrates how CK equations can be used to obtain response accuracy 

statistics, and to compare normative models to related nonlinear models in which the 

evidence discounting is mistuned. Such approximate models may offer plausible 

descriptions of subject’s strategies, but only capture some of the possibilities. In the next 

section, we develop and analyze linear discounting models that approximate the adaptive 

evidence accumulation properties of the normative model and can be tuned to obtain near-

optimal response accuracy.

3 Linear evidence discounting in dynamic environments

The nonlinear model defined by Eq. (2) describes the optimal evidence-accumulation 

strategy when the estimated hazard rate is correct. However, approximate models can also 

obtain response accuracy that is near-optimal. Glaze et al. (2015) and Veliz-Cuba et al. 

(2016) demonstrated this using a model that includes a linear leak term, −λy, in place of the 

nonlinearity in the normative model. The linear model is more tractable and can capture the 

dynamics of subjects’ beliefs in behavioral data (Ossmy et al. 2013; Glaze et al. 2015; Piet et 

al. 2018). We are interested in how well its statistics can be matched to that of the nonlinear 

model and how sensitive this match is to perturbations in the leak rate.

The linear discounting model is the doubly stochastic differential equation,

dy = x(t) ⋅ mdt + 2mdW t − λydt, (7)

where λ is a parameter we tune. As before, we can write differential CK equations 

corresponding to Eq. (7), and define ps(y, t) = p+(y, t) + p−(−y, t)to obtain the evolution 

equation

∂ps
∂t = − m∂ps

∂y + λ ∂
∂y yps + m∂2ps

∂y2 + ps( − y, t) − ps(y, t) . (8)

As in the nonlinear model, an attracting stationary solution to Eq. (8) exists as long as λ > 0 

(Gardiner 2004). We thus focus on stationary solutions, ps(y), and make comparisons with 

the normative model. Our goal is to see how the leak rate, λ, can be tuned so that the 

behavior of an observer whose belief evolves according to Eq. (7) best matches that of an 

observer using the normative model, Eq. (2).

We use two metrics to compare our models: first, we consider the accuracy of the linear 

model

Acc∞(λ) = lim
t ∞∫

0

∞
ps(y, t; λ)dy, (9)

and aim to tune λ so Acc∞(λ) is maximized. Second, to quantify the distance between the 

belief distributions, we compute the Kullback-Leibler (KL) divergence
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DKL ps
N ps

L = ∫
−∞

∞
ps

N(y) ln ps
N(y)

ps
L(y; λ)

dy (10)

between the stationary normative distribution, ps
N(y), obtained from Eq. (6), and the 

stationary distribution of the linear approximation, ps
L(y; λ), obtained from Eq. (8). While it 

is possible for models to have nearby belief distributions but different realizations within 

trials, minimizing KL divergence still penalizes models with divergent belief distributions, 

sure to have distinct trial wise realizations. We show that choosing the leak rate, λ, that 

maximizes accuracy or minimizes the KL divergence leads to different biases (Fig. 3a,b).

Similar to the nonlinear model, the response accuracy of an observer using linear 

discounting varies nonmonotonically with λ (Fig. 3a). Observers using small λ adapt too 

slowly to change points, and those using a high λ exhibit more noise-driven errors in the 

state estimate. The optimal value of λ is achieved by balancing these error sources, 

obtaining response accuracy levels very close to those of the normative model. Furthermore, 

the λ = λopt
Acc that maximizes response accuracy increases as m is increased, since evidence 

needs to be discounted more rapidly in environments with higher evidence strengths (Fig. 

3c). The KL divergence also varies nonmonotonically with λ for all values of m (Fig. 3b), 

obtaining a minimum at a value λ = λopt
KL that also increases with m, but is higher than λopt

Acc. 

Understanding this result requires a more detailed analysis of the stationary densities of the 

normative and linear models, as we discuss below.

How important is it to tune λ in the linear model? If linear models are more sensitive to fine 

tuning for some task parameter ranges than the normative model, experimentalists could use 

these task parameter ranges to distinguish subjects’ strategies. When m is small the belief 

distributions ps
L(y) and ps

N(y) are close whether λ = λopt
Acc, or λ = λopt

KL (Fig. 3c,e), but this 

agreement is sensitive to changes in λ (Fig. 3d). Thus, both the accuracy and KL divergence 

are sensitive to λ when m is small. For large m the two belief distributions are not close 

(Fig. 3e), and the KL divergence and difference in accuracy are insensitive to changes in λ. 

This disagreement in belief distribution at high m is less important when optimizing the 

accuracy of the linear model, as we only need to maximize the mass ps
L above y = 0.

Differences between the two models become apparent if we interrogate observers about their 

confidence and not just their choice (Fig. 3e). We hypothesize that if one were to fit 

behavioral data using response accuracy, and compare them to fits using subject’s 

confidence reports, the second approach would result in stronger leak rates. Indeed, 

considerations of subject confidence as a proxy for LLR has been an important development 

in recent decision making studies (Kiani and Shadlen 2009; Van Den Berg et al. 2016), and 

we will revisit this view in Section 7. However, most behavioral studies of decisions in 

dynamic environments do not include confidence reports, and so model fits are typically 

performed by considering accuracy data. We thus focus primarily on this measure for the 

remainder of our study. An example using confidence reports to determine the discounting 

parameter λ a subject uses is given in Appendix D (Fig. 10).
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4 Tuning evidence accumulation to account for internal noise

We next explore the impact of additional noise sources on the performance of both the 

nonlinear and linear models. Since the nervous system is inherently noisy (Faisal et al. 

2008), it is important to consider sources of variability on top of the stochasticity of 

observations when developing and fitting decision models (Smith 2010). Brunton et al. 

(2013) showed that the responses of humans and rats in an auditory clicks task are best 

described by models that include internally generated noise. Piet et al. (2018) showed that 

the same is the case in a dynamic clicks task. With this in mind, we extend our analysis to 

incorporate an additional independent noise source. Such variability could arise in early 

sensory areas or as part of the decision process (Bankó et al. 2011). For simplicity, we model 

the source of noise as an independent Wiener process, Xt, with variance scaled by a 

parameter D. The nonlinear model then takes the form,

dy = x(t) ⋅ mdt + 2mdW t + 2DdXt − 2ℎ
ℎsinh(y)dt . (11)

Adding internal noise means that Eq. (11) is no longer a normative model: When D > 0, 

noise corrupts state estimates (Fig. 4a), and maximal response accuracy is achieved when 

ℎ < ℎ, as we show. The linear model is updated similarly,

dy = x(t) ⋅ mdt + 2mdW t + 2DdXt − λydt . (12)

In either model, the Wiener processes, dWt and dXt, are independent.

As before, we can derive an evolution equation for the ensemble of realizations of these 

stochastic processes (See Appendix E). For the nonlinear Eq. (11), the corresponding 

differential CK equation is

∂ps
∂t = − m∂ps

∂y + 2ℎ
ℎ

∂
∂y sinh(y)ps + [m + D]∂2ps

∂y2 + ps( − y, t) − ps(y, t) , (13)

and the corresponding differential CK equation for Eq. (12) is

∂ps
∂t = − m∂ps

∂y + λ ∂
∂y yps + [m + D]∂2ps

∂y2 + ps( − y, t) − ps(y, t) . (14)

Thus, only the constants scaling the diffusion term change as compared to the models 

without internal noise, Eqs. (6) and (8).

How should evidence accumulation be adjusted to maximize response accuracy as the 

evidence strength and internal noise change? As noted earlier, humans and rats integrate 

internal noise in addition to information obtained from the stimulus itself (Glaze et al. 2015; 

Piet et al. 2018). It is therefore plausible that they adjust their stimulus integration strategies 

to limit the impact of internal noise on performance. Increasing the magnitude of internal 

noise, D, reduces response accuracy in the nonlinear model (Fig. 4a,b), and there there is a 

steep drop off in response accuracy when D slightly exceeds m (Fig. 4b). This occurs 
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whether ℎ is fixed or allowed to vary. When ℎ can be tuned, the value of ℎ that maximizes 

response accuracy decreases as D is increased (Fig. 4c): The observer must integrate over 

longer timescales to average the increased internal noise and obtain a reliable estimate of the 

state. However, this is balanced by the need to adapt to change points as quickly as possible. 

Similarly, in the linear model the leak rate, λ, that maximizes accuracy decreases as D is 

increased (Fig. 4d). In general, as internal noise increases the observer must thus integrate 

over longer timescales to obtain the most accurate estimate of the state.

5 Discounting by bounding observer confidence

As an alternative to models that discount evidence with leak terms, we next consider models 

with no leak, and no-flux boundaries at y = ±β (Glaze et al. 2015). This prevents the belief 

from straying outside of the range −β ≤ y ≤ β:

dy =
x(t) ⋅ mdt + 2m ⋅ dW t, y ∈ ( − β, β),
min x(t) ⋅ mdt + 2m ⋅ dW t, 0 , y ≥ + β,
max x(t) ⋅ mdt + 2m ⋅ dW t, 0 , y ≤ − β .

(15)

Unlike classic DDMs for two alternative free response tasks (Smith and Ratcliff 2004; 

Bogacz et al. 2006; Gold and Shadlen 2007), the process does not terminate when the belief, 

y, reaches one of the boundaries ±β.

More careful treatments of the reflecting boundary are possible, by considering the limit of a 

discrete-time biased random walk on a lattice (Erban and Chapman 2007), but we prefer the 

more intuitive description of Eq. (15), whose statistics we expect to match those of more 

detailed models. Figure 5a shows example realizations of this stochastic process as the 

boundary location, β, is varied, illustrating how encounters with the no-flux boundaries 

serve to discount evidence.

The steady-state solution of the differential CK equations corresponding to Eq. (15) can be 

obtained exactly. The evolution equations are

∂p±(y, t)
∂t = ∓ m∂p±(y, t)

∂y + m∂2p±(y, t)
∂y2 + p∓(y, t) − p±(y, t) , (16)

and the no flux (Robin) boundary conditions imply that

±mp±( ± β, t) − m
∂p±( ± β, t)

∂y = 0.

Since Eq. (16) is an advection-diffusion equation, the proper reflecting boundary is a Robin 

boundary (Gardiner 2004). It can be shown that the stationary solution 

ps(y) = p+(y) + p−( − y) to Eq. (16) restricted by the boundary conditions is

ps(y) = C1 + C2 eqy + (mq − (m + 1))e−qy . (17)
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The constants C1 and C2 and details of the derivation are given in Appendix F.

The distribution is more shallow for higher β, as the stochastic trajectories spread over the 

admissible belief range (Fig. 5b). This is analogous to the sharpening (broadening) of the 

stationary distributions of the linear model that occurs as the leak rate is increased 

(decreased). Note here that decreasing β strengthens the discounting effect of the reflecting 

boundaries.

To compute steady state accuracy of the bounded accumulator model, we can integrate Eq. 

(17) to obtain a formula that depends on m and β:

Acc∞(β) = ∫
0

β
ps(y)dy = C1β + C2 1 − e−qβ

q eqβ + (mq − (m + 1)) . (18)

For fixed m, Eq. (18) varies nonmonotonically with β, so there is a single β = βopt which 

maximizes the accuracy (Fig. 5c). As m increases, this optimal β increases, suggesting that 

as the evidence is strengthened (Fig. 5d), less discounting is needed, in contrast to the linear 

discounting model. Accuracy is most sensitive to changes in β when m is small (Fig. 5e).

We also compare the performance of the bounded accumulator model with that of the linear 

discounting model (Fig. 5f). At low m, linear discounting performs better than the bounded 

accumulator, obtaining accuracy closer to that of the normative model. The opposite is true 

at high m, in which case the bounded accumulator model performs better. This may be 

related to the fact that linear discounting better approximates the local dynamics of the 

nonlinearity −2h sinh(y)when m is small (and thus y is closer to 0), whereas a sharp 

boundary better approximates the strong discounting of the nonlinearity at higher values of y 
(reached when m is large) (Glaze et al. 2015). Both models perform quite close to the 

normative model when their discounting parameters are fine tuned.

Despite the bounded accumulator model’s near optimal response accuracy, it is important to 

note that the distributions ps(y) of the bounded accumulator (Fig. 5b) are very different from 

those of the normative (Fig. 2b) or even the linear model (Fig. 3e,f). In this respect, fitting 

subject confidence reports using the bounded accumulator would give very different results; 

we return to this point in Section 7.

6 Generalized discounting functions with a cubic example

There are many combinations of discounting functions and boundaries that could be used to 

approximate the nonlinearity fN(y) = − 2ℎsinh(y) in the normative model (Wilson et al. 

2010). To use our methods, we require discounting functions, f (y), that are (i) odd (f (−y) = 

−f (y)), and (ii) negative for some half-infinite positive region of y (f (y) > 0 for y ∈ (a, ∞) 

where a ≥ 0); these conditions ensure convergence to non-trivial stationary distributions. For 

a general discounting function, the rescaled model then takes the form

dy(t) = x(t) ⋅ mdt + 2mdW t + f(y)dt, (19)
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with the differential CK equation for ps(y, t) = p+(y, t) + p−(−y, t)given

∂ps
∂t = − m

∂ps
∂y − ∂

∂y f(y)ps(y, t) + m
∂2ps
∂y2 + ps( − y, t) − ps(y, t) .

This family of evidence-discounting models could also incorporate boundary conditions as 

in the previous section.

A natural way to extend the linear is to introduce a cubic discounting function 

fC(y) = − λ1y − λ2y3 (Piet et al.2018) which can be tuned to better match the nonlinearity of 

the normative model (Fig. 6a). As shown in Section 7, this vastly improves the agreement 

between the stationary probability density ps
C(y) and that of the normative model, ps

N(y), 
though the model is more complex (Friedman et al. 2001). Since the linear model already 

obtains near-optimal accuracy (Fig. 3a), we find, as expected, that the best cubic model is 

only slightly more accurate. In fact, accuracy drops rapidly as λ2 is changed from its optimal 

value (Fig. 6b). We also calculated the difference between the accuracy of the optimal cubic 

model and optimal linear model, ΔAcc(m) = AccC(m) − AccL(m) (Fig. 6c). Accuracy 

improves by incorporating the cubic term at high m values, since nonlinear discounting is 

most needed at higher y values.

However, mistuning the cubic model can considerably limit accuracy when the attractor 

structure of Eq. (19) with f (y) = fC(y) is qualitatively changed (Fig. 6d). Equilibria of the 

noise-free model are identified by fixing x(t) = ±1 and solving the cubic equation 

0 = ∓ m − λ1y − λ2y3. Fixing λ2 > 0, we find a critical value, λ1
c < 0 for which the attractor 

structure of the model switches from a single stable fixed point to two (Fig. 6e). Such 

bistable systems can be advantageous for working memory (Brody et al. 2003), but can 

hinder belief switches necessary in dynamic environments after state transitions. Figure 6d 

shows that the accuracy of the model decreases as λ1 is decreased and the potential wells 

deepen. In these cases, the observer retains an erroneous belief long after the state has 

changed.

Thus, the cubic nonlinearity only marginally improves accuracy, but can have deleterious 

effects if mistuned. However, we may wish to use other measures of a subject’s belief to fit 

and validate models. In the next section we therefore ask how the full belief distribution 

changes with the choice of discounting function, and use KL divergence to quantify 

differences between different models.

7 Revisiting KL divergence for fitting observer belief distributions

Subject reports of confidence in decision-making tasks can be associated with LLRs of 

normative evidence accumulation models (Kiani and Shadlen 2009). Thus, it may be 

possible to empirically estimate the belief distribution, ps(y, t), represented by our models, 

by asking subjects to report confidence in their choice. This provides an additional 

advantage of our approach over Monte Carlo simulations, as using the latter to estimate 

belief distributions can be costly and inaccurate (See Fig. 9 in Appendix C). As we show 
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here, a better understanding of how our normative and approximate models deviate from one 

another can be gleaned by comparing their belief distributions and computing KL divergence 

measures.

We provide intuition for the differences we will see by plotting single stochastic realizations 

of all four models (Fig. 7a). The linear and (even better) the cubic models closely track the 

belief trajectory of the normative model, while the bounded accumulator model strays the 

farthest. Comparing belief distributions of all four models that minimize KL divergence with 

the normative model at m = 50 (Fig. 7b), we see that the cubic model matches the normative 

model far better than the linear model. This is due to the nonlinearity incorporated by the 

cubic term, which attenuates the tail of the distribution at high y values. On the other hand, 

the best fit bounded accumulator distribution is far from that of the normative model.

Computing the KL divergence between models, we arrive at two main conclusions: First, 

despite the fact that the bounded accumulator obtains near optimal accuracy, the 

corresponding belief distribution, ps
B(y), deviates from that of the normative model, ps

N(y), at 

all evidence strength values, m (Fig. 7c). On the other hand, though the cubic model only 

mildly increases response accuracy over the linear model, the corresponding belief 

distribution, ps
C(y), matches that of the normative model, ps

N(y), far better (Fig. 7d). Our 

differential CK framework allowed us to obtain these results quickly and accurately.

8 Chapman-Kolmogorov equations for clicks-task models

Thus far, we have been concerned with models that represent evidence accumulation in a 

RDMD task (Glaze et al. 2015), in which subjects receive a continuous flow of evidence 

during a trial. We next examine models of observers accumulating discretely timed, pulsatile 

evidence.

Piet et al. (2018) showed rats can perform an auditory clicks task of this type near-optimally. 

In this experiment, subjects are presented with two trains of clicks (one to the left ear, the 

other to the right), each generated by a Poisson process with instantaneous rates rL(t) and 

rR(t). The rates evolve according to a two-state continuous time Markov process with hazard 

rate h so that P(rj(t + dt) ≠ rj(t)) = h · dt + o(dt), rR(t) ≠ rL(t) always, and rR,L(t) ∈ r±with r+ > 
r−. We define the state (rR(t), rL(t))= (r±, r∓) as s±. Observations ξ(t) are now comprised of 

the presence or absence of left or right clicks at each time t. See Piet et al. (2018) and 

Radillo et al. (2019) for details. At an interrogation time, T , the observer must respond 

which side currently has the higher click rate r+.

The model for an ideal observer’s belief y(t) = log
P s+|ξ(t)
P s−|ξ(t)  is given by

dy
dt = κ ∑

j = 1

∞
δ t − tR

j − δ t − tL
j − 2ℎsinh(y), (20)
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where κ = ln
r+
r−

 is the height of each evidence increment, tR
j  and tL

j  are the right and left 

click times, and h is the hazard rate. Additionally, we define the inputs’ signal-to-noise ratio 

(SNR) as SNR =
r+ − r−
r+ + r−

 (Skellam1946). See Radillo et al. (2019) for a detailed discussion 

of how the SNR shapes model response accuracy.

Rather than carrying out another detailed analysis of several different approximations and 

perturbations to Eq. (20), we simply wish to show that our CK approach works and provides 

useful insights for click stimulus models. To sample the space of possible approximate 

models, we fix h = 1 and focus on a linear discounting and bounded accumulator model. 

Since Piet et al. (2018) was specifically interested in internal noise perturbed versions of the 

linear model, we start with this example, and then consider a bounded accumulator without 

internal noise that affords us explicit results.

Our linear model with internal noise takes the form

dy = κ ∑
j = 1

∞
δ t − tR

j − δ t − tL
j dt − λy ⋅ dt + 2DdXt . (21)

Here λ is the leak rate, D is the strength of the internal noise, and Xt is a Wiener process. We 

then define conditional densities p+(y, t) and p−(y, t) as before, writing coupled differential 

CK equations as

∂p±(y, t)
∂t = r± p±(y − κ, t) − p±(y, t) + r∓ p±(y + κ, t) − p±(y, t)

+ λ ∂
∂y yp±(y, t) + D∂2p±(y, t)

∂y2 + p∓(y, t) − p±(y, t),
(22)

Unlike our differential CK equations for models with continuously arriving evidence, the 

pulses flow probability between y±κ and y, preventing us from combining p±(y, t) with a 

change of variables and obtaining a single CK equation. Note, Piet et al. (2018) considered a 

generalization of Eq. (21) in which click amplitudes were variable too, introducing 

additional stochasticity. Such a formulation would introduce integrals into Eq. (22) to 

account for the range of possible jump heights. Simulating Eq. (22) directly, we study how 

response accuracy depends on the leak and the click rates (Radillo et al. 2019). Similar to 

our linear model with a drift diffusion signal, accuracy varies nonmonotonically with λ (Fig. 

8a), and is maximized at λ = λopt for a given pair (r+, r−) as plotted in Fig. 8b. Fixing SNR 

does not fix λopt as Radilloet al. (2019) showed for the normative model. As either r+ or r− is 

increased, λopt increases (Fig. 8b), suggesting that increasing the rate of true or erroneous 

pulses warrants stronger evidence discounting.

We also consider a bounded accumulator with no explicit discounting function. In parallel 

with Eq. (16), we define the model as
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dy
dt =

κ∑j = 1
∞ δ t − tR

j − δ t − tL
j , y ∈ ( − κβ, κβ),

min κ ∑
j = 1

∞
δ t − tR

j − δ t − tL
j , 0 , y ≥ + κβ,

max κ ∑
j = 1

∞
δ t − tR

j − δ μ − tL
j , 0 , y ≤ − κβ .

The observer’s belief is restricted to the interval [−κβ, κβ] for some positive integer 

β ∈ ℤ > 0. The corresponding differential CK equations can be written as a discretized 

system since y only visits integer multiples of κ between −κβ to κβ. Rescaling n = y/κ 
yields the following system

∂p±
∂t = r± p±(n − 1, t) − p± + r∓ p±(n + 1, t) − p± + p∓ − p±, (23)

for n = −β + 1, …, β − 1, along with the boundary equations

0 = − r±p±( − β, t) + r∓p±( − β + 1, t) + p∓( − β, t) − p±( − β, t),

0 = r±p±(β − 1, t) − r∓p±(β, t) + p∓(β, t) − p±(β, t) .

As with the continuum version of the bounded accumulator, the stationary solution p(n) can 

be obtained explicitly

ps(n) = C1 + C2q+n + C3q−
n , (24)

with constants q±, C1, C2, and C3 and the derivation given in Appendix G.

The dependence of the optimal β = βopt, which maximizes response accuracy, on r+ and r− is 

nuanced. Fixing r− = 30, for a given SNR =
r+ − r−
r+ + r−

, there is an optimal β = βopt 

maximizing response accuracy(Fig. 8c). However, there is a surprisingly large range of (r+, r

−) values within which β = 1 is optimal (Fig. 8d). There is a range of (r+, r−) for which the 

discounting timescale (breadth of the interval [−βκ, βκ]) increases with task difficulty, as 

long as r+ is sufficiently far from r−. However, when r− ≈ r+, βopt = 1, despite task difficulty. 

We conjecture this bound improves performance by instituting a “two click” strategy, in 

which the observer needs to only hear two clicks on the high click rate side to register a 

correct current belief. This limits the size of erroneous excursions wrong clicks can cause, as 

the bounds limit the effect of many misatributed clicks in a row.

Our methods thus extend to models with pulsatile evidence accumulation, illustrating their 

broad applicability. We can efficiently study model performance and its dependence on task 

parameters, and even explicitly analyze the resulting equations to determine how 

approximate models perform.
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9 Conclusion

Decision-making models are key to understanding how animals integrate evidence to make 

choices in nature. Animals most likely use heuristic strategies in dynamic tasks as they can 

be easier to implement, and have utility that is close to optimal (Rahnev and Denison 2018). 

Normative models are still useful, however, as subject performance can be benchmarked 

against them, allowing possible insights into how and why organisms fail to perform 

optimally (Geisler 2003). Investigating optimal models and their approximations requires 

simulations across large parameter spaces; these necessarily require rapid simulation 

techniques to obtain refined results. Efficient computational methods are therefore essential 

for the analysis of evidence accumulation models, and their application to experiment 

design.

Using differential CK equations to describe ensembles of decision model realizations speeds 

up computation and describes the time-dependent probability density of an observer’s belief. 

Thus, traditional metrics of performance (e.g., accuracy) and other less common model 

comparison metrics (KL divergence) can be computed rapidly. This opens new avenues for 

comparing normative and heuristic decision making models, and for determining task 

parameter ranges to distinguish models. There is also hope that in high throughput 

experiments, sufficient data could be collected to specify subject confidence distributions, 

which could be fit, or compared to model predictions (Piet et al. 2019).

Doubly stochastic and jump-diffusion models appear in a number of other contexts in 

neuroscience and beyond (Hanson 2007; Horsthemke and Lefever 2006). For instance, 

dichotomous and white noise have been included in linear integrate and fire (LIF) models to 

model voltage or channel fluctuations (Droste and Lindner 2014; 2017; Salinas and 

Sejnowski 2002). The interspike interval statistics of these models can be analyzed directly 

by considering the corresponding differential CK equations. Unlike the models we consider 

here, the LIF model includes a single absorbing boundary and reset condition, which must 

be treated carefully when defining the flow of probability through state space.

We have studied a number heuristic models and computed how their performance depends 

on both task parameters and evidence discounting parameters. Well tuned heuristic models, 

such as the linear and bounded accumulator models, can in fact exhibit near-normative 

performance (Glaze et al. 2015; Veliz-Cuba et al. 2016; Radillo et al. 2019). There are 

specific parameter regimes (low versus high m) in which certain heuristic models perform 

better; our differential CK methods have allowed us to explore these regimes rapidly. 

Importantly, Brunton et al. (2013), and Piet et al. (2018) have shown that internal noise 

determines subject performance in decision tasks, in addition to the variability of the signal. 

We have confirmed that including internal noise causes optimal evidence-discounting to be 

weakened as noise increases, and that accuracy drops off precipitously once the amplitude of 

internal noise reaches that of the signal.

Our approach can also be used by experimentalists testing observer performance in 

dynamic-decision tasks. Models can thus guide one’s choice of task parameters when setting 

up experiments to determine the strategies subjects use to make decisions in dynamic 
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environments. As in Radillo et al. (2019), we found that accuracy is most sensitive to one’s 

choice of model and tuning when tasks are of intermediate difficulty. In contrast, tasks that 

are easy (hard) are performed well (poorly) by most models. Also, the full belief 

distributions generated by our methods could be subsampled to produce randomized 

responses for comparison with subject data (Drugowitsch 2016). It may also be feasible to 

use our differential CK equations to model trial-to-trial belief distributions of subjects, as 

affected by internal noise hidden to the experimentalist. This approach was recently 

developed in Piet et al. (2019) to account for for variability in subject responses.

Model development can also help to inspire new experimental tasks, based on predictions 

and ideas that arise from mathematically describing subjects’ decision processes. One 

possible extension of the tasks we have discussed here could consider stochastic switches in 

evidence quality within trials. Past work has focused on both theoretical predictions and 

experimental results associated with task difficulty switching between trials (Drugowitsch et 

al. 2012; Zhang et al. 2014), suggesting subjects’ decision thresholds may vary with time as 

task difficulty is inferred throughout the trial. When both the state and difficulty switch 

stochastically within a trial, the effective state is governed by a multi-state continuous time 

Markov process. Details that could be introduced into such multi-state models, such as 

asymmetric evidence qualities and the ability to turn off evidence, offer a rich framework for 

applying the stochastic methods we have developed here. Another extension we could 

consider in our models is the recently developed click task model with stochastically drawn 

click heights (Piet et al. 2018; Radillo et al. 2019). Jumps would then be represented by an 

integral over the entire belief space, requiring new computational methods for efficient 

simulation of the associated differential CK equations.

The analysis we have presented only considers environments governed by two-state 

continuous time Markov processes with symmetric transition rates, since this paradigm has 

been the focus of recent experimental work in humans and rodents (Glaze et al. 2015, 2018; 

Piet et al. 2018). Differential CK equations could also be formulated in the case of 

asymmetric transition rates as well as multiple discrete state or even continuum state Markov 

processes (Veliz-Cuba et al. 2016), and it would be interesting to see how previous work on 

such models could be extended by leveraging this approach. In addition, there has been 

previous work analyzing the effects of adaptive evidence integration under non-stationary 

psychophysical task conditions (Heath 1992; Eckhoff et al. 2008; Ossmy et al. 2013). While 

this past work considered more general forms of non-stationarity, their mathematical 

treatments focused on decision time statistics for single trials, rather than trial ensembles, as 

we studied here using our differential CK approach. Our mathematical approach allowed us 

to compare the performance of a broad array of evidence accumulation models across task 

parameter space.

Our study has focused on models of an observer has a fixed estimate of the discounting rate, 

and does no further learning of the change rate. Previous studies by Radillo et al. (2017) and 

Glaze et al. (2018) derived ideal observer models capable of inferring the change rate of a 

dynamic environment, and showed approximations can perform nearly as well in some 

circumstances. It is possible to formulate the ensemble dynamics of such models using 

differential CK equations, but the state space can be high-dimensional as the observer must 
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track probabilities over possible change rate values h. In such cases, numerical methods for 

solving high-dimensional partial differential equations are needed to make solving the 

ensemble equation in this way worthwhile. In ongoing work, we have developed ways of 

quantifying the rate at which learning occurs in these models (Eissa et al. 2019), and also 

identified when it is useful to apply this differential CK equation approach to analyzing 

model performance. These results will be reported elsewhere.

In recent years, decision-making models and experiments have been developed to 

incorporate more naturalistic scenarios in which the environment changes in fluid yet 

predictable ways. The associated normative models can be complex, and efficient simulation 

techniques are important for evaluating performance across different models and interpreting 

experimental decision data from psychophysics tasks. It is also important to develop families 

of plausible heuristic models that subjects may be implementing, and to find ways to 

compare them with normative models. Our Chapman-Kolmogorov framework provides a 

straightforward and robust way to achieve these goals.
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Appendix A:: Normative evidence-accumulation in dynamic environments

Here we derive the continuum limit of the Bayesian update equation for continuous evidence 

accumulation in a changing environment. Starting with the discrete time model, we define 

Ln,± = P(s(tn) = s±|ξ1:n) as the probability of being in state s± the at time tn assuming a 

sequence of observations ξ1:n. The state s(t) changes between evenly spaced time points t1:n 

(with Δt ≔ tn − tn−1) hazard at a rate hΔt ≔ h · Δt ≔ P(s(tn) =s∓|s(tn−1) = s±). The likelihood 

function fΔt,±(ξ) = P(ξ|s± = s±; Δt) the conditional probability of observing sample ξ given 

state s±, parameterized by Δt.

We begin by assuming an ideal observer who knows the environmental hazard rate h. Using 

Bayes’ rule and the law of total probability, we can relate Ln,± to the probability at the 

previous time step according to the weighted sum (Veliz-Cuba et al. 2016)

Ln, ± = fΔt, ± ξn
P ξ1:n
P ξ1:n

1 − ℎΔt Ln − 1, ± + ℎΔtLn − 1, ∓ , (25)

where L0,± = P(s(t0) = s±). Defining yn = log
Ln, +
Ln, −

, we can compute

Δyn ≔ yn − yn − 1 = logfΔt, + ξn
fΔt, − ξn

+ log1 − ℎΔt + ℎΔte−yn − 1

1 − ℎΔt + ℎΔteyn − 1
. (26)
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In search of the continuum limit of this equation, we assume 0 < Δt ≪ 1, 0 < |Δyn| ≪ 1, and 

use the approximation log(1 + z) ≈ z to obtain

Δyn ≈ logfΔt, + ξn
fΔt, − ξn

− 2ℎ ⋅ Δtsinh yn . (27)

Replacing the index n with the time t and applying the functional central limit theorem as in 

Billingsley (2008) and Bogacz et al. (2006), we can write Eq. (27) as

Δyt ≈ ΔtgΔt(t) + ΔtρΔt(t)η − 2ℎ ⋅ Δtsinh yt , (28)

where η is a random variable with a standard normal distribution and

gΔt(t) ≔ 1
ΔtEξ logfΔt, + (ξ)

fΔt, − (ξ) s(t) , ρΔt
2 (t)

≔ 1
ΔtVarξ logfΔt, + (ξ)

fΔt, − (ξ) s(t) .
(29)

The drift gΔt and variance ρΔt
2  diverge unless fΔt,±(ξ) are scaled appropriately in the Δt → 0 

limit. A reasonable assumption that can be made to compute gΔt and ρΔt
2  explicitly is to take 

observations ξ to follow normal distributions with mean and variance scaled by Δt (Bogacz 

et al. 2006; Veliz-Cuba et al. 2016)

fΔt, ± (ξ) = 1
2πΔtσ2e−(ξ ∓ Δμ)2/ 2Δtσ2 ,

so we can compute the limits of Eq. (29) as

g(t) = lim
Δt 0

gΔt(t) ∈ ± 2μ2

σ2 = ± g, (30a)

ρ2(t) = lim
Δt 0

ρΔt
2 (t) = 4μ2

σ2 = ρ2, (30b)

where g(t) ∈ {+g, −g} is a telegraph process with probability masses P(±g, t) enolving as 

Ṗ( ± g, t) = ℎ P ∓g, t − P ±g, t  and ρ2(t) = ρ2 remains constant. Therefore, the continuum 

limit (Δt → 0) of Eq. (28) is

dy(t) = g(t)dt + ρdW t − 2ℎsinh(y(t))dt, (31)

where dW is a standard Wiener process. Equation (31) provide the normative model of 

evidence accumulation for an observer who knows the hazard rate h and wishes to infer the 

sign of g(t) at time t with maximal accuracy (Glaze et al. 2015; Veliz-Cuba et al. 2016).
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However, we are also interested in near-normative models in which the observer assumes an 

incorrect hazard rate ℎ ≠ ℎ. In such a case, the analysis proceeds as before, with the 

probabilistic inference process simply involving ℎ now rather than h, and the result is

dy(t) = g(t)dt + ρdW t − 2ℎsinh(y(t))dt . (32)

Lastly, note that if indeed the original observations ξ are drawn from normal distributions, 

Eq. (30a), (30b) states g(t) ∈ ±g where g = 2μ2/σ2 and ρ2 = 2g. Rescaling time ht ↦ t, we 

can then express Eq. (32) in terms of the following rescaled equation

dy(t) = x(t)mdt + 2mdW t + 2ℎ
ℎ sinh(y)dt,

where m = 2μ2/(hσ2) and x(t) ∈ ± 1 is a telegraph process with hazard rate 1, as shown in 

Eq. (2) of the main text.

Appendix B:: Derivation of the Chapman-Kolmogorov equations

Here we outline the derivation of the CK equations given by Eqs. (4a), (4b) and (6) in the 

main text. Our goal is to write a PDE that describes the evolution of an ensemble of belief 

trajectories described by the SDE in Eq. (2) across all realizations of both sources of 

stochasticity – observation noise and state switching. We cannot simply write a Fokker-

Planck equation to describe the desired probability distribution, as the process is doubly 

stochastic; the diffusion is described by a scaled Wiener process and the sign of the drift is 

controlled by a two-state Markov process. Therefore, following Droste and Lindner (2017), 

we condition our process on the state of x(t), and seek to obtain evolution equations for the 

conditional distributions p±(y, t) ≔ p(y, t |x(t) = ±).

We start by conditioning on x(t) = +1 to find an equation for p+(y, t). In the absence of state 

transitions in the background Markov process, the evolution equation for p+(y, t) is now 

given by the Fokker-Planck equation

∂p±
∂t = − m

∂p±
∂y + 2ℎ

ℎ
∂

∂y sinh(y)p+ + m
∂2p±
∂y2 .

On the other hand, in the absence of drift and diffusion, the evolution of p+(y, t) is governed 

exclusively by the two-state Markov process; in this case, we can write the evolution 

equation in the form of a discrete master equation:

dp +
dt = p− − p+ .

Note here that because of the rescaling of time in Eq. (2), the transition rates of the Markov 

process equal one. Given these two components, we can follow Gardiner (2004) to write the 

CK equation that describes the evolution of p+(y, t) when drift, diffusion, and switching are 

all present as
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∂p+
∂t = − m

∂p±
∂y + 2ℎ

ℎ
∂

∂y sinh(y)p+ + m
∂2p+
∂y2 + p− − p+ ,

which is Eqs. (4a); (4b) is obtained similarly by conditioning on x(t) = −1.

To determine response accuracy, we are interested in the probability the observer responds 

with the correct state of the Markov process. Therefore, at an interrogation time t = T where 

x(T) = +1, the observer is correct if y > 0.This probability is given by the integral 

∫0
∞p+(y, T )dy. Similarly, if x(T) = −1, the observer is correct if y < 0, which happens with 

probability ∫−∞
0 p−(y, T )dy. Therefore, the total response accuracy at time T is given by 

summing these two integrals:

Acc(T) = ∫0
∞

p+(y, T )dy + ∫−∞
0

p−(y, T )dy,

which is Eq. (5).

Finally, in order to more efficiently simulate the evolution of p+(y, t) and p−(y, t), we notice 

that because the nonlinear leak is an odd function, a change of variables −y ↦ y in Eq. (4b) 

allows us to combine Eqs. (4a) and (4b) into a single PDE. Defining ps(y, t) ≔ p+ (y, t) +p−

(−y, t), we obtain the evolution equation

∂ps
∂t = − m

∂ps
∂y + 2ℎ

ℎ
∂

∂y sinh(y)ps + m ∂2

∂y2 + ps( − y, t) − ps(y, t) ,

which is Eq. (6).

Appendix C:: Finite difference methods for Chapman-Kolmogorov 

equations

We used a finite difference method to simulate the differential CK equations. The method is 

exemplified here for the normative CK equation from Eq. (6), but a similar approach was 

used for the linear, cubic, and pulsatile equations. For stability purposes, our method uses 

centered differences in y and backward-Euler in t. This gives the following finite difference 

approximations of the functions and their derivatives in Eq. (6):

∂ps(y, t)
∂t ≈

ps(y, t + Δt) − ps(y, t)
Δt , ps(y, t) ≈ ps(y, t + Δt),

∂ps(y, t)
∂y ≈

ps(y + Δy, t + Δt) − ps(y − Δy, t + Δt)
2Δy ,
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∂2ps(y, t)
∂y2 ≈

ps(y − Δy, t + Δt) − 2ps(y, t + Δt) + ps(y + Δy, t + Δt)
(Δy)2

,

where Δt and Δy are timestep and spacestep of the simulation, respectively. Substituting into 

Eq. (6) and solving for ps(y, t) at each point on a mesh y for y gives the system of equations:

Aps(y, t + Δt) = p(y, t), (33)

where A is tridiagonal with elements along the primary off-diagonal. This system can be 

inverted at each timestep and used to calculate the updates ps(y, t + Δt).

For the boundary conditions, we imposed no-flux conditions at the mesh boundaries ±b. For 

a standard drift-diffusion equation with drift A(y) and diffusion constant B(y), this condition 

takes the form

J( ± b, t) = A( ± b)p( ± b, t) − 1
2

∂
∂y B( ± b)2p( ± b, t) = 0. (34)

Using the finite difference approximations

∂ps(y, t)
∂y ≈

3ps(y, t + Δt) − 4ps(y + Δy, t + Δt) + ps(y + 2Δy, t + Δt)
2Δy ,

∂ps(y, t)
∂y ≈

−ps(y − 2Δy, t + Δt) + 4ps(y − Δy, t + Δt) − 3ps(y, t + Δt)
2Δy ,

we can plug in ±b to the appropriate replacement and use Eq. (34) to find the appropriate 

boundary terms for the system in Eq. (33).

Figure 9 shows the results of Monte Carlo simulations compared against those from the CK 

equations; Monte Carlo simulations are less smooth (Fig. 9a), making optimality 

calculations less accurate. Furthermore, obtaining results that are close to those from the CK 

equations takes much longer to run (Fig. 9b), as we can obtain good accuracy (error ≈ 10−2) 

from the CK equations in less than a second (Fig. 9c).

Appendix D:: Distinguishing linear discounting models using confidence

Can we use the distributions obtained from the CK equations to distinguish which model a 

subject uses? To illustrate an example, we considered distinguishing the two linear 

discounting models given by Eq. (7) and asked how many trials an experimentalist would 

need to run in order to tell if a subject was using λAcc or λKL. We sampled from the 

distributions obtained from Eq. (8) and performed a likelihood ratio test to find the number 

of samples needed for the experimentalist to have 90% confidence in the model being used. 

Assuming a symmetric prior P(λAcc) = P(λKL) = 0.5, and defining Yj = yj(T ) as the belief 
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report at the end (t = T) of trial j, the likelihood ratio is computed using Bayes’ rule and 

independence after N trials as

P λAcc Y1:N
P λKL Y1:N

= ∏
j = 1

N P Yj λAcc

P Yj λKL ,

and we counted the number of trials required to obtain ≥ 90% confidence in either model (so 

P λ|Y1:N ≥ 0.9 for either λ ∈ {λAcc, λKL}). The results of this simulation are given in 

Fig. 10, showing that as the strength m of evidence increases, the mean number of trials 

〈N(m)〉 required to distinguish models decreases precipitously. This is to be expected based 

on the fact that the belief distributions become more separated as m increases (Fig. 3e).

Appendix E:: Deriving differential CK equation with internal noise

Here we provide intuition for the form of the diffusion coefficient in Eq. (13) for the belief 

distribution of a normative observer strategy with additional internal noise of strength D. 

Starting with the SDE in Eq. (12), because 2mdW t and 2DdXt are increments of 

independent Wiener processes, we can define a new Wiener process 

AdZt = 2mdW t + 2DdXt that has the same statistics as the original summed Wiener 

processes (Gardiner 2004). To determine the appropriate effective diffusion constant A, we 

note that

Var AdZt = A2Var dZt = A2t

and

Var 2mdW t + 2DdXt = 2mVar dW t + 2DVar dXt = 2mt + 2Dt .

This requires A = 2(m + D), and means Eq. (12) can be rewritten as

dy = x(t) ⋅ mdt + 2(m + D)dZt − 2ℎ
ℎ sinh(y)dt,

which following Gardiner (2004), has the differential CK equation given by Eq. (13).

Appendix F:: Steady state solution of the bounded accumulator model

Steady state solutions of Eq. (16) are derived first by noting that ∂tp± = 0 implies

0 = ∓ mp±′ (y) ± mp±′′(y) + p∓(y) − p±(y) , (35)

with boundary conditions p±(y)( ± β) = p±′ ( ± β). Equation (35) has solutions 

p+(y)
p−(y) = A

B eαy, with characteristic equation m2α4 − (m2 + 2m) α2 = 0. The characteristic 
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roots are α = 0, ±q, where we define q = 1 + 2
m . For α = 0, we have A = B, whereas for α 

= ±q, the symmetry p+(y) = p−( − y) implies B = (mq−(m + 1))A for α = +q and A = (mq − 

(m+ 1))B for α = −q. Lastly, defining the sum ps(y) = p+(y) + p−( − y), we obtain

ps(y) = C1 + C2 eqy + mq + m + 1 e−qy .

The no flux boundary conditions ps( ± β) −
∂ps( ± β)

∂y = 0 along with the normalization 

requirement ∫−β
β ps(y)dy = 1 give explicit expressions for the constants

C1 = 1
2β − C2

m(q − 1) sinh(qβ)
qβ

and

C2 = 2β (q − 1) eqβ + msinh(qβ)
qβ − (q + 1)(mq − (m + 1))e−qβ −1

.

Appendix G:: Steady state solution of the clicks-task bounded accumulator 

model

Considering Eq. (23), we look for stationary solutions of the form 
p+(n)
p−(n) =

C1
C2

αn, yielding 

the characteristic equation

r+αn − 1 + r−αn + 1 − rsαn r−αn − 1 + r+αn + 1 − rsαn − α2n = 0, (36)

Where rs = r+ + r− + 1. Solving Eq. (36) gives α = 1 with eigenfunction C1 = C2 and two 

roots α = q± of the quadratic α2 − α r+ + r+2 + r− + r−2 / r+r− + 1 = 0. Superimposing the 

eigenfunctions, redefining constants, and defining ps(n) = p+(n) + p−( − n) gives the general 

solution

ps(n) = C1 + C2q+n + C3q−n .

The constants C1, C2, and C3 can be determined by normalization ∑n = − β
β ps(n) = 1 and the 

stationary boundary conditions

r+ps(β − 1) − r−ps(β) + ps( − β) − ps(β) = 0,

r−ps( − β + 1) − r+ps( − β) + ps(β) − ps( − β) = 0.
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Long term accuracy of the bounded accumulator is then determined by the weighted sum 

Acc∞(β) = 1
2 ps(0) + ∑n = 1

β ps(n).
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Fig. 1. 
The evolution of solutions to the differential Chapman-Kolmogorov (CK) equations. a 
Evolution of the probability density given by Eq. (3) for a fixed realization of the telegraph 

process, x(t). A single realization of the belief, y, (solid) and the instantaneous fixed point of 

Eq. (2) in the absence of Wiener process noise (dashed) are superimposed. b Schematic of 

the differential CK equations. Based on the two-state continuous time Markov process, s(t), 
we define probability densities p±(y, t), where state transitions transfer probability between 

densities. The drift ±mdt and diffusion 2mdW  terms move probability along the belief 

variable y. Changing variables, we define ps(y, t), where changes in state transfer probability 

across the y = 0 axis. c Sample evolution of densities p±(y, t) and ps(y, t) using Eq. (4a), 

(4b), and (6) respectively. Shaded region shows probability that contributes to accuracy of 

observer, computed using Eq. (5). Details on numerical methods are provided in Appendix C
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Fig. 2. 
Performance of normative and mistuned nonlinear observer models. a Evolution of the 

density ps(y, t) for m = 50 given by Eq. (6). b Stationary densities, ps(y), for m = 5, 50. With 

stronger evidence (m = 50), the stationary distribution has more mass above y = 0. c 
Realizations of the belief variable y for different estimated hazard rates ℎ and fixed true 

hazard rate, h = 1. The environmental state, s(t), is shown below (red: s+; yellow: s−). d 
Observer accuracy, for varied ℎ, following a change point at t = 0. e Observer steady-state 

accuracy as a function of ℎ for different values of m is maximized when ℎ = ℎ = 1. f 

Curvature of the accuracy functions in e at the maximum, h = 1, as a function of m, shows 

the observer is most sensitive to changes in their estimated hazard rate ℎ when m ≈ 5
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Fig. 3. 
Linear two-alternative forced-choice task model. a Performance of the linear observer as a 

function of discounting rate, λ, for different evidence strengths, m. b KL divergence 

between the densities evolving under the normative and linear model as a function of λ, for 

different values of m. c Optimal discounting rate for each metric as a function of m. d 
Sensitivity of discounting rate on optimality metric as a function of m. e Comparison of the 

normative density (black), and the linear density with λ = λopt
Acc chosen to maximize 

accuracy (red), or with λ = λopt
KL chosen to minimize KL divergence (blue) for m = 5 (top) 

and m = 50 (bottom)
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Fig. 4. 
Internal noise reduces accuracy of dynamic decisions. a Superimposed realizations of the 

nonlinear model described by Eq. (11) with added internal noise as the magnitude of internal 

noise, D, is varied (legend). b Performance of nonlinear model Eq. (13) as internal noise 

amplitude D is varied for different evidence strengths m (legend). Vertical lines correspond 

to D = m. c Accuracy of nonlinear model Eq. (11) with added internal noise as a function of 

ℎ and D for m = 10. The blue line shows the optimal value of ℎ for a given D, when the 

environmental hazard rate, h = 1, is fixed. d Leak rate λ that maximizes accuracy for a given 

evidence strength m and internal noise amplitude D
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Fig. 5. 
Bounded accumulator dynamics and performance. a Superimposed stochastic realizations of 

Eq. (15) with different boundaries, β (legend). b Superimposed steady-state distributions, 

ps(y), computed from Eq. (17). c Tuning the boundary β, allows the accuracy of the bounded 

accumulator, Eq. (18), to closely match that of the normative model described by Eq. (2) 

(dashed lines) for various m (legend). d The optimal bound, βopt, that maximizes accuracy 

of the bounded accumulator as a function of m. e Sensitivity of the bounded accumulator 

model to changes in β near βopt as a function of m. f Difference in accuracy between the 

optimally tuned bounded accumulator and normative models (ΔAcc ≔ AccB(m) − AccN(m)) 

compared to accuracy difference between optimally tuned linear and normative models 

(ΔAcc ≔ AccL(m) − AccN(m)) as a function of m
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Fig. 6. 
Cubic discounting functions: fC(y) = − λ1y − λ2y3. a Compared with normative fN(y) = −2 

sinh(y) and linear fL(y) = −λ1y discounting functions. b Accuracy as a function of 

discounting rates (λ1, λ2), for m = 1. Dot denotes maximize. c Difference in accuracy 

between optimally tuned cubic and linear models (ΔAcc ≔ AccC(m) − AccL(m)) increase 

with m. d Accuracy as a function of λ1 for different m (legend). e Schematic of potential 

functions of linear model (top) and cubic model (bottom) given the state s(t). The cubic 

model has been mistuned so that λ2 = 1 and λ1 < 0, resulting in a double-potential well 

function
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Fig. 7. 
Minimizing KL divergence in our approximate models. a Single realization of linear, cubic, 

and bounded models tuned to minimize KL divergence m = 50. Normative realization is 

shown for comparison (legend). b Distributions of linear, cubic, and bounded models tuned 

to minimize KL divergence, again for m = 50. Left vertical axis gives normative, linear, and 

cubic scale, while right axis gives bounded accumulator scale. c Minimum KL divergence 

for linear and bounded models as a function of m. d Difference in KL between optimal 

linear and cubic models (ΔKL ≔ KLL(m) − KLC(m)) as a function of m
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Fig. 8. 
Performance of heuristic strategies on the dynamic clicks task. a Accuracy of the linear 

model varies nonmonotonically with the leak rate, λ for different SNR =
r+ − r−
r+ + r−

 (Radillo 

et al. 2019) with r− = 30 is fixed. b Heatmap of optimal leak rate, λ = λopt, as a function of r

+ and r− for the linear model. c Accuracy of the bounded accumulator model given by Eq. 

(24) varies with the boundary value β for different SNR as r− = 30 is fixed. d Heatmap of 

optimal β = βopt as a function of r+ and r− for bounded accumulator clicks model
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Fig. 9. 
Comparison of CK equations with Monte Carlo sampling. a Calculation of accuracy of 

mistuned nonlinear leak model for m = 5. Monte Carlo simulations run with varied number 

of samples superimposed (legend). b Runtime (red) and L2 error (blue) of Monte Carlo 

simulations as a function of sample size. Runtime of CK equations (black dashed) 

superimposed for comparison. L2 error of Monte Carlo simulations calculated against results 

from CK equations. c Runtime (red) and L∞ error (blue) of finite difference simulations of 

the nonlinear model Eq. (6) under refinement of belief discretization, compared with the Δy 
= 10−4 case. Because our method is first-order accurate in time and second-order accurate in 

belief, the method is first-order accurate when Δy is decreased and Δt is held constant
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Fig. 10. 
Distinguishing linear discounting parameter λ using confidence reports. a Average number 

of trials needed to determine whether a subject uses the maximizing accuracy leak 

parameter, λAcc, or the minimizing KL divergence leak parameter, λKL, as a function of 

evidence strength m. Averages were computed over a thousand simulations for interrogation 

time T = 1, with each simulation run until confidence in the subject’s model reached 90%
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