Skip to main content

Advertisement

Log in

Spatiotemporal model of tripartite synapse with perinodal astrocytic process

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Information transfer may not be limited only to synapses. Therefore, the processes and dynamics of biological neuron-astrocyte coupling and intercellular interaction within this domain are worth investigating. Existing models of tripartite synapse consider an astrocyte as a point process. Here, we extended the tripartite synapse model by considering the astrocytic processes (synaptic and perinodal) as compartments. The scattered extrinsic signals in the extracellular space and the presence of calcium stores in different astrocytic sites create local transient [Ca2+]. We investigated the Ca2+ dynamics and found that the increase in astrocytic intracellular [Ca2+] enhances the probability of neurotransmitter release. However, the period in which the extrasynaptic glutamate lingers in the extracellular space may cause excitotoxicity. We propose further biological investigation on intercellular communication, considering that unconventional sources (nonsynaptic) of glutamate may improve information processing in neuron-astrocyte networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbracchio, M.P., Burnstock, G., Verkhratsky, A., Zimmermann, H. (2009). Purinergic signalling in the nervous system: an overview. Trends in Neurosciences, 32(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M. (2013). Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. Journal of Computational Neuroscience, 34(3), 489–504.

    Article  PubMed  Google Scholar 

  • Arancibia-Carcamo, I.L., Ford, M.C., Cossell, L., Ishida, K., Tohyama, K., Attwell, D. (2017). Node of ranvier length as a potential regulator of myelinated axon conduction speed. Elife, 6, e23,329.

    Article  Google Scholar 

  • Ashhad, S., & Narayanan, R. (2018). Stores, channels, glue, and trees: active glial and active dendritic physiology. Molecular Neurobiology, 1–22.

  • Babbs, C.F., & Shi, R. (2013). Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons. PLoS One, 8(7), e67,767.

    Article  CAS  Google Scholar 

  • Barros, M, & Dey, S. (2018). Feed-forward and feedback control in astrocytes for ca2+-based molecular communications nanonetworks. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

  • Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nature Neuroscience, 19 (2), 182.

    Article  CAS  PubMed  Google Scholar 

  • Bezzi, P., & Volterra, A. (2014). Imaging exocytosis and recycling of synaptic-like microvesicles in astrocytes. Cold Spring Harbor Protocols, 2014(5), pdb–prot081,711.

    PubMed  Google Scholar 

  • Bogatov, N., Grigoryan, L., Ponetaeva, E., Sinisyn, A. (2014). Calculation of action potential propagation in nerve fiber. Progress in Biophysics and Molecular Biology, 114(3), 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94(4), 307–346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H. (2002). Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains. Journal of Neuroscience, 22(1), 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Bushong, E.A., Martone, M.E., Ellisman, M.H. (2004). Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. International Journal of Developmental Neuroscience, 22(2), 73–86.

    Article  PubMed  Google Scholar 

  • Butt, A.M. (2011). Atp: a ubiquitous gliotransmitter integrating neuron–glial networks. In Seminars in cell & developmental biology, (Vol. 22 pp. 205–213): Elsevier.

  • Chan, S.C., Mok, S.Y., Ng, D.W.K., Goh, S.Y. (2017). The role of neuron–glia interactions in the emergence of ultra-slow oscillations. Biological Cybernetics, 111(5–6), 459–472.

    Article  PubMed  Google Scholar 

  • Choi, M., Ahn, S., Yang, E.J., Kim, H., Chong, Y.H., Kim, H.S. (2016). Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Molecular Brain, 9(1), 72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cinciute, S. (2019). Translating the hemodynamic response: why focused interdisciplinary integration should matter for the future of functional neuroimaging. PeerJ, 7, e6621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Juan-Sanz, J., Holt, G.T., Schreiter, E.R., de Juan, F., Kim, D.S., Ryan, T.A. (2017). Axonal endoplasmic reticulum ca 2+ content controls release probability in cns nerve terminals. Neuron, 93(4), 867–881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà, M, & Brunel, N. (2016). Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, 2016.

  • De Pittà, M, Brunel, N., Volterra, A. (2016). Astrocytes: orchestrating synaptic plasticity? Neuroscience, 323, 43–61.

    Article  PubMed  CAS  Google Scholar 

  • Debanne, D, & Rama, S. (2011). Astrocytes shape axonal signaling. Science of Signal, 4(162), pe11–pe11.

    Article  Google Scholar 

  • Del-Bel, E., & De-Miguel, F.F. (2018). Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances. Frontiers in Synaptic Neuroscience, 10.

  • Deplanque, D. (2009). Maladie d’alzheimer: dualité des effets physiologiques et pathologiques du glutamate. La Lettre du pharmacologue Supplé,ment, 23(4), 13–22.

    CAS  Google Scholar 

  • Ding, X., Zhang, X., Ji, L. (2018). Contribution of calcium fluxes to astrocyte spontaneous calcium oscillations in deterministic and stochastic models. Applied Mathematical Modelling, 55, 371–382.

    Article  Google Scholar 

  • Durkee, C.A., & Araque, A. (2018). Diversity and specificity of astrocyte-neuron communication. Neuroscience.

  • Dutta, D.J., Woo, D.H., Lee, P.R., Pajevic, S., Bukalo, O., Huffman, W.C., Wake, H., Basser, P.J., SheikhBahaei, S., Lazarevic, V., et al. (2018). Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proceedings of the National Academy of Sciences, 115(46), 11,832–11,837.

    Article  CAS  Google Scholar 

  • English, D.F., McKenzie, S., Evans, T., Kim, K., Yoon, E., Buzsáki, G. (2017). Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron, 96(2), 505–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, R., & Blackwell, K. (2015). Calcium: amplitude, duration, or location? The Biological Bulletin, 228 (1), 75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco, T.A., & McCarthy, K.D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. Journal of Neuroscience, 38(1), 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, A. (2016). Nerve cell function and synaptic mechanisms. Anaesthesia & Intensive Care Medicine, 17 (4), 199–203.

    Article  Google Scholar 

  • Ford, M.C., Alexandrova, O., Cossell, L., Stange-Marten, A., Sinclair, J., Kopp-Scheinpflug, C., Pecka, M., Attwell, D., Grothe, B. (2015). Tuning of ranvier node and internode properties in myelinated axons to adjust action potential timing. Nature Communications, 6, 8073.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, S.A., Desmazieres, A., Fricker, D., Lubetzki, C., Sol-Foulon, N. (2016). Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cellular and Molecular Life Sciences, 73 (4), 723–735.

    Article  CAS  PubMed  Google Scholar 

  • Genç, Ö., Dickman, D.K., Ma, W., Tong, A., Fetter, R.D., Davis, G.W. (2017). Mctp is an er-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. Elife, 6, e22,904.

    Article  Google Scholar 

  • Gordleeva, S.Y., Stasenko, S.V., Semyanov, A.V., Dityatev, A.E., Kazantsev, V.B. (2012). Bi-directional astrocytic regulation of neuronal activity within a network. Frontiers in Computational Neuroscience, 6, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordleeva, S.Y., Lebedev, S., Rumyantseva, M., Kazantsev, V.B. (2018). Astrocyte as a detector of synchronous events of a neural network. JETP Letters, 107(7), 440–445.

    Article  CAS  Google Scholar 

  • Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience, 4, 136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra-Gomes, S., Sousa, N., Pinto, L., Oliveira, J.F. (2018). Functional roles of astrocyte calcium elevations: from synapses to behavior. Frontiers in Cellular Neuroscience, 11, 427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulledge, A.T., & Bravo, J.J. (2016). Neuron morphology influences axon initial segment plasticity. eNeuro, ENEURO–0085.

  • Guo, Y., Liu, Z., Yk, Chen, Chai, Z., Zhou, C., Zhang, Y. (2017). Neurons with multiple axons have functional axon initial segments. Neuroscience Bulletin, 33(6), 641–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., Haydon, P.G. (2007). Synaptic islands defined by the territory of a single astrocyte. Journal of Neuroscience, 27(24), 6473–6477.

    Article  CAS  PubMed  Google Scholar 

  • Handy, G., Taheri, M., White, J.A., Borisyuk, A. (2017). Mathematical investigation of ip 3-dependent calcium dynamics in astrocytes. Journal of Computational Neuroscience, 42(3), 257–273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heller, J.P., & Rusakov, D.A. (2017). The nanoworld of the tripartite synapse: insights from super-resolution microscopy. Frontiers in Cellular Neuroscience, 11, 374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hennig, M.H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in Computational Neuroscience, 7, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hliatsevich, M.A., Bulai, P.M., Pitlik, T.N., Denisov, A.A., Cherenkevich, S.N. (2015). Design of deterministic model of signal transduction between neuronal cells. Mathematical Modelling and Analysis, 20(1), 76–93.

    Article  Google Scholar 

  • Hu, X., Yuan, Y., Wang, D., Su, Z. (2016). Heterogeneous astrocytes: active players in cns. Brain Research Bulletin, 125, 1–18.

    Article  PubMed  Google Scholar 

  • Jourdain, P., Bergersen, L.H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., Volterra, A. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 10(3), 331.

    Article  CAS  PubMed  Google Scholar 

  • Kelso, J.S., Dumas, G., Tognoli, E. (2013). Outline of a general theory of behavior and brain coordination. Neural Networks, 37, 120–131.

    Article  PubMed  Google Scholar 

  • Kettenmann, H., & Verkhratsky, A. (2008). Neuroglia: the 150 years after. Trends in Neurosciences, 31(12), 653–659.

    Article  CAS  PubMed  Google Scholar 

  • Kole, M.H. (2011). First node of ranvier facilitates high-frequency burst encoding. Neuron, 71(4), 671–682.

    Article  CAS  PubMed  Google Scholar 

  • Kole, M.H., & Brette, R. (2018). The electrical significance of axon location diversity. Current Opinion in Neurobiology, 51, 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov, I, & Kuznetsov, A. (2017). How dense core vesicles are delivered to axon terminals–a review of modeling approaches. In Modeling of microscale transport in biological processes (pp. 335–352). Elsevier.

  • Li, J.J., Du, M.M., Wang, R., Lei, J.Z., Wu, Y. (1650). Astrocytic gliotransmitter: diffusion dynamics and induction of information processing on tripartite synapses. International Journal of Bifurcation and Chaos, 26 (08), 138.

    Google Scholar 

  • London, M., Schreibman, A., Häusser, M, Larkum, M.E., Segev, I. (2002). The information efficacy of a synapse. Nature Neuroscience, 5(4), 332.

    Article  CAS  PubMed  Google Scholar 

  • López-Caamal, F, Oyarzún, D A, Middleton, R.H., García, M.R. (2014). Spatial quantification of cytosolic ca 2+ accumulation in nonexcitable cells: an analytical study. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 11(3), 592–603.

    Article  CAS  Google Scholar 

  • Manninen, T., Havela, R., Linne, M.L. (2018). Computational models for calcium-mediated astrocyte functions. Frontiers in Computational Neuroscience, 12, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manninen, T., Havela, R., Linne, M.L. (2019). Computational models of astrocytes and astrocyte–neuron interactions: characterization, reproducibility, and future perspectives. In Computational glioscience (pp. 423–454): Springer.

  • Mirzakhalili, E., Epureanu, B.I., Gourgou, E. (2018). A mathematical and computational model of the calcium dynamics in caenorhabditis elegans ash sensory neuron. PloS One, 13(7), e0201,302.

    Article  CAS  Google Scholar 

  • Mitterauer, B.J. (2014). Pathophysiology of schizophrenia based on impaired glial-neuronal interactions. Open Journal of Medical Psychology, 3(02), 126.

    Article  Google Scholar 

  • Modchang, C., Nadkarni, S., Bartol, T.M., Triampo, W., Sejnowski, T.J., Levine, H., Rappel, W.J. (2010). A comparison of deterministic and stochastic simulations of neuronal vesicle release models. Physical Biology, 7(2), 026,008.

    Article  CAS  Google Scholar 

  • Namazi, H., & Kulish, V.V. (2013). A mathematical based calculation of a myelinated segment in axons. Computers in Biology and Medicine, 43(6), 693–698.

    Article  PubMed  Google Scholar 

  • Nazari, S., Faez, K., Amiri, M., Karami, E. (2015). A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Networks, 66, 79–90.

    Article  PubMed  Google Scholar 

  • Nedergaard, M., & Verkhratsky, A. (2012). Artifact versus reality—how astrocytes contribute to synaptic events. Glia, 60(7), 1013–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, A.D., & Jenkins, P.M. (2017). Axonal membranes and their domains: assembly and function of the axon initial segment and node of ranvier. Frontiers in Cellular Neuroscience, 11, 136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • of Notre Dame, U. (2004). The electrical system of the body. In Physics in medicine (pp. 224–242): Elsevier.

  • Perea, G., Sur, M., Araque, A. (2014). Neuron-glia networks: integral gear of brain function. Frontiers in Cellular Neuroscience, 8, 378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pissadaki, E.K., Sidiropoulou, K., Reczko, M., Poirazi, P. (2010). Encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model. PLoS Computational Biology, 6(12), e1001,038.

    Article  CAS  Google Scholar 

  • Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of ranvier. Nature Reviews Neuroscience, 4(12), 968.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, J.M. (2013). Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Medical Hypotheses, 81(6), 1017–1024.

    Article  PubMed  Google Scholar 

  • Rossi, D. (2015). Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Progress in Neurobiology, 130, 86–120.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T. (2013). The axon as a unique computational unit in neurons. Neuroscience Research, 75(2), 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T., Matsuki, N., Ikegaya, Y. (2011). Action-potential modulation during axonal conduction. Science, 331(6017), 599–601.

    Article  CAS  PubMed  Google Scholar 

  • Savtchouk, I., & Volterra, A. (2018). Gliotransmission: beyond black-and-white. Journal of Neuroscience, 38 (1), 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Semyanov, A. (2018). Spatiotemporal pattern of ca2+ activity in astrocytic network. Cell Calcium.

  • Shigetomi, E., Patel, S., Khakh, B.S. (2016). Probing the complexities of astrocyte calcium signaling. Trends in Cell Biology, 26(4), 300–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims, R.E., Butcher, J.B., Parri, H.R., Glazewski, S. (2015). Astrocyte and neuronal plasticity in the somatosensory system. Neural Plasticity, 2015.

  • Sloan, S.A., & Barres, B.A. (2014). Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron, 84(6), 1112–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosunov, A.A., Wu, X., Tsankova, N.M., Guilfoyle, E., McKhann, G.M., Goldman, J.E. (2014). Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. Journal of Neuroscience, 34(6), 2285–2298.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, S., & Parpura, V. (2013). A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Frontiers in Computational Neuroscience, 7, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewari, S.G., & Majumdar, K.K. (2012). A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. Journal of Biological Physics, 38(3), 465–496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tønnesen, J, & Nägerl, U.V. (2016). Dendritic spines as tunable regulators of synaptic signals. Frontiers in Psychiatry, 7, 101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trueta, C., & De-Miguel, F.F. (2012). Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Frontiers in Physiology, 3, 319.

    PubMed  PubMed Central  Google Scholar 

  • Ventura, R., & Harris, K.M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19(16), 6897–6906.

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J.P., Zorec, R. (2016). Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. The EMBO Journal, 35(3), 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizi, E.S., & Kiss, J.P. (1998). Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus, 8(6), 566–607.

    Article  CAS  PubMed  Google Scholar 

  • Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nature Reviews Neuroscience, 6(8), 626.

    Article  CAS  PubMed  Google Scholar 

  • Volterra, A., Liaudet, N., Savtchouk, I. (2014). Astrocyte ca 2+ signalling: an unexpected complexity. Nature Reviews Neuroscience, 15(5), 327.

    Article  CAS  PubMed  Google Scholar 

  • Wade, J.J., McDaid, L.J., Harkin, J., Crunelli, V., Kelso, J.S. (2011). Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PloS One, 6(12), e29,445.

    Article  CAS  Google Scholar 

  • Wallach, G., Lallouette, J., Herzog, N., De Pittà, M, Jacob, E.B., Berry, H., Hanein, Y. (2014). Glutamate mediated astrocytic filtering of neuronal activity. PLoS Computational Biology, 10(12), e1003,964.

    Article  Google Scholar 

  • Woo, B., & Choi, J. (2007). Reduced model and simulation of myelinated axon using eigenfunction expansion and singular perturbation. Computers in Biology and Medicine, 37(8), 1148–1154.

    Article  PubMed  Google Scholar 

  • Wu, Y.W., Tang, X., Arizono, M., Bannai, H., Shih, P.Y., Dembitskaya, Y., Kazantsev, V., Tanaka, M., Itohara, S., Mikoshiba, K., et al. (2014). Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium, 55(2), 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y.W., Gordleeva, S., Tang, X., Shih, P.Y., Dembitskaya, Y., Semyanov, A. (2018). Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes. Glia.

  • Yamada, R., & Kuba, H. (2016). Structural and functional plasticity at the axon initial segment. Frontiers in Cellular Neuroscience, 10, 250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, H., & Ng, J. (2018). Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation. PeerJ, 6, e6020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zbili, M., Rama, S., Debanne, D. (2016). Dynamic control of neurotransmitter release by presynaptic potential. Frontiers in Cellular Neuroscience, 10, 278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, B., Zuo, Y.X., Jiang, R.T. (2019). Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics, 25(6), 665–673.

    Article  Google Scholar 

  • Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M., Bergles, D.E. (2007). Vesicular release of glutamate from unmyelinated axons in white matter. Nature Neuroscience, 10(3), 321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge Shivendra G. Tewari and Kaushik Kumar Majumdar for sharing the Matlab code essential for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhunlyn Lorenzo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Upinder Singh Bhalla

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Lorenzo would like to thank the CHED-PhilFrance for the scholarship grant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(M 1014 bytes)

(MD 329 bytes)

(M 1.27 KB)

(M 958 bytes)

(M 888 bytes)

(M 3.62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo, J., Vuillaume, R., Binczak, S. et al. Spatiotemporal model of tripartite synapse with perinodal astrocytic process. J Comput Neurosci 48, 1–20 (2020). https://doi.org/10.1007/s10827-019-00734-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00734-4

Keywords

Navigation