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Abstract

A major goal in neuroscience is to estimate neural connectivity from large scale
extracellular recordings of neural activity in vivo. This is challenging in part because
any such activity is modulated by the unmeasured external synaptic input to the
network, known as the common input problem. Many different measures of functional
connectivity have been proposed in the literature, but their direct relationship to
synaptic connectivity is often assumed or ignored. For in vivo data, measurements of
this relationship would require a knowledge of ground truth connectivity, which is nearly
always unavailable. Instead, many studies use in silico simulations as benchmarks for
investigation, but such approaches necessarily rely upon a variety of simplifying
assumptions about the simulated network and can depend on numerous simulation
parameters. We combine neuronal network simulations, mathematical analysis, and
calcium imaging data to address the question of when and how functional connectivity,
synaptic connectivity, and latent external input variability can be untangled. We show
numerically and analytically that, even though the precision matrix of recorded spiking
activity does not uniquely determine synaptic connectivity, it is often closely related to
synaptic connectivity in practice under various network models. This relation becomes
more pronounced when the spatial structure of neuronal variability is considered jointly
with precision.

1 Introduction

Modern interest in connectivity inference in neuroscience is quite broad in scope,
ranging in scale from the microscopic properties of dendritic arbors to macroscopic
cooperation across whole brain regions (Magrans de Abril et al, 2018). Even at a single
scale, there are at least two distinct types of “connectivity” that are explored:
functional connectivity and actual synaptic connectivity.

Many studies focus on inferring functional connectivity, which can broadly be
defined as any statistical measurement of the functional interaction between neurons or
other units in a neural system. A widely used method to infer functional connectivity at
the level of local neural circuitry is to fit recorded neural activity to a generalized linear
point-process model (GLM) which incorporates non-linearities when estimating effective
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coupling (Paninski, 2004; Pillow et al, 2008). These non-linearities correct the neuron’s
responses to relate more to direct interaction and thus pertain more strongly to the
underlying structure (Mishchencko et al, 2007). The accuracy of inference for GLMs has
been evaluated in silico using simulations of non-linear Hawkes process models (Pernice
et al, 2011). These models are idealized for GLMs as they correspond exactly to the
statistical assumptions of the GLM inference algorithms so accurate inference of model
parameters is to be expected. But the Hawkes model itself lacks the biophysical details
accounted for in more mechanistic models such as networks of Hodgkin-Huxley (HH)
style or Integrate-and-Fire (IF) neuron models. As such, functional connectivity inferred
by GLMs applied to Hawkes process models is often interpreted not to approximate
actual synaptic connectivity, but rather to represent the “effective” interaction between
neurons with respect to the model network (Feldt et al, 2011; Poli et al, 2016)

Large-scale inference of synaptic connectivity between neuron pairs can be reliably
performed using slice reconstruction or genetic mosaic analysis (Chiang et al, 2011), but
such reliable approaches are lacking for in vivo applications. Less invasive extracellular
recordings using large-scale calcium imaging or micro-electrode arrays that can be
performed relatively safely in vivo but do not provide direct information about synaptic
connectivity. Instead, the underlying connectivity structure of the recorded circuit
influences the recorded activity.

Previous work has evaluated the relationship between functional and synaptic
connectivity when GLMs are fit to spiking data subsampled from simulations of
networks of leaky IF neurons (Lütcke et al, 2013; Zaytsev et al, 2015). Specifically, they
assessed recovery of the ground truth structure from the in silico biophysical model
against inferred coupling in the statistical model, but found relatively low accuracy of
recovery overall.

Several other studies have proposed various methods for inferring synaptic
connectivity, but since ground truth connectivity is not typically known for in vivo
recordings, the accuracy of these methods has only been tested using in silico
simulations. This approach is necessarily sensitive to parameter choices and underlying
assumptions made in the design of the simulations. One common and important
assumption in many such studies is a lack of correlated input from outside the recorded
network (Kadirvelu et al, 2017; Mishchencko et al, 2007; Pernice and Rotter, 2013; Poli
et al, 2016; Zaytsev et al, 2015), which is not a realistic assumption for in vivo
recordings. Distinguishing the effects of this “latent” correlated input from direct
connectivity – known as the “common input problem” – is notoriously
difficult (Paninski, 2004; Pillow et al, 2008), but is necessary for accurate inference of
connectivity from in vivo recordings.

Even when common input has been modeled in a network, it has typically been
incorporated not through explicitly correlated external processes but rather via
subsampling of the recurrent network (Brinkman et al, 2017; Lin et al, 2017; Lütcke
et al, 2013), with the unobserved part inducing correlations only by way of the existing
connections with the observed portion of the network. While this does indeed generate
external correlations to the observed network, they have a different structure than
correlations coming from a feedforward external layer projecting onto the entire
recurrent population (Chambers et al, 2017).

An exact model of the relationship between connectivity and activity statistics in
neural circuits is not known and most likely intractable, but there are simple
mathematical expressions that provide accurate approximations to this relationship for
various computational models (Baker et al, 2018; Krumin et al, 2010; Pernice et al, 2011;
Trousdale et al, 2012) and these expressions can account for correlated external input.
We evaluate how well synaptic connectivity can be inferred from estimates of spike train
covariance under these approximations and how the quality of this inference depends on
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modeling assumptions and model parameters. We find that the precision matrix, i.e the
inverse of the covariance matrix, of neurons’ spiking activity provides a good measure
for inferring synaptic connectivity. We also find that inference can be greatly improved
by accounting for the recorded neurons’ type (excitatory or inhibitory), tuning
similarity, or distance, which are all quantities that can be measured or estimated
during multicellular in vivo recordings. We test our conclusions using simulations of
networks of adaptive exponential integrate-and-fire (AdEx) neuron models.

We begin by considering some simple motivating models and examples of functional
measurements from them. Some of these models or measures are less practical for use in
real data, and we will discuss their drawbacks in detail. We will then proceed to provide
analytical details regarding the quality of network recovery based on functional
measurements of spiking activity aggregated over large time windows. We then
gradually introduce further biophysically realistic features into the model, and examine
how the subsequent inference quality can be reduced or improved based upon knowledge
(or lack thereof) of these covariates. Finally, we present a mean-field method for
inferring properties of external latent variability for a neural circuit in mouse visual
cortex.

2 Lessons on inferring connectivity from a simple
stochastic rate model

As a motivating example, we begin by considering a simple, linear dynamical
model (Dayan and Abbott, 2001) in which synaptic connectivity can be derived directly
from observations of neuronal activity. The model is defined by

τr
dr

dt
= −r + gs

s = K̄r + Qξ(t)
(1)

where rα(t) models the response of neuron α = 1, 2, . . . , N as a low-pass filtered spike
train or time-dependent firing rate, sα(t) models the synaptic input to neuron α, K̄αβ is
the synaptic connection strength from neuron β to neuron α, τr > 0 is a neural time
constant, g > 0 is the neurons’ gain, ξ(t) is N -dimensional standard Gaussian white
noise modeling intrinsic noise and external synaptic input from outside the recurrent
network, and QQT is the covariance matrix of the noise. This model defines a
multi-variate Ornstein-Uhlenbeck (OU) process whenever gK̄− I has eigenvalues with
strictly negative real part (with I the identity matrix), which we assume to be the case.
The stationary mean is

lim
t→∞

E[r(t)] = 0,

so r(t) should be interpreted as a mean-subtracted measure of firing rate. Correlations
between neurons’ activity across time can be measured by the cross-covariance matrix

R(τ) = E[δr(t)δrT(t+ τ)]

where δr(t) = r(t)− E[r(t)], expectation is taken in the stationary state t→∞, and rT

is the transpose of r. We wish to understand how the connectivity, K̄, can be inferred

from R(τ). It can be shown that whenever K̄ is normal, i.e. K̄K̄
T

= K̄
T
K̄, and

Q = σI is a multiple of the identity (implying that neurons receive independent external

input), the off-diagonal entries of K̄ + K̄
T

satisfy

K̄ + K̄
T ∝ R−1(0) (2)
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where R−1(0) is the matrix-inverse of the zero-lag covariance, known as the precision

matrix (see Appendix 13.2 for proof). The diagonal entries of K̄ + K̄
T

can be similarly
derived, but we ignore them here because we are interested in connections between
neurons and all of our network models lack self-connections. This can be seen as a
generalization of the theory of Gaussian Graphical Models (GGM) wherein if K̄ is
symmetric with normally distributed non-zero elements, the exact precision perfectly
encodes the conditional interactions between the neurons. However, connectivity in
biological neuronal networks is not symmetric (K 6= KT) and neurons are likely to
receive correlated external input (Q not diagonal). Therefore, the functional
connectivity inferred by the direct application of GGM methods to neural data does not
necessarily correspond closely to synaptic connectivity. We further discuss the issue of
statistical sampling of the inverse covariance in Section 10.

Fortunately, a regression theorem for OU processes (Gardiner, 2009) yields a more
general expression for the off-diagonal entries of K̄ that is valid even when K̄ is not
normal and QQT is not diagonal,

K̄ =
τr
g
R′(0)R−1(0) (3)

where R′(τ) is the derivative of R(τ) with respect to τ . Indeed, this estimator of K̄ is
analogous to estimates derived by expectation-maximization and maximum aposteriori
(MAP) methods for multivariate AR(1) processes (Bishop, 2007; Singh et al, 2017),
which are discrete-time analogues to OU processes. The derivative form in (3) is also
analogous to differential covariance E[ ddτ δr(t)δr(t+ τ)] which has also been extended to
the multivariate AR(2) process (Lin et al, 2017). Interestingly, this expression for K̄
does not depend on Q at all, so it is not affected by correlated external input. Hence,
using Eq. (3), synaptic connectivity can in principle be inferred directly from estimates
of the cross-covariance between neurons’ activity under the model from Eq. (1).
However, this approach has some critical shortcomings.

First, the model defined by Eq. (1) ignores the timescales of synaptic filtering,
neuronal filtering, and external input variability that exist in biological neuronal
networks. More specifically,

1. The model assumes that neural activity is transferred instantaneously to synaptic
input, s = K̄r, which ignores the temporal filtering imposed by synaptic kinetics.

2. The model assumes that neural activity is proportional to synaptic input, r = gs,
which ignores the temporal filtering imposed by neural membrane dynamics.

3. The model represents external input as Gaussian white noise, whereas external
input to biological neuronal networks comes from the spiking activity of
pre-synaptic neural populations, which is correlated across time.

The accuracy of Eq. (3) depends sensitively on these assumptions because the
independence of Eq. (3) on Q relies on the fact that the contribution of Q to R′(0) and
R(0) is the same, so Q cancels out in Eq. (3), but the same is not true of the
contribution of K̄. This difference is due to the timescales over which Q and K̄ affect r.

Secondly, note that Eq. (3) requires evaluating R(τ) at small values of τ . This is
problematic because fine-timescale dynamics are exactly what the model gets wrong (as
outlined above), but also because large-scale multicellular recordings – such as those
obtained from calcium imaging – often have low temporal resolution (though finer
timescale dynamics can be inferred by deconvolution methods (Friedrich et al, 2017;
Pnevmatikakis et al, 2017)). This makes it difficult to obtain accurate estimates of
R′(0) and R−1(0) from data. Even in electrophysiological recordings that have fine
temporal resolution, spike train correlations are often quantified from spike counts over
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long time windows (∼250ms) due in part to the inherently low signal-to-noise ratio of
spike train data (Cohen and Kohn, 2011).

We next consider a more general model that can capture arbitrary timescales of
synaptic filtering, neuronal filtering, and external input correlation then consider
inference methods that do not depend on these timescales.

3 Synaptic interactions cannot be computed from
spike train covariability under a general linear
model

We now consider a more general linear model of the form

r = G ∗ s

s = K ∗ r + x
(4)

where ∗ denotes matrix multiplication with each product replaced by a convolution over
time (Trousdale et al, 2012),

[K ∗ r]j(t) =
∑
k

∫
Kjk(τ)rk(t− τ)dτ,

and where x(t) is some stochastic process modeling synaptic input from outside the
local network. The synaptic connectivity kernel, K(τ), is an N ×N matrix that
accounts for synaptic weights as well as the time-course of synaptic filtering. The
N ×N diagonal matrix, G(τ), accounts for the filtering imposed by neural transfer of
synaptic currents, s(t), to neural activity, r(t). This model resolves issues 1–3
mentioned above by accounting for arbitrary timescales of synaptic filtering, neuronal
filtering, and external input noise.

To recover the OU process model in Eq. (1) from the more general model in Eq. (4),
take

x(t) = Qξ(t) G(τ) = gI
1

τr
e−

τ
τrH(τ) K(τ) = K̄δ(τ)

where H(τ) is the Heaviside function and δ(τ) is the Dirac delta function.
The second moments of this model over any timescale are determined completely by

the cross-spectral matrix, defined as the Fourier transform of the cross-covariance
matrix,

R̃(f) =

∫ ∞
−∞
R(τ)e−2πifτdτ

which can be written in closed form as

R̃ = (G̃
−1
− K̃)−1R̃x(G̃

−1
− K̃)−∗ (5)

where ·−1 is the matrix inverse and ·−∗ is the inverse of the conjugate-transpose, ·̃ is the
Fourier transform, and we have omitted the explicit dependence of G̃(f), K̃(f), R̃(f),

and R̃x(f) on frequency, f , for notational convenience. The N ×N matrix, R̃x(f), is
the cross-spectral matrix of x(t), defined as the Fourier transform of the
cross-covariance matrix, Rx(τ) = E[δx(t)δxT(t+ τ)].

From Eq. (5), it can be seen that the same cross-spectral matrix, R̃, can be

produced by two different connectivity matrices, K̃, together with different matrices, G̃
and R̃x. Hence, without knowledge of G̃ and R̃x or additional assumptions on model
parameters, one cannot infer K̃ directly from measurements R̃. In practice, one does
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not typically have knowledge of pairwise external input correlations or neural response
properties to constrain G̃ and R̃x in neural recordings.

Furthermore, K̃ cannot be derived from R̃ even when G̃ and R̃x are known. To see
this, consider the case where G̃ = R̃x = I (corresponding to G(τ) = Iδ(t) and

x(t) = ξ(t)) and note that derivation of K̃ is equivalent to derivation of A = I− K̃. But
Σ = A−1A−∗ is invariant to unitary transformations of A, i.e., to multiplication of A
by a matrix, U, satisfying UU∗ = I. Hence, multiple connectivity matrices, K̃, produce
the same correlation structure, R̃, even when G̃ and R̃x are fixed. This was pointed out
in previous work (Pernice and Rotter, 2013), which assumed diagonal R̃x and inferred

K̃ under an assumption of sparsity. However, high quality inference of K̃ in that study
was only possible when sparsity was lower than that observed in local cortical
circuits (Jiang et al, 2016; Levy and Reyes, 2012) and, perhaps more importantly, the

assumption of diagonal R̃x – which implies uncorrelated external input – is not justified
in cortical populations.

Note that R̃(f) uniquely determines R(τ) and other measures of spike train
correlation such as spike count covariance and spike count correlation. Therefore, since
K̃ cannot be derived exactly from R̃(f), it cannot be derived from any of these other
measures of spike train covariability either.

Eq. (5) was derived for the linear model in Eq. (4), which is arguably more
biologically realistic than the model in Eq. (1), but is still a gross simplification of real
neural circuit dynamics. Specifically, the model in Eq. (4) does not account for the
nonlinearity of neural transfer. However, Eq. (5) has been shown to provide an accurate
approximation for more biologically realistic networks of spiking neuron models (Baker
et al, 2018; Trousdale et al, 2012) and non-linear Hawkes process models (Krumin et al,
2010; Pernice et al, 2011). Hence, we conclude that, under a wide class of models,
synaptic interactions cannot be derived explicitly in terms of spike train covariance in
the presence of unknown external input covariance. This is an example of the common
input problem (Soudry et al, 2013) under which common or correlated input to neurons
cannot be distinguished from direct synaptic connectivity between them.

A precise derivation of synaptic connection strengths in terms of spike train
covariance is therefore perhaps too ambitious of a goal. Below, we weaken this goal to
argue that, in practice for networks of randomly connected neurons, Eq. (5) allows us to
infer the presence or absence of synaptic interactions between pairs of neurons with a
great deal of accuracy.

4 A simpler goal: inferring undirected sparsity
structure from precision

Instead of trying to infer the entire connectivity kernel, K(τ) or K̃(f), we aim only to
infer its sparsity structure, i.e., which neuron pairs are connected. First note that the
zero-frequency connectivity kernel,

K̄ = K̃(0) =

∫
K(τ)dτ,

represents the matrix of total synaptic strengths. We then decompose K̄ as

K̄ =
1√
N

J ◦Ω

where ◦ is the element-wise (Hadamard) matrix product of synaptic weights, J, with a
binary adjacency matrix, Ω. The 1/

√
N scaling permits stability of network dynamics
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when Ω and J are random matrices and promotes excitatory-inhibitory balance and
asynchronous dynamics for large N (Renart et al, 2010; Van Vreeswijk and Sompolinsky,
1996; van Vreeswijk and Sompolinsky, 1998). There is evidence that synaptic weights in
cultured populations of cortical neurons scale similarly (Barral and D’Reyes, 2016).

We then evaluate Eq. (5) at f = 0 and rescale all terms by G̃ to obtain the simpler
expression

Σ = (I−W)−1Γ(I−W)−T (6)

where Σ = R̃(0) is the low-frequency covariance between neural activity,

W = ḠK̄

is the normalized synaptic weight matrix,

Γ = ḠR̃x(0)Ḡ

is the normalized external input covariance matrix, and Ḡ = G̃(0) is the diagonal
matrix of gains. Note that the inverse-conjugate-transpose, ·−∗, in Eq. (5) is replaced by
a inverse-transpose, ·−T, in Eq. (6) because the zero-frequency cross-spectral density
between real-valued processes is real-valued (Yaglom, 1962). Note also that, since Ḡ is
diagonal, W has the same sparsity structure as K̄, which is captured by Ω.

The matrices Σ, Γ, and W have natural interpretations. Since low-frequency
susceptibility, Ḡαα, represents the gain of neuron α, i.e., the derivative of the neuron’s
f-I curve, Wαβ represents the connection strength from neuron β to neuron α scaled by
the post-synaptic neuron’s sensitivity to inputs. Similarly, Γαβ represents the
low-frequency covariance between external inputs to neurons α and β scaled by the
sensitivity of both neurons.

Finally, Σαβ is proportional to the spike count covariance between neurons α and β
over long time windows, which is a widely used measure of correlated variability (Cohen
and Kohn, 2011; Doiron et al, 2016). It is also proportional to the low-frequency
covariance between the neurons’ firing rate fluctuations. This means that Σ can be
estimated using low temporal resolution measures of neural activity, such as those
approximated by calcium imaging. Therefore, focusing on low-frequency interactions
resolves the issue of temporal resolution described above.

Motivated by the theory established in Sections 1-3, we seek to infer connectivity
using measurements of the low-frequency precision matrix,

P = −Σ−1 = −(I−W)TΦ(I−W) (7)

where Φ = Γ−1. Note P is distinct from the zero-lag temporal precision in Eq. (2) that
is analogous to classical GGM theory. We will consider P our primary functional
measure of interest throughout the remainder of this paper. Motivation for this choice
comes from the fact that many functional measures of connectivity are functions of
P (Kadirvelu et al, 2017; Lin et al, 2017; Pernice and Rotter, 2013; Poli et al, 2016;
Yatsenko et al, 2015). In addition, for the classes of random networks we consider, the
entries of P are approximately normally distributed for large network size (N), shown
in Appendix 13.4, which makes inference easier to describe and understand. Also, P can
be easily estimated from multicellular recordings by numerically inverting the sample
spike count covariance matrix or low-frequency cross-spectral matrix between neurons’
activity. We discuss the estimation of P from data in more detail in Section 10 and in
the Discussion. Until then, we evaluate the ability to infer connectivity from a perfect
estimate of P.

Our main goal is then to infer the matrix of undirected binary connections, Ω + ΩT,
from knowledge of precision, P, under the assumption that Eq. (7) is satisfied and that
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Ω is the binary adjacency matrix for W. We do not enter into this problem with
expectations of fully recovering Ω + ΩT for any network, but rather we seek to
understand the underlying factors that contribute to a high degree of association
between Ω + ΩT and P under different network models.

Most literature on inferring connectivity in neuronal networks has focused on the
simple case of uncorrelated external input (Γ and Φ diagonal) (Kadirvelu et al, 2017;
Mishchencko et al, 2007; Pernice and Rotter, 2013; Poli et al, 2016; Zaytsev et al, 2015)
and we will initially follow suit by assuming Γ ∝ I. We will later relax this assumption.
In this case Eq. (7) reduces to

P ∝

bidirectional︷ ︸︸ ︷
W + WT − WTW︸ ︷︷ ︸

shared targets

(8)

for the off-diagonal elements. The first term represents bidirectional connectivity in that
it is non-zero at an entry only if there is a connection between the corresponding
neurons, in at least one direction, i.e., only if Ω + ΩT is non-zero at that entry. An
entry of the second term is non-zero whenever the corresponding neurons share some
post-synaptic targets. More generally, this term is larger in magnitude when the two
neurons share more post-synaptic targets. Knowledge of the first term would give
perfect inference of bidirectional connectivity, so the second term can be considered a
source of noise when trying to infer Ω + ΩT from P. A main intuition from Eq. (8) is
the roughly linear relationship between P and W + WT, as demonstrated in Fig. 1a,b
with similar results previously observed in studies of general linear point-process models
(GLMs) (Mishchencko et al, 2007). This relationship is construed by the error term
which arises from shared post-synaptic targets.

We test this relationship by generating W according to various random graph
models, initially with gains fixed at unity (G = I) for simplicity. All of the network
models we consider contain Ne excitatory (e) and Ni inhibitory (i) neurons and obey
Dale’s law (with N = Ne +Ni, qe = Ne/N = 4/5, and qi = Ni/N = 1/5). The
connectivity matrix can be decomposed into four blocks where Kab

αβ denotes connections
from neuron β in population b = e, i to neuron α in population a = e, i. We start with a
simple block-wise Erdos-Renyi model with normally distributed synaptic weights
defined by

Jabαβ ∼ N (jab, vab), Ωab
αβ ∼ bern(pab) (9)

where all random variables are assumed to be independent. Hence, jab denotes the
mean synaptic strength, vab the variance of synaptic strengths, and pab the connection
probability from population b = e, i to population a = e, i. We enforce Dale’s Law on
the synaptic strengths by truncating the normal distribution onto the corresponding
half-intervals of R+ for excitatory and R− for inhibitory neuron types, but this
truncation has a small effect when |jab| �

√
vab.

To quantify the performance of network recovery, we utilize Receiver Operator
Characteristic (ROC) curves, which are a common and reliable metric. ROC curves are
generated by taking some set of values referred to as the score and assigning positive
and negative classes by comparing the values against some threshold, and then counting
the true and false positive rates (TPR/FPR) as the threshold itself varies to span the
set of scores. In our case, the values in the precision matrix serve as the scores and the
classes are initially partitioned into the simple connected versus unconnected sets. It is
important to note that in the context of network recovery, the aforementioned model
details combine to generate an approximate mixture distribution on the precision values.
A randomly chosen value in the precision matrix takes the form

Pab
αβ = πconn(Pab

αβ | Ωab
αβ + Ωba

βα 6= 0) + (1− πconn)(Pab
αβ | Ωab

αβ + Ωba
βα = 0)
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Figure 1. Inference in a simple model under a simple partition scheme results in low
AUROC. (a) Scatter plot of 3× 104 randomly sampled pairwise values from a randomly
generated precision structure of N = 2000 neurons versus the corresponding values of
pairwise bidirectional connectivity. (c) Total empirical density of the values in (a). (e)
Empirical densities of the values in (a) partitioned into connected (dotted line) and
unconnected (solid) pairs; the connected distribution is no longer down-weighted by
the low probability of connection. (g) ROC curve for distinguishing connected versus
unconnected pairs in (e), with the dashed line as reference to a random classifier. (b,d,f,h)
Same as (a,c,e,g) but in a higher noise, stronger strength regime. AUROCs: (g) 0.6084,
(h) 0.5904.

where πconn is a binary variable corresponding to whether the randomly chosen pair is
connected. This mixture model form helps to further justify the appropriateness of the
ROC metric.

We now perform an initial analysis of structural recovery using randomly generated
networks following two basic regimes under which the coefficient of variation of J
(CVab ≡

√
vab/jab) is near-zero or near-one, which we will refer to as the low-noise and

high-noise regimes. The scatter plots in Fig. 1a,b reflect this escalation in noise, which
ultimately causes the multi-modal mixture distribution structure apparent in Fig. 1c,e
to collapse to two or fewer observable modes in Fig. 1d,f. The multi-modal shape of
these distributions of precision values are due to the mixing of excitatory and inhibitory
neurons as well as uni- and bi-directionally coupled motifs, all of which are later
considered as additional information used by other partition schemes in Section 5.

The ROC curves for this initial partitioning are are shown in Fig. 1g,h. As observed,
recovery of network structure is quite poor under this setting, yielding area under the
ROC curve (AUROC) of around 0.6 in both cases. Note that all discussion and use of
AUROC throughout this paper is in a folded sense, that is AUROC ∈ [0.5, 1] where any
AUROC which would originally return a value in [0, 0.5) is folded back into the
rightward interval. This convention accounts for situations in which a given method or
measure is interpreted more appropriately as an anti-classifier.

Figs. 1g,h demonstrate that inferring connectivity by thresholding all pairs of
precision values simultaneously yields poor recovery of synaptic connectivity. Fig. 1e,f
demonstrate why this occurs: either there is a great deal of total overlap between the
connected (dotted) and unconnected (solid) distributions, or the unconnected
sub-groups are alternately dispersed between the peaks of the connected density. We
next show that inference of connectivity from precision can be improved by conditioning
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on cell type.

5 Using cell-type labels can improve inference of
connectivity

Above, we showed that thresholding precision, P, can give poor inference of connectivity
(Fig. 1d,h). However, this conclusion was reached under the assumption that we had no
information about whether the recorded neurons were excitatory or inhibitory. Indeed,
the multimodal densities of precision values (Fig. 1b,c,f,g) are partly due to their
representing multiple pre- and post-synaptic cell types. We will now show that by
conditioning on this additional information, we can vastly improve our quality of
inference.

In neural recordings, estimates of cell type can often be obtained by genetic labeling
or classification of spike waveforms. To illustrate how inference can be improved by
accounting for contextual data such as cell type, we utilize several families of data
masks analogous to those used in (Lin et al, 2017) to explicitly specify how the elements
of the precision matrix may be partitioned based on conditional information. A family
of masks M(a, b;m) parameterized either by sub-populations a, b and/or by connection
type m defines the set of values from the precision matrix which correspond to motifs of
the selected type. These sets give rise to distributions over their elements and, so
utilization of different masks will always specify a different set of ROC curves, each
illustrating differing levels of inference quality.

If cell and connection types are known, then the richest contextual set of masks is

M1(a,b;m) =
{

Pa′b′

αβ | a′ = a, b′ = b,Ωab
αβ + Ωba

βα = m
}

where m = 0 corresponds to the precision values between unconnected neurons, m = 1
corresponds to the precision values computed between pairs of uni-directionally coupled
neurons, and m = 2 to the precision values between bidirectionally coupled neurons.
Information regarding cell-type is granted through specification of sub-populations
a, b ∈ {e, i}, which further restricts the conditional precision values to the block of the
matrix which corresponds to that neuron type. For a given sub-population, inference
using M1 allows the comparison of distributions M1(a, b; 1) or M1(a, b; 2) against the
shared null (unconnected) group M1(a, b; 0) within the ROC analysis. For example, the
ROC curve computed by comparing the distribution of values in M1(e, e; 0) to those in
M1(e, e; 1) (denoted e→ e in figure legends) quantifies how well uni-directionally
connected pairs of excitatory neurons can be distinguished from unconnected pairs of
excitatory neurons when bi-directionally connected pairs have been removed and
excitatory neurons are labeled.

Mask M1 is only applicable in situations where ground truth is available (since one
needs to know which neurons are bi- versus uni-directionally coupled) and hence is
generally only applicable to in silico network simulations. It is however useful for
explaining the behavior of the other masks. A more reductive mask is then

M2(a, b;m) =
{

Pa′b′

αβ | a′ = a, b′ = b,Ωab
αβ + Ωba

βα = H(m)
}

where H(·) is the Heaviside step function. As such, m in M2 may only take the values
zero or one denoting the null (unconnected) and positive (connected) groups, thus
causing the bidirectional motifs to be combined into the same set of values as the
unidirectional. The null groups are still separated on a sub-population basis however,
which is arguably the most important aspect. So mask M2 distinguishes only cell type,
and combines the values across connected pairwise motifs. For example, the ROC curve
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Figure 2. Utilizing more informative partition schemes (masks) improves inference
quality. (a-c) Scatter plots of 26, 335 precision values versus corresponding bidirectional
synaptic strength for the same structure used in Fig. 1, but now separated by excita-
tory/inhibitory subgroups (mask M1). Black always represents the null (unconnected)
group for each subtype, but note this group is now different across subtypes whereas
in Fig. 1 it was shared across all distributions. (d-f) Empirical densities of partitioned
precision values in a-c. (g) ROC curves for distributions shown in d-f. (h) ROC plots of
a similar network under a higher noise, stronger strength setting; same as values in Fig.
1b subject to mask M1. (i) ROC curves resulting from applying mask M2 to values in
Fig. 1b (higher noise, stronger strength). Dotted line represents the absolute value of
the centered cross-population. AUROCs two second decimal place, in order consistent
with legend: (g) 1, 1, 1, 1, 1, 1, 0.98 (h) 0.73, 0.89, 0.85, 0.98, 0.95, 0.89, 0.66 (i) 0.74,
0.85, 0.54, as well as 0.83 for the dotted line. The networks are identical to Fig. 1.
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omputed by comparing the distribution of values in M1(e, e; 0) to those in M1(e, e; 1)
quantifies how well connected pairs of excitatory neurons can be distinguished from
unconnected pairs when excitatory neurons are labeled. This corresponds to the
situation faced when inferring connectivity from experimental recordings in which units
are labeled by cell type.

Finally, the simplest mask is

M3(m) =
{

Pab
αβ | Ωab

αβ + Ωba
βα = H(m)

}
which is a common mask used on in vivo data (Vinci et al, 2018; Yatsenko et al, 2015)
as well as in silico experiments following Dale’s Law (Chambers et al, 2017; Lin et al,
2017; Lütcke et al, 2013; Pernice and Rotter, 2013; Poli et al, 2016). Like mask M2, it
only distinguishes null and positive connections, but now it does so without knowledge
of sub-population membership. The ROC curve computed by comparing the
distribution of values in M3(1) to those in M3(0) quantifies how well connected pairs
can be distinguished from unconnected pairs when neurons have not been labeled by
cell type, which is how the ROC curves in Fig. 1g,h were computed. In this case, there
are three different null groups interspersed within the original eight positive (connected)
classes from M1. It is this multitude of classes distinguished by M1 which are
responsible for the multiple modes in the distributions from Fig. 1.

Utilizing mask M1 to distinguish between cell types and connection types provides a
clear separation between the precision densities of each type (Fig. 2a-f, compare to
Fig. 1a-f) and a dramatic improvement of inferred connectivity (Fig. 2g,h; compare to
Fig. 1g,h). In the network with less synaptic variability, an AUROC of around 0.6 when
using M3 was improved to multiple AUROC values all near 1 (near perfect classification)
when using M1. For the network with greater synaptic variability, AUROC values were
also generally improved by using M1 in place of M3 (see Fig. 2h caption).

In neural recordings, even if we know cell types, we typically do not know whether a
particular pair value in precision corresponds to a bidirectional or unidirectional motif,
so the application of mask M1 is not realistic for real neural data. The application of
mask M2 in Fig. 2i represents the ROC curves that are produced in a more realistic
setting in which recorded cells are labeled, but the nature of the connected motif is
unknown. This is still a substantial improvement over the unlabeled data (Fig. 1e-h). It
is important to note however that by combining the cross-population distributions
(excitatory-inhibitory pairs; a = e, b = i or vice versa), there is substantial loss of
inference in the strict sense because the null group is nested between the three
connected groups. Such behavior is detectable as the ROC curve crossing the diagonal
reference (Fig. 2i, solid purple curve), but this is easily corrected by taking the absolute
value of the centered precision as the score to be thresholded (Fig. 2i, dotted curve).

In summary, accounting for additional information within the model, such as cell
type labels or motif structures can improve the inference of synaptic connectivity.

6 An analytical expression for AUROC clarifies its
dependence on parameters

This finding that the use of additional model information improves inference in
simulations is encouraging, but we also wish to understand how sensitive inference
quality can be as a function of the chosen parameter values. Thankfully, for the model
we consider, this problem is analytically tractable and results in a direct function
relating our model parameters to the area under the ROC curve. This function also
directly reveals a number of qualitative features, many of which were previously
discovered via in silico studies.
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While there is some loss of information in reducing the full ROC curve to a single
scalar value, the AUROC nonetheless provides a robust and widely used measure for
quantifying the accuracy of recovery as parameters of the networks change.

The AUROC may be calculated analytically if applied to normally distributed scores
(see Appendix 13.3 for a review of this theory). For the network types considered within
this paper, the resulting precision values under mask M1 will be approximately normally
distributed in the large network limit, a result proven in Appendix 13.4. We may thus
explain the resultant AUROC for M1 as a bijective function of discriminability D (a.k.a,
sensitivity index, signal-to-noise ratio, Fisher’s criterion, Rayleigh’s quotient)

AUROC =
1

2
erfc

(
−|D|√

2

)

Dab(m) =
E[M1(a, b;m)]− E[M1(a, b; 0)]√
V[M1(a, b;m)] + V[M1(a, b; 0)]

(10)

where erfc(·) is the complementary error function. We have defined our discriminability
in terms of mask M1 whereby we distinguish unidirectional, bidirectional, and
unconnected distributions from one another over all cell types. It may theoretically be
possible to extend this theory to the other masks as well, however some difficulty which
arises in this extension is the fact that the measures become more complicated mixtures
of normal distributions for which similar expressions may not always be easily
re-derived.

Under certain network architectures, we may describe D as a direct function of the
underlying network parameters by evaluating the moments in Eq. (10) for the precision
structure specified by Eq. (7).

Under the Erdos-Renyi assumptions of Eq. (9) together with the case of cell-type

specific independent external white noise [R̃x]aαα = σ2
a and randomly distributed

inverse-gains with the first two moments parameterized as E[1/Ga
αα] = ga and

V[1/Ga
αα] = ua, we derive the required quantities for D in Supplemental Section 3,

giving

DER
ab (m) =

signal(DER
ab (m))√

noise(DER
ab (m))

(11)

where

signal(DER
ab (m)) =

1

σ2
a

jabga +
1

σ2
b

jbagbδm,2

and

noise(DER
ab (m)) =

1

σ4
a

(vabua + j2abua + vabg
2
a) +

1

σ4
b

(vbaub + j2baub + vbag
2
b )δm,2

+

(
2− 4

N

) ∑
c=e,i

qc
σ4
c

pcapcb
[
(vca + j2ca)(vcb + j2cb)− pcapcbj2caj2cb

]
Here, δm,n is the Kronecker delta. Some studies have numerically explored how the
AUROC changes as functions of the parameter space: (Kadirvelu et al, 2017) showed
how AUROC decreases for larger network sizes and (Pernice and Rotter, 2013) showed
that it tends to increase for sparser networks. A direct analysis of Eq. (11) confirms
these qualitative features and uncovers several dependencies of discriminability on
various parameters, which we now review.

AUROC is monotone decreasing in N . The dependence of noise(DER
ab (m)) on

network size, N , as well as the independence of signal(DER
ab (m)) on N implies that

discriminability will always be larger for smaller networks. One interpretation is that
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smaller network size in conjunction with the high sparsity levels (p� 1) leads to fewer
actual realizations of post-synaptic targets in the network, which forms the major
component to the confounding variance across the precision distributions. For real
neural networks however, N is likely to be quite large and so we will focus on the
thermodynamic limit (N →∞) of Eq. (11), which is accurate for even moderately large
N .

AUROC is monotone decreasing in the variance of synaptic weights. The
dependence of noise(DER

ab (m)) on synaptic weight variance, vab, as well as the
independence of signal(DER

ab (m)) on vab implies that increased variance of synaptic
weights reduces discriminability. This is a very straightforward result pertaining to the
prevalent modeling practice of having randomly distributed synaptic weights, with
(Lütcke et al, 2013; Pernice and Rotter, 2013; Poli et al, 2016) being among the few
studies that utilize fixed (zero variance) synaptic strengths.

AUROC exhibits nontrivial dependence on the mean of synaptic weights. For
non-random synaptic weights, the discriminability is monotone decreasing in jab,
implying that weaker synaptic strengths lead to better inference. Intuitively, this is due
to the fact that as jab → 0, the signal between the connected and null distributions goes
to zero at a slower rate than the noise collapses. The situation becomes more
complicated when synaptic weights are variable (vab > 0), where discriminability now
achieves a maximum at some particular value of jab determined by the other parameters
of the network (see Supplemental Section 4.1) and vanishes as jab → 0 or ∞. Thus,
variability of synaptic weights changes the qualitative dependence of discriminability on
the mean synaptic weight, and in the presence of synaptic variability, there exists some
level of synaptic strength ideal for inference.

AUROC depends on neuron type. There are several items to note with respect to
differences in discriminability over multiple neuron types. For even populations, that is
when a = b, bidirectional connections will always be easier to distinguish than
unidirectional connections from unconnected neurons (a very visible property in Fig.
2a-c). The opposite holds for the odd populations a 6= b where bidirectional connections
induce a “cancellation” at the level of the signals, due to the fact that jie > 0 and
jei < 0.

AUROC exhibits nontrivial dependence on network sparsity. It has been shown
numerically (Pernice and Rotter, 2013) and follows from analysis of Eq. (11) that the
AUROC → 1 as p→ 0. More interesting behavior emerges for intermediate levels of
sparsity, tending to dense networks. Supplemental Section 4.2 provides the analysis
which leads to the following results. Under the reparameterized form of Eq. (11), the
equation will have a minimum somewhere within the interval p ∈

[
1/
√

2, 1
]

so long as
the relative magnitude of synaptic variance is sufficiently weaker than the mean
synaptic strengths. For settings involving larger variances, the discriminability will
become monotone decreasing for denser levels of connectivity.

From these qualitative properties, or directly from Eq. (11), we may use our a priori
knowledge to generate a random network that gives any pre-specified AUROC level.
This makes it difficult to compare the effectiveness of various classification methods
when each is taken over a different set of parameters. We cannot, for instance, directly
compare and contrast the results in (Kadirvelu et al, 2017) and (Pernice and Rotter,
2013) as they possess different sets of network parameters. Furthermore, all observed
AUROC’s from all purely in silico studies are a result of choices of numerous parameter
values. This raises the concern that each individual method or measure may perform
better or worse within different regions of the parameter space.
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7 The effects of network structure on inference of
connectivity

The Erdos-Renyi assumption of the previous section greatly simplifies the analysis, but
real neural networks possess properties directly opposed to the strong assumptions of
that model (Song et al, 2005). To account for some of these descrepencies, we will
extend the analysis to frameworks that account for two cases: when there are
correlations between the average strength and the out-degree of a neuron, and when the
in- or out-degrees follow a heavy-tailed distribution. The results show that inference is
made more difficult by including these more biophysically realistic features.

So far, we have only considered networks with a simple block Erdos-Renyi
connectivity structure. We now consider two additional network models which
incorporate more realistic features of neural networks. The first is the copulated
Erdos-Renyi model (CER), motivated by some experimental results that suggest
correlations between synaptic strength and connection probabilities (Jiang et al, 2016)
and defined by

Jabαβ | ηabβ ∼ fJ(ηabβ ) Ωab
αβ | dβ ∼ bern

(
dβ
N

)
(ηabβ , dβ) ∼ c(Fη(ηabβ ), Fd(dβ))fη(ηabβ )fd(dβ)

which obtains specifiable correlation levels ρ between average synaptic strengths and
out-degrees for some some collection of arbitrary marginal densities f with cumulative
distributions F bound together by some specified copula density c. For this model we
do require that connection probabilities be homogeneous across the network (pab = p)
however the only other requirements we place on the general case involve the moment
matching or parameterization of

E[Jabαβ ] = jab E[dβ ] = Np

V[Jabαβ ] = vab V[dβ ] = Np(1− p)

cor(ηabβ , dβ) = ρ

to induce consistent first and second order statistics with the simpler Erdos-Renyi
model considered before. Though this general model could potentially apply to any
dependence structure, for the purposes of our analysis we will assume Gaussian copulae
and marginals for ease of analysis.

The previous discriminability analysis may be repeated for this model, revealing the
following modification to Eq. (11)

DCER
ab (m) =

signal(DER
ab (m))√

noise(DER
ab (m)) +

∑
c=e,i

fc(ρ) (12)

where the signal and noise are the same as those in Eq. (11). The form of the
sub-population dependent function fc(ρ) in terms of the copulated correlation ρ is
derived in Supplemental Section 3.1, and is rather large and complicated but is positive
for our parameters and thus acts as an additional decrement to discriminability. Hence,
correlations between neurons’ out-degrees and their synaptic weights can make accurate
inference of synaptic connectivity more difficult. This point is demonstrated numerically
in Fig. 3 (compare red to blue).
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Figure 3. Mean discriminability for ten randomly generated precision structures of
N = 2000 neurons over the four network types, partitioned over all subgroups. The
slight increase in the bidirectional cross-population (e↔ i) for HDout is due primarily
to the non-Gaussian nature of the distribution.

Yet another source of potential additional variability comes from the assumed form
of the degree distribution, which in the Erdos-Renyi case is binomial. An existing
generalization of Erdos-Renyi connectivity to allow specifiable heterogeneous in- or
out-degree (HDin/out) distributions is used, most notably to include a power law in the
form of a generalized Pareto distribution (Pyle and Rosenbaum, 2016)

Jabαβ ∼ N (jab, vab) Ωab
αβ | dβ ∼ bern

(
dβ
Nb

)
dβ ∼ trGP(µ, ξ, σ;N)

where trGP(· · · ;N) denotes the Generalized Pareto distribution truncated at a
maximum value equal to the number of neurons in the network. We will always hold µ
and ξ fixed then numerically estimate the value of σ which induces a mean network
density equivalent to the ER model (Np). Note that without truncation this value
would be σ = (Np− µ)(1− ξ), but the truncation shifts the optimal value in a
non-linear fashion.

Extending the discriminability analysis to this model is only possible for Pareto
distributions of in-degrees as the out-degree model does not admit a Gaussian central
limit as disccused in Appendix 13.4. The in-degree case yields

DHDin

ab (m) =
signal(DER

ab (m))√
noise(DER

ab (m)) +
∑
c=e,i

hc(ξ)

(13)

where hc(ξ) is the positive hyperparameter function from the Pareto variability. As with
Eq. (12), the additional terms are positive and thus reduce discriminability. Hence,
Pareto-distributed in-degrees can make inference of synaptic connectivity more difficult,
as compared to an Erdos-Renyi model. This point is demonstrated numerically in Fig. 3
(compare yellow to blue). While our analysis does not extend naturally to
Pareto-distributed out-degrees, a numerical comparison of this case shows reduced
discriminability Fig. 3 (compare purple to blue).

In conclusion, network structure can affect discriminability and, specifically, different
deviations of connectivity statistics from a simple ER structure can make the inference
of connections more difficult. This is an important conclusion because local cortical
circuits can deviate substantially from an ER structure (Song et al, 2005).

8 Feedforward synaptic input from unrecorded
neurons can make inference more difficult

Another simplification often taken in many studies, and so far here as well, is the
assumption that external input to the recorded network is uncorrelated (Γ and Φ
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diagonal). Local cortical circuits receive input from other cortical layers and cortical
areas, and this input is likely to be correlated due to overlapping synaptic projections
and due to correlations between the spiking activity in these upstream networks.
Though the discriminability of these systems is no longer fully analytically tractable, we
are still able to introduce some qualitative features which can impact the numerically
estimated AUROC. We also introduce some additional regimes for the precision and
show how sensitive the the resulting inference is to the parameters governing the
non-independent external input variability.

When external input is correlated, Φ is no longer diagonal and we can expand Eq.
(7) on an element-wise basis to obtain

Pab
αβ =Φa

ααWab
αβ + Φb

ββWba
βα +

N∑
γ=1
γ 6=α,β

Φac
αγW

cb
γβ +

N∑
γ=1
γ 6=α,β

Wcb
γβΦac

αγ

−Φab
αβ −

N∑
γ1,γ2=1
γ1 6=α,β

Wc1a
γ1αΦc1c2

γ1γ2
Wc2b

γ2β
.

(14)

The first two terms in this sum represent precision inherited from direct connections,
which are modulated by the external input precision, Φ. The subsequent terms
represent precision inherited from common input, which is modulated by connection
strength. This expansion reveals that while there remains a linear relationship between
the measure and bidirectional connectivity, it is now additionally modulated by the
diagonal parts of the external input covariance. The term which had previously taken
the role of shared post-synaptic targets now also receives additional variability from the
sources arising from shared pre-synaptic feedforward targets.

We model correlated external input as an external population of Nx unrecorded
neurons making random synaptic projections onto the recorded network (i.e., the
external population is not included in the precision matrix). When correlated external
input is present, we will enforce the random structure of the form

Γcorr = Wx〈sx, sx〉WT
x . (15)

This structure models a population of Nx external spike trains with the Nx ×Nx
cross-spectral matrix, 〈sx, sx〉, that sends feedforward input to the recurrent network
through a random N ×Nx feedforward connection matrix K̄x, which is normalized by
gains to obtain Wx = ḠK̄x (Baker et al, 2018).

We also account for an independent noise current modeling ion channel noise and
other sources of independent noise in neurons. Thus a model for the total external
covariance would be

Γ = Γcorr + Γind (16)

where Γind is a diagonal matrix representing the variance of this additional source of
independent white noise input to the system. Since Γind is full rank, we may now
recover invertibility of Γ even when Γcorr has eigenvalues of zero, which is the case
whenever Nx < N . This model can be re-expressed by way singular value decomposition
(SVD) of Γcorr and the Woodbury matrix identity into UDV for some diagonal D to
yield a linear combination of the independent and additionally modified precision values

P = −(I−WT)Φ(I−W)

= (I−WT)Φmod(I−W)

− (I−WT)Φind(I−W)

= Pind −Pmod

(17)
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where Φmod = Γ−1indU(D−1 + VΓ−1indU)−1VΓ−1ind and Φind = Γ−1ind. In some sense then,
the information regarding network structure inherent to Pind will remain present to
some degree in the total P with Pmod either adding extra information about
connectivity or corrupting the information from Pind with additional noise. The first
case is what is observed in the first combination case of Fig. 4 (compare red to blue).
Without the regularizing independent source of external noise, discriminability is
markedly decreased Fig. 4 (compare purple to others). This amplification is not
ubiquitous over the parameter space, as evidenced by Fig. 4 (compare yellow to red)
which causes a decrease relative to the purely independent case yet is still increased
from the case of purely correlated external noise.

To understand how discriminability can be reduced by including more realistic
parameters in the external network, we steadily examine each compounding source of
variability beginning with the simplest. Until otherwise specified, we will begin by
assuming that 〈sx, sx〉 is diagonal in Eq. (15), implying independent external spiking
processes.

Random Sparsity. Holding synaptic strengths constant and homogeneous, we will
grant a random Erdos-Renyi style form of sparsity onto the feedforward projection
matrix K̄x. This causes additional variability since the elements of Φ are now random
dependent on the projection structure.

Random Feedforward Synaptic Strengths. Similar to how variability in the synaptic
strengths for the recurrent layer decreased discriminability, so too may the feedforward
synapses possess inherent variability in their strengths. This will necessarily induce a
greater variability in the values of Φ.

Correlated Spiking. We may further extend the theory to the case of correlated
spiking in the external population by allowing 〈sx, sx〉 to have non-zero off-diagonal
elements. This means that the external input covariance now becomes modulated by its
own spiking statistics, separate from that of the randomness inherent to the network.
Additionally, the scale of the external input correlations now becomes much larger:
Σ ∼ O(N) (Baker et al, 2018) compared to the uncorrelated Σ ∼ O(1) case when
〈sx, sx〉 is diagonal (Baker et al, 2018; Renart et al, 2010).

In conclusion, the relation between structure and function in the presence of latent
input can depend very sensitively on both the specific model and the parameters of the
unobserved network. Without any independent source of noise present in the model, the
highly correlated external activity can wash out the majority of direct synaptic
interactions in the recurrent network. If there is a source of independent variability for
each neuron, this can help to restore and even amplify the discriminability in some cases.

10 Indepedent

Combination 1
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e → e e ↔ e i → i i ↔ i i → e e ↔ ie → i

Combination 2

Figure 4. Mean discriminability across ten randomly generated networks with four
feedforward connectivity types: independent (blue), a combination of rank-one and
independent external input (red), a second combination of low-rank and independent
input of different parameterization (yellow, see Appendix 13.5 for values), and exclusive
full-rank external input corresponding to the correlated state (purple). The same
recurrent networks were used across all cases.
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9 Accounting for neuron distance or tuning
differences can improve inference of connectivity

Connection probability in local cortical networks can depend on the physical distance
between neurons or on their distance in tuning space, i.e., their tuning similarity. For
data obtained by imaging methods, the lateral distance between neurons can be
estimated directly. In multi-electrode array recordings, distance can be approximated by
the distance between electrodes on which units were recorded (Rosenbaum et al, 2017;
Smith and Kohn, 2008). Distance in tuning space can be estimated by comparing
tuning curves of recorded neurons (Kohn, 2005). For example, orientation tuning
difference in the primary visual cortex can be defined as the distance between neurons’
preferred orientation. These distances provide an additional type of information which
can be used in conjunction with precision to improve inference of connectivity. Some
intuition for this is given by an example where a distant pair of neurons is unlikely to be
connected, even if their precision value is large. We next extend our theory to account
for this extra source of information.

There are many variations on network models of spatial dependence. We consider a
network in which each neuron is randomly assigned a preferred orientation, θ, and
connection probability depends on the difference between neurons’ preferred
orientations. Specifically,

Jabαβ ∼ N (jab, vab) Ωab
αβ | θaα, θbβ ∼ bern(G(θaα, θ

b
β ; ςab))

θaα, θ
b
β ∼ U

(
0,

1

2

)
G(θ1, θ2; ς) =

pab

ςerf( 1
2ς )
√
π
e
− d(θ1,θ2)2

ς2

d(θ1, θ2) = max {|θ1 − θ2|, 1− |θ1 − θ2|}

where orientations in radial units (θ ∈ [0, π] rad) have been rescaled to arbitrary units
on the interval [0, 12 ] and the “wrapped” nature of the space has been maintained by
way of the distance function d. The parameter ςab defines the widths of the projections
within or between the sub-populations a and b, i.e. the likelihood that more dissimilarly
tuned neurons connect. Note that the model has unconditional sparsity levels equivalent
to the standard Erdos-Renyi model. This network structure can easily be extended to
two or three dimensions to model distance in physical space, yielding similar overall
dependence of correlations on distance (Rosenbaum et al, 2017)

If we were to use distance alone to infer connectivity, it would give lower-quality
inference for broader spatial widths (Fig. 5d), an intuitive result since very large spatial
widths begin to approximate an Erdos-Renyi network in that all connections are formed
with near-equal probabilities and thus the distance between pairs becomes a
meaningless quantity. For certain network parameters, connectivity in each subgroup
may be better inferred by one marginal measure or the other (distance or precision;
Table 1), and there seems to be no simple way to decide a priori which metric will
necessarily be better for an arbitrary choice of hyperparameters. But limiting ourselves
to pairwise choice between two one-dimensional measures misses the larger implication
that we are now able to classify based on the joint space of the dual measures of
precision and distance seen in Fig. 5a-c,e-g,i-l. This represents our first step away from
single-thresholding of measures towards the classification of connectivity by way of
cluster association or linear separability in a higher-dimensional space consisting of
multiple measures. This is similar to the approach used by Chambers et al (2017) to
improve classification by way of an ensemble of many functional measures.
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Figure 5. Using the knowledge of pairwise distance within spatial networks improves
inference. (a-c) Two-dimensional heatmaps of the KDE of each block of a randomly
generated precision structure from the spatial network type, all with unlabeled connec-
tivity in the order: (a) excitatory, (b) inhibitory, (c) mixed. (d) AUROC for the e→ e
sub-population, based only on the marginal metric of distance and shown as a function
of the spatial width. (e-g,i-`) Heatmaps of the difference between the two-dimensional
KDEs conditional on connection type for each subgroup assigned as follows: (e) e→ e,
(f) i→ i, (g) i→ e, (i) e↔ e, (j) i↔ i, (k) e→ i, (`) e↔ i. Dashed red lines denote
a linear classifier corresponding to the ROC curve in (h), with threshold fixed at the
point where the sum of the number of true and false positives (i.e., assigned connections)
equals the total number of condition positive (i.e., actual number of connections in the
network). (h) Optimal ROC curves for each subgroup over the joint space. AUROCs in
(h) are reported in Table 1.

Table 1. AUROC for each subgroup using each measure only in the marginal sense.
The greater of the two values is emboldened for visibility. The “Linear” column of values
are the AUROC of the curves seen in Fig. 5h. The “Radial” column of values are the
AUROC of the curves seen in Fig. 6h.

Subgroup Precision Distance Linear Radial
e→ e 0.6022 0.8257 0.9601 0.8253
e↔ e 0.5319 0.9131 0.9986 0.9129
i→ i 0.9389 0.8228 0.9941 0.8602
i↔ i 0.9983 0.9122 1 0.9572
e→ i 0.6911 0.8261 0.9999 0.8241
i→ e 0.9692 0.8249 0.9981 0.8310
e↔ i 0.8155 0.9126 0.9494 0.9107
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In analyzing the use of precision and distance as dual measures for classification, we
will examine the parameterized family of ROC curves induced by classifiers based on a
linear combination of the two measures. That is, we define a threshold method
analogous to (Maswadeh and Snyder, 2012)

tan(ω)d(θα, θβ) + Pab
αβ ≤ c

to classify connectivity, where c spans the entire classification space for each fixed angle
ω ∈ [0, π], thereby generating ROC curves parameterized in terms of this angle. This
inequality can be interpreted as follows: Draw a line in the joint space of distance and
precision with slope tan(ω) and intercept c (see dashed lines in Fig. 5). Pairs of neurons
with precision-distance values above this line are classified as connected. It is useful to
examine the dimensional reduction of the family of curves by way of the AUROC for
each slice as a function of the slope of the partitioning line; these curves are displayed in
Fig. 6a-g. They primarily reveal how, for certain subgroups, the “optimal” classifier
(i.e., the peak of each curve) may be dangerously close to the worst linear classifier
possible over the space (i.e., the minimum of the curve). Some groups may also plateau
in a more stable fashion than others, implying robustness across sub-optimal angles.

It should be noted that the marginal metrics represent the perfectly vertical and
horizontal slices of this space and thus the family of curves further generalizes all
higher-dimensional linear classification methods, which can include some unsupervised
clustering methods such as the k-means algorithm. Most notable from this approach is
that there exist several cases where the conditional marginal distributions of neither
precision nor distance are themselves perfectly separable and yet their clusters in the
joint space are almost perfectly linearly separable.

While this result is encouraging towards the use of the joint space for classification,
it should be mentioned that common unsupervised methods do not work very well due
to the non-linear and non-Guassian relationship between precision and distance. Whilst
supervised methods can easily learn this relationship, these lack applicability to in vivo
data where ground truth, and indeed the true joint relationship, remain unknown.

To alleviate the difficulty in choosing either a marginal measure or the slope for a
linear classifier, we further introduce a basic heuristic which would be immediately
applicable to real data in which both precision and distance are inferable. Our heuristic
classifies connectivity (or anti-connectivity) as the points which lie on the interior of a
circle centered at the peak of the unlabeled two-dimensional kernel density estimate
(KDE). More precisely, a pair of neurons would be classified as connected if∣∣∣∣∣∣[d(θaα, θ

b
β) Pab

αβ ]− [d0 P0]
∣∣∣∣∣∣
2
≤ c

where || · ||2 is the Euclidean norm, and [d0, P0] is the location of the peak (the argmax)
of the empirical KDE. Hence a pair of neurons is classified as connected if their
precision-distance value lies inside a circle of radius c centered at the peak of the
estimated joint density of distance-precision values. This method is also mathematically
equivalent to directly thresholding the likelihood of points transformed into a
Gaussian/radial basis with an identity covariance. But unlike the angular method, this
produces a single ROC curve without relying on the choice of any other parameters (like
ω from above), though further improvement would undoubtedly be gained from
specifying or optimizing the covariance relation between parameters within the
Gaussian basis.

We assess this heuristic by varying the radius, c, of the circle to span the
classification space, generating the ROC curves in Figure 6h. As observed in Table 1,
the AUROC obtained from this heuristic is always less than the best marginal measure,
but always much better than the worst one. It also tends to mimic distance as a
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measure in this regard, being very similar in quality when distance is the preferred
measure. Thus the heuristic is convenient in that it removes blind choice between
marginal measures and the arbitrary choice of a parameter like ω above, even though it
may sometimes be suboptimal.

Our conclusion for spatial networks is encouraging - despite the increase in precision
variability due to the spatial configuration, the joint use with known distances greatly
improves the overall quality of inference and has direct application to in vivo recordings.
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Figure 6. AUROC varies with respect to the angle of the projections. (a-g) AUROC as
a function of the slope of a linear classifier over the joint space of precision and distance
from Fig. 5. (h) ROC curves for the radial heuristic. AUROCs for (h) are reported in
Table 1.

10 Inferring connectivity from network simulations

Up to this point in our study, we have only quantified the quality of inference under an
assumption that we have a perfect estimate of the precision matrix. This will not be the
case for actual data generated from explicit dynamics, be it in silico or in vivo. An
account of the additional variability from imperfect statistical estimation using inversion
of the covariance matrix is now given for Gaussian data reflecting the structure of
Eq. (8) using Erdos-Renyi networks with independent external input. Our analysis will
show that in order to achieve near-optimal levels of inference (near-optimal being
relative to what the system itself constrains the maximum theoretical AUROC to), very
large sample sizes are required, corresponding to experimental recording lengths that
may not always be feasible in practice.

This analysis yields a total discriminability of

DER,P̂
ab (m) =

signal(DER
ab (m))√

noise(DER
ab (m)) + S2

ν

(18)

where ν is the number of samples used to estimate the precision matrix, which is
proportional to the duration of a recording. The S2 term relates to the additional
variability from the statistical sampling, with an explicit form found in Supplemental
Section 6. As expected, this new form indicates that inference on the estimate is always
less than the perfect case but increases monotonically with the number of data points
governed by the length of a recording or simulation.
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Note that as the number of samples, ν, tends to ∞, DER,P̂
ab tends to the “optimal”

discriminability DER
ab derived under the assumption of a perfect estimate of P. This is

the value of discriminability discussed in previous sections and represents the most one
can recover about connectivity from precision, but does not necessarily represent perfect
recovery of connectivity.

An interesting perspective is offered by solving the full discriminability equations to
obtain a direct relation between the number of samples ν0 required to obtain a target
fraction, φ0, of optimal discriminability

φ0 ≡
DER,P̂
ab (m)

DER
ab (m)

ν0 ∝
φ20

1− φ20
N (19)

which illustrates two important concepts: It grows linearly with the number of neurons
(N) and the nature of the rational function in φ0 necessitates disproportionately larger
values of ν0 (more samples) to achieve higher optimal percentages.

This theory is explored first using simulations of an OU process like the one defined
in Eq. (1) whose parameters are the same as the top row of Fig. 1. Estimates of inverse
sample covariance were obtained at regular intervals and used to compute the
convergence rates in Fig. 7a. The final ROCs obtained are then displayed in Fig. 7b.
Since the network used in the OU simulations was the same as in the majority of Fig. 2,
the same nearly ideal ROC curves should be observed as sample size tends to ∞. Thus
all suboptimal ROCs observed in Fig. 7b are the result of finite sampling of the
precision matrix. Further, the rate of convergence in Fig. 7a is consistent with the
rational expression in Eq. (19). The rate of convergence for φ0 is also radically different
for each subgroup in Fig. 7a, a feature also explained analytically by finding the
constant of proportionality in Eq. (19) as a function of the sampling variability S2,
derived in Supplemental Section 6. Of particular importance then is the bulk of
connectivity contained within the excitatory population, which due to its relatively
weak synaptic proportions (see Appendix 13.5) produces very small correlations, which
in turn requires many more samples to adequately estimate.

Yet another source of variability arises if, instead of assuming a linear Gaussian
model (OU process), we consider a non-linear model such as that induced by a large
balanced network of adaptive exponential integrate-and-fire (AdEx) neurons, defined by
the membrane potential dynamics

Cm
dV

dt
= −gL(V− EL) + gL∆T e

V−VT
∆T + T−w

τw
dw

dt
= a(V− EL)−w

subject to the rule that if a voltage exceeds the threshold (Va
α(t) ≥ Vth) then it returns

to reset (Va
α(t)→ Vre), its adaptation current is incremented (wa

α → w + b), and a
spike is recorded. The input terms stemming from recurrent sources R and external
sources X may be expressed as

T = Cm(X + R) + Q
dWt

dt

Ra
α =

∑
c=e,i

∑
γ∈c

Kac
αγ

∑
n

ηc(t− tc,γn )

Xa
α =

∑
γ∈x

(Kx)aαγ
∑
n

ηx(t− tx,γn )
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where tc,γn is the nth spike time of neuron γ in population c = {e, i, x} and synaptic

kinetics are modeled by the filter ηc(t) = 1
τc
e−

t
τc Θ(t) where Θ(t) is the Heaviside step

function. This network is held in the aforementioned correlated state by letting the
external spike times tx be correlated across pairs of feedforward projecting neurons,
giving O(1) mean spike train correlations in the recurrent network (Baker et al, 2018).
This scaling allows spike count covariance to become much stronger than those
produced in the case of OU processes (Baker et al, 2018), leading to more accurate
estimation of precision and therefore better recovery of connectivity (7c).

As we have now transitioned to a spiking model of neuron activity, we must adjust
our notion of covariance to be taken over spike counts aggregated over time windows of
moderate size (∼ 250 ms). By aggregated spikes over time windows larger than the
decay of their autocorrelation, we begin to approximate the zero-frequency structure of
Eq. (6) and the results implied by its inverse through the previous sections.

However, the optimal AUROC in 7d is still hampered by at least two new sources: i)
the non-linear characteristics of the model impart a certain deviation from the
approximating equations, and ii) even within the linear approximation, the gains for
each neuron (derivative of f -I curve) are no longer fixed parameters – they become
random variables following a distribution with non-zero variance. While the variability
coming from the gains reduces inference, the mean value may actually act to improve it
beyond the simpler cases previously considered. To exemplify, note the parameters of
the balanced network use identical synaptic proportions to those in the OU process, but
the magnitude of the average synaptic strengths is nearly a hundred times stronger
when measured in consistent units. In the previous qualitative analysis this would imply
near-zero discriminability, yet that considered only gain values fixed at unity. In the
AdEx simulation, the gains were estimated empirically by a quadratic function fit to the
f -I curve, similar to (Ebsch and Rosenbaum, 2018). When compared in consistent units,
the corresponding synaptic strengths were found to be small on such an order than
returns the product W = ḠK̄ back to a level we would expect reasonable
discriminability. In short, stronger recurrent synapses become modulated by weaker
gains, enabling a wider range of network parameters to be viable in conveying structure
via function as measured by precision of spike count covariance over large time windows.

In practice, we recognize that precision matrices are more often estimated by way of
far more rigorous regularization techniques such as graphical-LASSO, shrinkage, or
sparse-latent (Yatsenko et al, 2015) methods to improve the quality of estimation for
small quantities of data by utilizing the assumed sparsity of the matrix. Unfortunately,
these methods do not allow simple analytical properties such as the variance of the
estimator to be inferred and so we use the general estimator here to establish an upper
bound for the sample size ν or, equivalently, the recording length of T hours using the
scale proportion T ≈ 7ν × 10−5 using integrating time windows of 250 ms. It is then
assumed that proper use of regularization (i.e., ideal choice of regularization strength)
would offer a reduction in this variance equating to smaller bounds on sample size
necessary to achieve target levels of inference.

In conclusion, accurate statistical estimation of precision and the ensuing use of the
measure for inference of structural connectivity remains a very hard problem. If a given
neural region exhibits strong correlations driven by external variability then it may be
possible to reach asymptotic levels of inference with relatively short recording times, but
the nonlinearities of that regime diverge from the analytical theory developed in
previous sections and may lead to suboptimal inference within certain sub-populations.
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Figure 7. The rate of convergence to the maximum obtainable AUROC depends on
neuron model. (a) Plot of mean φ0 versus number of samples (ν) for four networks
of N = 500 neurons following an OU rate process with independent noise. (b) The
ROC curves of the final point in time of the simulation. (c) Plot of the AUROC as
a function of time, normalized by the final endpoint, for a network of AdEx spiking
neurons in the correlated balance regime. (d) ROC curves of the final point in time of
the simulation. In both (a) and (c), the top axis of equivalent time in rounded hours is
shown for comparison to ν, using an integrating time window of 250 ms. It should be
noted that the timescales for the OU process in (a) are subjective and may not map
directly to biophysical recordings; whereas the timescales of the EIF in (c) are chosen to
be realistic and time may be interpreted directly.
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11 Mean-Field Analysis of In Vivo Data Suggests
Exclusive Sources of Input for Inhibitory
Sub-Populations

Following the analysis of inferring pairwise connectivity from the precision matrix, we
are left with the question of what exactly can be inferred using in vivo data sampled at
low temporal resolution and at recording durations too short for accurate estimation of
the entire precision matrix. One option left to us is to examine what can be inferred
from the mean-field statistics of the neuron cell type sub-populations, i.e., from the
cell-averaged values of each block in Σ. These results will provide some interesting
insight into the mean-field structure of external projections onto an observed recurrent
layer.

A mean-field theory of correlated variability in balanced networks shows that for
large N (Baker et al, 2018; Renart et al, 2010; Rosenbaum et al, 2017)

Σ ∝ K
−1Rx K

−T
(20)

where

Σ =

[
Σee Σei

Σie Σii

]
is the 2× 2 matrix of cell-type averaged covariances with

Σab = avg
α∈a,β∈b
α6=β

Σαβ

and similarly for the 2× 2 mean-field external input covariance matrix, Rx. The 2× 2
mean-field connectivity matrix is defined similarly with

Kab = jabpabqb

where qb = Nb/N is the proportion of neurons in population b = e, i, and we remind
that jab is the mean synaptic strength of projections from b to a which occur at a mean
connection probability of pab. Importantly Eq. (20) is independent of the gains that
were present at the pairwise level and implies then that

Rx ∝ K Σ K
T
. (21)

When a large number of cells are recorded from a short-duration recording, Σ can be
estimated more accurately than the full matrix Σ. The mean-field connectivity, K, still
cannot be inferred without knowledge of Rx, which is typically not known in
experiments. However, the connection probabilities, connection strengths, and
sub-population ratios that define Kab have been estimated from intracellular
recordings (Jiang et al, 2016). This allows us to solve a reversed problem: Instead of
inferring mean connections, Kab, we can combine estimates of K from intracellular
recordings with estimates of Σ from multi-cellular recordings in the same cortical area
to obtain an approximate estimate of external input covariance, Rx, by directly
applying Eq. (21).

Specifically, we set qe = 0.8 and qi = 0.2 then used measurements of the maximal
evoked post-synaptic potential (units mV) from intracellular recordings of connected
pairs of Pyramidal and Basket Cells in L2/3 of mouse primary visual cortex (Jiang et al,
2016) to constrain

J =

[
0.34 −0.48
1.6 −0.68

]
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together with their corresponding estimates of connection probabilities from (Jiang et al,
2016) [

pee pei
pie pii

]
=

[
0.018 0.352
0.186 0.468

]
Note that for any model with a single homogeneous population of neurons providing

external synaptic input to the recurrent network, (including the previous AdEx spiking
network), the 2× 2 matrix, Rx, of population-averaged external input covariances is
proportional to

Rx ∝WxW
T

x

where Wx = [wex wix]T is the 2× 1 mean-field feedforward connectivity matrix defined
similarly to W (Baker et al, 2018; Renart et al, 2010; Rosenbaum et al, 2017). As a
result, Rx is rank one (and therefore has determinant zero) for any such model. Hence,
the product of the off-diagonal elements of Rx should be equal to the product of its
diagonal elements. We may therefore test the hypothesis that the recorded network
receives correlated external input from a single homogeneous population of neurons by
comparing the product of the off-diagonal to the product of the diagonal elements of the
estimated matrix Rx.

We proceed to analyze a dataset of 11 recordings on 5 individual mice. In each
recording session, between 163-385 neurons were recorded via 2-photon calcium imaging
of mouse primary V1 cortex L2/3. Each recording consisted of around 200 trials per
presentation of 2 stimuli consisting of lines oriented at either 0◦ or 90◦ angles. The
fluorescence traces from each trial were then deconvolved using the fast non-negative
deconvolution of Vogelstein et al (2012). For more details on experimental methods,
please consult Appendix 13.1. The covariance between neuron pairs at each point in
time was then calculated across trials for each stimulus type, and subsequently averaged
over time in order to extract the noise, rather than stimulus, covariance. Non-firing
neurons were dropped from the covariance estimation step. The mean-field was then
taken over each covariance matrix in each stimulus/experiment, using the parvalbumin
(PV) labeling to define the excitatory (PV-) and inhibitory (PV+) cell types. We note
that not all PV- types are necessarily excitatory, as there are many types of inhibitory
interneurons in this region which are PV-, but the sampling probability of these should
be low enough to not significantly affect our analysis.

These mean-field averages of the resulting noise covariance matrices for each
experiment are seen in Fig. 8c and are subsequently passed through Eq. (21) using the
previously specified values to constrain the degrees of freedom. This results in the
values shown in Fig. 8d which do not appear to obey a rank one property over all
subjects. Treating each point in Fig. 8e as a sample, we perform a simple hypothesis of
mean-equivalence using the Behrens-Fisher test to verify this result. The null
hypothesis that

E[(PV+/PV-)2] = E[(PV-/PV-)(PV+/PV+)]

is rejected with a p-value of 0.0143 and thus we cannot claim that the mean-field
external input covariance for mouse V1 cortex L2/3 is rank-one. There are multiple
candidate models to explain the additional rank but one of the simplest is the existence
of exclusive input to the PV+ sub-population illustrated in Fig. 8b, and first proposed
by (Yatsenko et al, 2016).

There may be a question of how sensitive our conclusions are if we consider the
variability in estimating the mean values for jab and pab. Thankfully, Jiang et al (2016)
report standard deviations for the post-synaptic potentials as well as the number of
neuron pairs recorded for the connection probabilities. Both of these can then be used to
construct a Monte Carlo approximation to the total contributed variability in the final
estimates of Rx. We find that all perturbed versions of Figs. 8c-e do not qualitatively
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change in any significant way, and indeed the distribution of p-values for the previous
statistical test is largely within a range of less than 0.1 (Supplemental Figures 2-5).
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Figure 8. In vivo recordings indicate a deviation from an assumed model of the external
input. (a) Originally hypothesized model of external input to the recurrent network,
consisting of a single homogeneous population. This is the structure used in previous EIF
simulations. (b) Alternate model to explain observed high-rank structure of in vivo data,
which uses two distinct external populations with one projecting exclusively to inhibitory
cell types. (c) Estimates of mean-field noise correlations partitioned by parvalbumin
containing (PV+) and non-containing (PV-) subtypes over 12 total experiments (each a
different color), with standard error bars shown around each experimental mean-field
(but only visible for the PV+/PV+ blocks). (d) Estimates of mean-field external input
covariance using values in (c) in conjunction with Eq. (21) and intracellular estimates of
synaptic values. (e) Plot of the product (PV-/PV-)(PV+/PV+) versus (PV+/PV-)2,
where each quantity is scaled by the arithmetic mean of the three values to maintain
visual perspective. Rank one matrices would have all values close to the diagonal
reference line.
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12 Discussion

It remains an open question as to how our theory interacts with subsampling (Brinkman
et al, 2017; Paninski, 2004; Pillow et al, 2008), where external correlations are caused
not by correlated external spike trains but instead by latent (unobserved) recurrent
interactions. From an analytical perspective, the term Γ which occurs in the inner part
of Eq. (6) would take a different form to incorporate network-valued functions relating
the observed and unobserved parts, rather than simply being a parameter of the system.
While intuition indicates that recovery performance should scale increasingly with the
proportion of the recurrent network observed, this has not been shown using our
functional measure nor our biophysical models. This would be important to a future
application of this research to in vivo results, as it is uncommon to have techniques
capable of recording from an entire self-contained recurrent network.

There are many ways in which the theory we have established could be improved by
statistical methods. For example, in estimating the sample precision we directly
inverted the covariance matrix, which is not a commonly used method, but we chose it
to glean analytical results for the unconditional variance of the model. While this ought
to serve as a lower bound for more accurate methods such as the graphical-LASSO
family or neighborhood based methods, it is unknown if there is an upper bound on how
well such numerical estimations could improve the quality of inference.

A main implication of our results is that knowledge of cell-types is extremely useful
in untangling the full mixture distribution. In this paper, we only distinguished primary
excitatory and inhibitory cell types in the two-population model; real neural circuits
contain a variety of neuron types and subtypes with intricate connectivity
properties (Jiang et al, 2016; Pfeffer et al, 2013). A more realistic model of a real
system then would be a multi-population network structure.

We performed much of our analysis in the limit of large network size assuming a
1/
√
N scaling of synaptic weights. Asymptotically larger synaptic weights typically

violate stability conditions on the network dynamics at large N . Some studies have
considered sparsely or weakly coupled networks (p ∼ O(1/N) or J ∼ O(1/N)). Our
analysis can be modified to these settings. In principle, inference of synaptic
connectivity from precision becomes perfect in the limit of large network size under
these scalings when one has a perfect estimate of the precision matrix. However,
asymptotically weak coupling in this case implies that asymptotically longer samples (as
in Eq. 19) are required for accurate estimation of the precision matrix in this limit,
suggesting that inferring synaptic connectivity in weakly coupled networks is difficult in
practice.

Even aside from functional-effective measures and ensembles thereof, there is also
modern work showing that introducing large targeted perturbations to nodes within the
network, and assigning connectivity based on observed responses throughout
system (Widloski et al, 2018). While this has been shown to give good recovery for
some in silico regimes, it remains unknown how it depends on network parameters
similar to what we have examined. Another aspect of these perturbational methods is
the experimental difficulty that would be required in application. While it is possible to
use intracellular stimulation in conjunction with both calcium imaging and
micro-electrode arrays, the scalability of the perturbational methods would be
impractical for networks on the order of thousands of neurons.

Another side topic of this paper is in regards to sub-optimal thresholding methods in
ROC generation. Specifically, whenever the ROC curve dips below the diagonal, there is
indicated loss of information due to a non-monotonic likelihood ratio between the two
compared distributions. The ideal method would then be to correct the thresholding
based on knowledge of this relationship, seen in Supplementary Figure 1. Without this
knowledge, a simple way to enforce monotonicity is to take the absolute value of the
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points being thresholded, much as we did in Fig. 1h. Note however that doing so makes
the underlying mixture distributions non-Gaussian and so discriminability analysis only
serves as a lower bound on performance. Use of such transformations in real data would
ultimately be a subjective choice, though possibly informed by in silico results similar to
this paper; nonetheless, it is difficult to justify without making prior assumptions on the
structure of the real data.

In addition to the radial heuristic we proposed for inferring connectivity from
precision and distance measurements, the ROC curves of which are seen in Fig. 6h,
there are undoubtedly many other heuristics may consider either alternate centerings or
more complicated geometries such as ellipses to account for the correlation within the
measures and these could certainly do better than ours. But allowing more degrees of
freedom to the model also increases its subjectivity; we illustrate ours simply for the
sake of example to show how the transition into the higher-dimensional data space may
allow for more detailed thresholding heuristics than exist in the univariate case.

Finally, some authors who perform in silico benchmarking refrain from use of ROC
curves and instead favor precision recall (PR) curves, accuracy curves (ACC), or their
own custom metrics. It should be noted that PR curves may only be reliably used under
very sparse settings, and even then may only compare the relative performance of
different methods on an identical network. Notably, it is not valid to vary parameters
implicit to the model and examine how a metric such as the area under the PR curve
changes as a result. Likewise, ACC curves are imbalanced to unequal class sizes, and
will show misleading recovery results in the presence of high true negative to false
positive ratio.

13 Appendix

13.1 Experimental Methods

All procedures were carried out in accordance with the ethical guidelines of the National
Institutes of Health and were approved by the Institutional Animal Care and Use
Committee (IACUC) of Baylor College of Medicine.

The animals (n = 5 PV-Cre/Ai9 crosses on a C57Bl/6 background, labeled with the
fluorescent marker tdTomato) with an age range of p40 to p60 were initially anesthetized
with Isoflurane (3%) and then anesthesia was maintained by either Isoflurane (2%) or a
mixture of Fentanyl (0.05 mg/kg), Midazolam (5 mg/kg), and Medetomidin (0.5 mg/kg)
with anesthesia boosts consisting half of the initial dose every three hours. The body
temperature of the animal was maintained at 37C throughout the surgery using a
homeothermic blanket system (Harvard Instruments). In some experiments we applied
eye oil ointment (polydimethylsiloxane) to prevent dehydration of the cornea. Surgery
and dye injections of the Oregon Green 488 BAPTA-1 AM (OGB1, Invitrogen) calcium
indicator were performed as previously described (Garaschuk et al, 2006).

We used stereotactic information to locate our recordings to the primary visual
cortex of the mouse (V1). In some experiments we used intrinsic imaging to verify the
location of V1 (Kalatsky and Stryker, 2003). We recorded calcium traces using a
custom built two-photon microscope equipped with a Chameleon Ti-Sapphire laser
(Coherent) tuned at 800 nm and a 20x, 1.0 NA Olympus objective. Scanning was
controlled by a custom built acousto-optic deflector system (AODs) (Cotton et al.
2013). The average power out of the objective was kept less than 120mW. Calcium
activity was typically sampled at a mean of 260Hz (min/max: 78-450 Hz). We recorded
data from depths of 100-540 µm below the cortical surface.

The measured fluorescent traces were preprocessed in order to reduce common mode
noise related to small cardiovascular movements (Cotton et al, 2013) and the firing rates
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were estimated using by nonnegative deconvolution (Vogelstein et al, 2012).

13.2 OU Identity for Normal K̄

For the OU system defined in Eq. (1), if KKT = KTK, G = gI, and QQT = σI we
have

R(0) =
σ2g2

τ2r

0∫
−∞

exp

[
1

τr
(I− gK̄)s

]
exp

[
1

τr
(I− gK̄)Ts

]
ds

=
σ2g2

τ2r

0∫
−∞

exp

[
1

τr
(2I− gK̄− gK̄T

)s

]
ds

= σ2g2τr(2I− gK̄− gK̄T
)−1

⇒ K̄ + K̄
T

=
2

g
I− σ2gτrR−1(0)

13.3 Relation Between AUROC and Discriminability for
Normal Distributions

It is well known that the area under an ROC curve may be parameterized and solved to
yield the identity

AUROC = P(X1 > X0)

for normally distributed scores in the positive and negative classes X1 and X0,
respectively. If these scores are normally distributed then closure properties imply

P(X1 > X0) = P(X1 −X0 > 0) = P(Y > 0)

= 1− P(Y ≤ 0) = 1− FY (y)

Y ∼ N (µ1 − µ0, σ
2
1 + σ2

0)

and so

AUROC = 1− 1

2

[
1 + erf

(
− µ1 − µ0√

2
√
σ2
1 + σ2

0

)]
and so by appropriately defining the discriminability D and re-arranging we obtain

AUROC =
1

2
erfc

(
−|D|√

2

)
where the absolute value restricts the AUROC to

[
1
2 , 1
]

which corrects for
anti-classifiers. The result is the bijective mapping from D to AUROC, leading to the
natural invertibility between the two which is necessary for our arguments.

13.4 Central Limit of Precision with Independent External
Input

Precision values from the case of independent external input can be expressed
element-wise as

Pab
αβ = Wab

αβ + Wba
βα −

N∑
γ=1

Wca
γαWcb

γβ

32/37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/650069doi: bioRxiv preprint 

https://doi.org/10.1101/650069
http://creativecommons.org/licenses/by/4.0/


which in the thermodynamic limit of network size (N →∞) leads the summation term
to converge to the limiting normal distribution, so long as all elements of W are
independent with finite variance. So long as we enforce normal distributions on and
zero-variance gains on the synaptic strengths, and since the normal distribution is
closed under summation, elements of P will also be normally distributed. All these
assumptions hold under the standard ER case as well as the CER case, whereby
correlations are specially constructed so that pairs of the form Wca

γαWcb
γβ are

independent across γ though not across pairs of α, β. The only breakdown of the CLT
independence conditions occurs in the HDout case, as all such pairs are now highly
correlated across γ, giving an apparent power law limiting distribution instead.

While the above requirements on J hold exactly only if it is normally distributed, as
long as Ω is Erdos-Renyi this theory will still hold as a fair approximation since the
O(1) part of the precision distributions are determined by the summation term with the
direct strengths offering only a O(1/

√
N) deviation. Even if synaptic weights are

specified from a one-sided distribution of finite variance, the induced asymmetries
against the limiting Gaussian will dissipate in the large N limit. Any variance present
in the gains will also lead to small errors with an exact Gaussian, but these effects will
again decay for large N and so the discriminability theory outlined in the paper should
still hold as a good approximation for the expected AUROC.

13.5 Simulation and Figure Parameters

For all simulations, we use an alternative parameterization of synaptic strength which
makes modulation easier to control. We express the average synaptic weights as[

jee jei
jie jii

]
= k1

[
ψee ψei
ψie ψii

]
where the synaptic proportions ψ are normalized by the inhibitory component as
ψab = jab/jii and the mean synaptic magnitude k1 is then modulated while holding the
proportions fixed. Similarly, the synaptic variance is parameterized as[

vee vei
vie vii

]
= k2

[
ψ2
ee ψ2

ei

ψ2
ie ψ2

ii

]
where the magnitude of synaptic variance k2 is modulated. For all figures and
simulations, we use a version of the synaptic proportions used in Pyle and Rosenbaum
(2016) that have been perturbed in order to give non-zero real part to the eigenvalues.
These proportions are [

ψee ψei
ψie ψii

]
=

[
0.1 0.6
0.45 1

]
as well as the fixed synaptic ratios of qe = 0.8, qi = 0.2 and the same fixed density of
pab = p = 1.

In Fig. 1, we used σa = σ = 1, ga = g = 1, and ua = u = 0 for both rows in order to
simplify the interpretation. For the top row we took k1 = 2.5, k2 = 6.25× 10−5 and for
the bottom row, k1 = 12.5 and k2 = 1.25. The same exact networks used in Fig. 1 are
used in Fig. 2, though they are partitioned according to the more informative mask.

In Fig. 3, all shared network parameters are identical to Fig. 1, except k1 = 2.5,
k2 = 1.25. The model specific parameters are ρ = 0.2 for the CER model and µ = 5,
ξ = 0.25 for the HD models. As mentioned, σ for the HD model is estimated
numerically using the bisection method to find the fixed point.

In Fig. 4, the same recurrent networks were used across all cases. Shared recurrent
parameters are consistent with the top row of Fig. 1. Shared external input parameters
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are pax = px = 0.1, jax = ψaxkx,1, vax = ψ2
axkx,2, ψex = 1.333, ψix = 1. Individually

modified parameters are kx,1 = 0.2571, kx,2 = 0.6571, 〈sx, sx〉αα = rx = 10,
〈sx, sx〉αβ = c = 0.1 for α 6= β in both the full-rank correlated state and the correlated
part of the first combination. The first combination also had Γind = I for the
independent part. The second combination used kx,1 = 250, kx,2 = 0, rx = 10, c = 0,
qx = 0.2, Γind = 10I. Full-rank effects in the correlated case are induced by taking
qx = 7 to give Nx = 14, 000 total external neurons, making Γ invertible with high
probability even without regularization from the independent external source.

In Fig. 5, shared parameters are consistent with the top row of Fig. 1 and used a
spatial width of ςab = ς = 0.2. The additional spatial variability inherent to these
networks accounts for the difference in AUROC using only precision as a marginal
metric between Fig. 2 and Table 1.

In Fig. 7, network parameters for the OU model are identical to the top row of Fig.
1 and have independent noise level σ = 0.1 and timescale τr = 1, discretized at the level
of dt = 0.1. Shared network parameters for the EIF model are the same except for
k1 = 250 and k2 = 0, as well as the fact that the statistics of the gains are no longer
specifiable and are a consequence of the non-linearity of the system. AdEx-specific
parameters are as follows: Cm = 1, gL = 0.0667, EL = −72, Vth = −50, Vre = −75,
∆T = 1, VT = −55, τw = 150, τe = 8, τi = 4, τx = 10, a = 0, and b = 0.1. External
input followed: qx = 0.2, kx,1 = 250, kx,2 = 0, and identical rx, c, ψ, px as from Fig. 4
purple. The balanced network exhibited less than 20% relative error to both the
balanced rate approximation and the mean-field covariance approximation from Baker
et al (2018).
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1 Supplementary Information

The following legend will be used throughout the supplemental proofs;

W = GK K =
1√
N

J ◦Ω B = Ω + ΩT Γ = GDG Φ = Γ−1

where G and D are diagonal matrices.

1.1 General Form of Precision Matrix With Independent External Input

Pab
αβ = −Φab

αβ + [ΦW]abαβ + [WTΦ]abαβ − [WTΦW]abαβ

=
N∑
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αγW

cb
γβ +
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γαΦ

cb
γβ −
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Φc1c2
γ1γ2

Wc2b
γ2β

=
Wab

αβ

(Ga
αα)2 Da

αα

+
Wba

βα(
Gb
ββ

)2
Db
ββ

−
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γ=1

Wca
γαW

cb
γβ(

Gc
γγ

)2
Dc
γγ

=
Ga
ααK

ab
αβ

(Ga
αα)2 Da
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+
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ββK
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βα(

Gb
ββ

)2
Db
ββ

−
N∑
γ=1
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γγK

ca
γαG

c
γγK

cb
γβ(
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γγ

)2
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αβ

Ga
ααD

a
αα

+
Kba
βα

Gb
ββD

b
ββ

−
N∑
γ=1

Kca
γαK

cb
γβ

Dc
γγ

for α 6= β.

1.2 General Form of Discriminability of Precision Matrix With Indepen-
dent External Input

1.2.1 Signal

For general conditioning set S

E
[
Pab
αβ | S

]
= E
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αβ
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ααDa
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+
Kba
βα
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ββD
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−
N∑
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γβ
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
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and since the main paper defines the conditioning sets in terms of mask M1 (a, b;m), we implement this
by taking S to correspond with Bab

αβ = 0 or Bab
αβ 6= 0. We begin by noting that for these sets, due to the

fact that we have no self-loops (Wαα = 0 ∀α), we have the identity[
N∑
γ=1

Kca
γαK

cb
γβ

Dc
γγ

∣∣∣∣ Bab
αβ = 0

]
=

[
N∑
γ=1

Kca
γαK

cb
γβ

Dc
γγ

∣∣∣∣ Bab
αβ 6= 0

]
=

N∑
γ=1
γ 6=α,β

Kca
γαK

cb
γβ

Dc
γγ

which directly implies that the signal (numerator of discriminability) of the precision in the case of
independent external input reduces to

E
[
Pab
αβ | Bab

αβ = 0
]
− E

[
Pab
αβ | Bab

αβ 6= 0
]

= E

[
Kab
αβ

Ga
ααD

a
αα

∣∣∣∣ Bab
αβ 6= 0

]
+ E

[
Kba
βα

Gb
ββD

b
ββ

∣∣∣∣ Bab
αβ 6= 0

]

regardless of any specific structure (deterministic or stochastic) on K or G.

1.2.2 Noise

Analogously,
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αβ | S

]
= V
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+
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N∑
γ=1

Kca
γαKcb

γβ

Dc
γγ
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
and applying the conditioning sets we find
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and
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αβ 6= 0
]
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,

N∑
γ=1

Kca
γαKcb

γβ

Dc
γγ

∣∣∣∣ Bab
αβ 6= 0


− C

 Kba
βα

Gb
ββD

b
ββ

,
N∑
γ=1

Kca
γαKcb

γβ

Dc
γγ

∣∣∣∣ Bab
αβ 6= 0



= V

[
Kab
αβ

Ga
ααDa

αα

∣∣∣∣ Bab
αβ 6= 0

]
+ V

[
Kba
βα

Gb
ββD

b
ββ

∣∣∣∣ Bab
αβ 6= 0

]
+ V

 N∑
γ=1
γ 6=α,β

Kca
γαKcb

γβ

Dc
γγ

+ C

[
Kab
αβ

Ga
ααDa

αα

,
Kba
βα

Gb
ββD

b
ββ

∣∣∣∣ Bab
αβ 6= 0

]

− C

 Kab
αβ

Ga
ααDa

αα

,

N∑
γ=1
γ 6=α,β

Kca
γαKcb

γβ

Dc
γγ

∣∣∣∣ Bab
αβ 6= 0

− C

 Kba
βα

Gb
ββD

b
ββ

,

N∑
γ=1
γ 6=α,β

Kca
γαKcb

γβ

Dc
γγ

∣∣∣∣ Bab
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
which implies the most general condition-specific noise form of
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]

+ V
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]

= V
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αβ
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ααD

a
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∣∣∣∣ Bab
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]
+ V

[
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ββD

b
ββ

∣∣∣∣ Bab
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]
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Dc
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a
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∣∣∣∣ Bab
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− C

 Kba
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γ 6=α,β

Kca
γαK
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Dc
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∣∣∣∣ Bab
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
and since the signal is equivalent across all network structures, only the noise must be recalculated for
each extended case.
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1.3 Discriminability of ER

Though specified in the main text, the following key will be helpful in understanding the simplification.

Da
αα = σ2

a ≡ variance of independent white noise ∼
(

mV

ms

)2

E[Jabαβ] = jab ≡ average synaptic strengths ∼ (mV)

V[Jabαβ] = vab ≡ variability of synaptic strengths ∼ (mV)2

E[Ωab
αβ] = pab ≡ sparsity of network

E
[

1

Ga
αα

]
= ga ≡ average inverse-gains ∼ (mV)

V
[

1

Ga
αα

]
= ua ≡ variability of inverse-gains ∼ (mV)2

Assuming that C
[
Kab
αβ,

1
Ga
αα

]
= 0 ∀α, β, the specific form of the signal for this case is

E

[
Kab
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ααD

a
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| Bab
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]
+ E
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ββ
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δm,2 =

1√
N

(
1

σ2
a

jabga +
1

σ2
b

jbagbδm,2

)
where it is important to note that since B is symmetric, specifying Bab

αβ 6= 0 does not specify whether it is
equal to 1 or 2 (a unidirectional or bidirectional motif) and so in simplifying discriminability D (a, b;m)
for m = 1, 2 we must attach the δm,2 on the transposed part of W/K/J following any evaluation of
B 6= 0. Since C[Kab

αβ,K
ac
αγ] = 0 ∀β 6= γ, the noise for the Erdos-Renyi case is
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where

wab = E[Kab
αβ] =

1√
N
E[JabαβΩ

ab
αβ] =

1√
N
jabpab

mab = V[Kab
αβ] =

1

N
V[JabαβΩ

ab
αβ] =

1

N

(
V[Jabαβ]V[Ωab

αβ] + V[Jabαβ]E2[Ωab
αβ] + E2[Jabαβ]V[Ωab

αβ]
)

=
1

N

[
vabpab (1− pab) + vabp

2
ab + j2abpab (1− pab)

]
=

1

N

(
vabpab + j2abpab − j2abp2ab

)
which together with the signal produces a final discriminability of

DER
ab (m) =

1√
N

(
1
σ2
a
jabga + 1

σ2
b
jbagbδm,2

)
√

1
σ4
a

1
N (vabua + j2abua + vabg2a) + 1

σ4
b

1
N (vbaub + j2baub + vbag2b ) δm,2 + 2N−4

N2

∑
c=e,i

qc
σ4
c

(mcamcb + w2
camcb +mcaw2

cb)

=

1
σ2
a
jabga + 1

σ2
b

jbagbδm,2√
1
σ4
a

(
vabua + j2abua + vabg2a

)
+ 1
σ4
b

(
vbaub + j2baub + vbag

2
b

)
δm,2 +

(
2− 4

N

) ∑
c=e,i

qc
σ4
c
pcapcb

[
(vca + j2ca)

(
vcb + j2cb

)
− pcapcbj2caj2cb

]
which can be simplified, assuming the gains and input noise are not population-specific (i.e., ga =
g, σa = σ), as

=
jab + jbaδm,2√

u
g2

[vab + j2ab +
(
vba + j2ba

)
δm,2] + vab + vbaδm,2 +

(
2− 4

N

)
1
g2
∑
c=e,i

qcpcapcb
[
(vca + j2ca)

(
vcb + j2cb

)
− pcapcbj2caj2cb

]
where the term u

g2
is the squared coefficient of variation (CV) of the gain distribution.

Note however that larger v causes slower convergence of the CLT by amplifying the variance of the
distribution; i.e., there is less accuracy of the Gaussian assumption for the sum term at smaller N and
thus can cause numerical differences between the theory and simulation. The Gaussian CLT outright
fails to hold if v →∞, though the resulting sums do converge to some α-stable distribution of unknown
parameters and unknown corresponding analytical AUROC. Also note that in the case of an α-stable
limit, likelihood ratio thresholding would have an even greater benefit to numerical inference. Larger v
also induces greater truncation error on the synaptic distributions due to Dale’s Law, and thus even if
the sum term is approximately Gaussian, the summation with the direct connectivity may cause some
deviation from the theory. An alternative form of the equation using the alternate parameterization of

jab = k1ψab vab = k2ψ
2
ab

and if we take g = 1 and u = 0 as we do in the early-mid parts of the main paper, gives

DER
ab (m) =

k1 (ψab + ψbaδm,2)√
k2 (ψ2

ab + ψ2
baδm,2) + 2

∑
c=e,i

qcpcapcbψ2
caψ

2
cb

[
(k2 + k21)

2 − pcapcbk41
]

=
ψab + ψbaδm,2√

k2
k21

(ψ2
ab + ψ2

baδm,2) + 2
∑
c=e,i

qcpcapcbψ2
caψ

2
cb

[(
k2
k1

+ k1

)2
− pcapcbk21

]
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=
ψab + ψbaδm,2√

k2
k21

(ψ2
ab + ψ2

baδm,2) + 2
∑
c=e,i

qcpcapcbψ2
caψ

2
cb

[
k22
k21

+ 2k2 + k21 (1− pcapcb)
]

(2)

and this form will be slightly more useful for analyzing qualitative properties in Section 1.4.

1.3.1 Discriminability of CER

Beyond this point, assume that ga = g = 1 and σa = σ. The resulting impact to the variability in W is

V[Wab
αβ] = V

[
1√
N

JabαβΩ
ab
αβ

]
=

1

N

(
V[Jabαβ]V[Ωab

αβ] + V[Jabαβ]E2[Ωab
αβ] + E2[Jabαβ]V[Ωab

αβ]− 2C[Jabαβ,Ω
ab
αβ]E[Jabαβ]E[Ωab

αβ]

−C2[Jabαβ,Ω
ab
αβ] + C

[(
Jabαβ
)2
,
(
Ωab
αβ

)2])
=

1

N

{
vabp (1− p) + vabp

2 + j2abp (1− p)− 2ρ
√
vabp (1− p)jabp−

(
ρ
√
vabp (1− p)

)2
+

[(
ρ
√
vabp (1− p) + jabp

)
(2jab − 1) (2p− 1)− vabp (1− p)

2
− 2j2abp

2

]}

=
1

N

{
vabp (1− p) + vabp

2 + j2abp (1− p) + ρ
√
vabp (1− p) [(2jab − 1) (2p− 1)− 2jabp]

−vabp (1− p)
(
ρ2 +

1

2

)
+ jabp (2jab − 1) (2p− 1)− 2j2abp

2

}
since

C
[(

Jabαβ

)2
,
(
Ωab
αβ

)2]
= E

[(
Jabαβ − E[Jabαβ]

)2 (
Ωab
αβ − E[Ωab

αβ]
)2]
− E

[(
Jabαβ

)2]
E
[(

Ωab
αβ

)2]
= E

[(
Jabαβ − E[Jabαβ]

)2 (
Ωab
αβ − E[Ωab

αβ]
)2]
− E

[(
Jabαβ

)2]
E
[(

Ωab
αβ

)2]
= E

[(
Jabαβ − jab

)2 (
Ωab
αβ − p

)2]
−
(
vab + j2ab

)
p

= E
[(

Jabαβ

)2 (
Ωab
αβ

)2
− 2Jabαβ

(
Ωab
αβ

)2
jab +

(
Ωab
αβ

)2
j2ab − 2

(
Jabαβ

)2
Ωab
αβp+ 4JabαβΩ

ab
αβjabp

−2Ωab
αβj

2
abp+

(
Jabαβ

)2
p2 − 2Jabαβjabp

2 + j2abp
2

]
−
(
vab + j2ab

)
p

= E
[(

Jabαβ

)2 (
Ωab
αβ

)2]
− 2jabE

[
Jabαβ

(
Ωab
αβ

)2]
+ j2abp− 2pE

[(
Jabαβ

)2
Ωab
αβ

]
+ 4jabpE

[
JabαβΩ

ab
αβ

]
− 2j2abp

2 + p2
(
vab + j2ab

)
− 2j2abp

2 + j2abp
2 −

(
vab + j2ab

)
p

=
(
ω
(1)
ab p+ ρ

√
vabp (1− p) + jabp

)
− 2jab

(
ρ
√
vabp (1− p) + jabp

)
+ j2abp− 2p

(
ω
(1)
ab p+ ρ

√
vabp (1− p) + jabp

)
+ 4jabp

(
ρ
√
vabp (1− p) + jabp

)
− 2j2abp

2 + p2
(
vab + j2ab

)
− 2j2abp

2 + j2abp
2 −

(
vab + j2ab

)
p

= ρ
√
vabp (1− p) (1− 2jab − 2p+ 4jabp) + ω

(1)
ab p+ jabp− 2j2abp+ j2abp− ω

(1)
ab p

2 − 2jabp
2

+ 4j2abp
2 − 2j2abp

2 + vabp
2 + j2abp

2 − 2j2abp
2 + j2abp

2 − vabp− j2abp

= ρ
√
vabp (1− p) (2jab − 1) (2p− 1) + ω

(1)
ab p (1− p) + vabp (p− 1) + jabp[(2jab − 1) (2p− 1)− 2jabp]

=
(
ρ
√
vabp (1− p) + jabp

)
(2jab − 1) (2p− 1)− vabp (1− p)

2
− 2j2abp

2
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since

E
[(

Jabαβ
)2 (

Ωab
αβ

)2]
= E

[
E
[(

Jabαβ
)2 (

Ωab
αβ

)2 |ηabβ , dβ]] = E
[
E
[(

Jabαβ
)2 |ηabβ ]E [(Ωab

αβ

)2 |dβ]]
= E

[(
ω
(1)
ab + ηabβ

)[dβ
N

(
1− dβ

N

)
+
d2β
N2

]]
=

1

N

(
ω
(1)
ab Np+ E

[
ηabβ dβ

])
=

1

N

(
ω
(1)
ab Np+Nρ

√
2ω

(2)
ab p (1− p) + jabNp

)
= ω

(1)
ab p+ ρ

√
vabp (1− p) + jabp

E
[
Jabαβ

(
Ωab
αβ

)2]
= E

[
E
[
Jabαβ

(
Ωab
αβ

)2 |ηabβ , dβ]] = E
[
E
[
Jabαβ|ηabβ

]
E
[(

Ωab
αβ

)2 |dβ]]
= E

[
ηabβ

dβ
N

]
= ρ
√
vabp (1− p) + jabp

E
[(

Jabαβ
)2

Ωab
αβ

]
= E

[
E
[(

Jabαβ
)2

Ωab
αβ|ηabβ , dβ

]]
= E

[
E
[(

Jabαβ
)2 |ηabβ ]E [Ωab

αβ|dβ
]]

= E
[(
ω
(1)
ab + ηabβ

) dβ
N

]
=

1

N

(
ω
(1)
ab E [dβ] + E

[
ηabβ dβ

])
= ω

(1)
ab p+ ρ

√
vabp (1− p) + jabp

which finally allows for the identity

V{[WTW]abαβ} = V[Wca
γαWcb

γβ] =

(
1

N
− 2

N2

)∑
c=e,i

qc
(
gcagcb + w2

cagcb + gcaw
2
cb

)
+ qchabc

 (3)

which implies

noise
(
DCER
ab (m)

)
= noise

(
DER
ab (m)

)
+
∑
c=e,i

(
2− 4

N

)
qchabc = noise

(
DER
ab (m)

)
+
∑
c=e,i

fc (ρ)

where

habc =

{[
ρ
√
vcap (1− p) [(2jca − 1) (1− 2p) + 2jcap] + vcap (1− p)

(
ρ2 +

1

2

)
+ jcap (2jca − 1) (1− 2p) + 2j2cap

2

]
[
ρ
√
vcbp (1− p) [(2jcb − 1) (1− 2p) + 2jcbp] + vcbp (1− p)

(
ρ2 +

1

2

)
+ jcbp (2jcb − 1) (1− 2p) + 2j2cbp

2

]
−
[
gca + w2

ca

] [
ρ
√
vcbp (1− p) [(2jcb − 1) (1− 2p) + 2jcbp] + vcbp (1− p)

(
ρ2 +

1

2

)
+ jcbp (2jcb − 1) (1− 2p) + 2j2cbp

2

]
−
[
gcb + w2

cb

] [
ρ
√
vcap (1− p) [(2jca − 1) (1− 2p) + 2jcap] + vcap (1− p)

(
ρ2 +

1

2

)
+ jcap (2jca − 1) (1− 2p) + 2j2cap

2

]}

and though the sign of h can alternate depending on complicated relationships between the underlying
variables, for our most common settings of p < 1

2
and 0 < ρ < 1√

2
the sign is always positive ensuring

that networks of this type have less discriminability than a corresponding Erdos-Renyi network.
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1.3.2 Discriminability of HDin

The most notable mathematical change for this model is to the variability of Ω, otherwise it follows the
form of Eq. S.(1)

V
[
Pab
αβ | Bab

αβ = 0
]

+ V
[
Pab
αβ | Bab

αβ 6= 0
]

=
1

N
V
[
Jabαβ
]

+
1

N
V
[
Jabαβ
]

+ 2
∑
c=e,i

V

[∑
γ∈c

Wca
γαW

cb
γβ

]

=
1

N
vab +

1

N
vbaδm,1

+

(
2

N
− 4

N2

)∑
c=e,i

qcp
2

{
vcavcb + vcaj

2
cb + j2cavcb +

(
1

1− 2ξ
+ 1

)[
1− p2

(
1

1− 2ξ
+ 1

)]
j2caj

2
cb

}
since

V

[∑
γ∈c

Wca
γαW

cb
γβ

]
= V

[∑
γ∈c

(
1√
N

JcaγαΩ
ca
γα

)(
1√
N

JcbγβΩ
cb
γβ

)]
=

1

N2
V

Mcab
αβ∑
j=1

χcabjαβ


where j maps the non-zero indices of Ωca

γαΩ
cb
γβ, and where

M cab
αβ | ~d ∼ Pois-Bin

(
Nc, ~P

)
Pγ =

(
dγ
Nc

)2

dγ ∼ GP (µ, ξ, σca) χcabjαβ ∼ ΠN ([jcajcb], [vcavcb])

for ‘Pois-Bin’ indicating the Poisson-Binomial distribution, ‘GP’ denoting the Generalized Pareto dis-
tribution, and ‘ΠN ’ is the Product-Normal distribution. The additional variability from the random
sum may be unconditionally expressed as

V

Mcab
αβ∑
j=1

χcabjαβ

 = E[M cab
αβ ]V[χcabjαβ] + V[M cab

αβ ]E2[χcabjαβ]

= Ncp
2
(
vcavcb + vcaj

2
cb + j2cavcb

)
+Ncp

2

(
1

1− 2ξ
+ 1

)[
1− p2

(
1

1− 2ξ
+ 1

)] (
j2caj

2
cb

)
= Ncp

2

{
vcavcb + vcaj

2
cb + j2cavcb +

(
1

1− 2ξ
+ 1

)[
1− p2

(
1

1− 2ξ
+ 1

)]
j2caj

2
cb

}
since

E[M cab
αβ ] = E

[∑
γ∈c

Ωca
γαΩ

cb
γβ

]
=
∑
γ∈c

E
[
Ωca
γαΩ

cb
γβ

]
=
∑
γ∈c

E
[
Ωca
γα

]
E
[
Ωcb
γβ

]
= Ncp

2

because

E[Ωca
γα] = E[E[Ωca

γα | dγ]] = E
[
dγ
Nc

]
=

1

Nc

E [dγ] =
1

Nc

(
µ+

σ

1− ξ

)
=

1

Nc

(
µ+

(pNc − µ) (1− ξ)
1− ξ

)
= p
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and then

V[M cab
αβ ] = V

[
E
[
M cab

αβ | ~d
]]

+ E
[
V
[
M cab

αβ | ~d
]]

= V

[∑
γ∈c

Pγ

]
+ E

[∑
γ∈c

Pγ
(
1− P ca

γα

)]

= V

[∑
γ∈c

Pγ

]
+ E

[∑
γ∈c

Pγ (1− Pγ)

]
=
∑
γ∈c

{
V [Pγ] + E [Pγ]− E

[
(Pγ)

2]}
=
∑
γ∈c

{
V [Pγ] + E [Pγ]−

(
V [Pγ] + E2 [Pγ]

)}
=
∑
γ∈c

{
E [Pγ]− E2 [Pγ]

}
=
∑
γ∈c

E [Pγ] (1− E [Pγ]) =
∑
γ∈c

E

[
(dγ)

2

N2
c

](
1− E

[
(dγ)

2

N2
c

])

=
∑
γ∈c

1

N2
c

E
[
(dγ)

2](1− 1

N2
c

E
[
(dγ)

2])
=
∑
γ∈c

1

N2
c

(
V [dγ] + E2 [dγ]

) [
1− 1

N2
c

(
V [dγ] + E2 [dγ]

)]

=
∑
γ∈c

1

N2
c

(
σ2

(1− ξ)2 (1− 2ξ)
+N2

c p
2

)[
1− 1

N2
c

(
σ2

(1− ξ)2 (1− 2ξ)
+N2

c p
2

)]

=
∑
γ∈c

1

N2
c

(
(pNc + µ)2

(1− 2ξ)
+N2

c p
2

)[
1− 1

N2
c

(
(pNc + µ)2

(1− 2ξ)
+N2

c p
2

)]
which for large N will be dominated by

→ Ncp
2

(
1

1− 2ξ
+ 1

)[
1− p2

(
1

1− 2ξ
+ 1

)]
and combining all the relevant equations with simplification gives

DHDin
ab (m) =

signal
(
DER
ab (m)

)√√√√noise (DER
ab (m)) +

[ ∑
c=e,i

(
2− 4

N

)
qcp2j2caj

2
cb +

(
1

1−2ξ + 1
) [

1− p2
(

1
1−2ξ + 1

)]
p2j2caj

2
cb

]

=
signal

(
DER
ab (m)

)√
noise (DER

ab (m)) +
∑
c=e,i

hc (ξ)

1.4 Qualitative Properties

1.4.1 Magnitude of Synaptic Strength

Using the alternative form of ER discriminability (Eq. S.(2)) it is easy to see that

k1 →∞ implies DER
ab (m)→ 0

with more complex behavior occurring for smaller k1 values and two cases depending on k2. Optimizing
over k1 holding all else fixed with k2 > 0, we find that k1 will have a maximum at

k1 =
4

√√√√ k22
∑
c=e,i

qcpcapcbψ2
caψ

2
cb + k2 (ψ2

ab + ψ2
baδm,2)

(qepeapebψ2
eaψ

2
eb) (1− peapeb) + (qipiapibψ2

iaψ
2
ib) (1− piapib)
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where it is crucial to note that if k2 = 0, then the maximum occurs as k1 → 0 which also leads
to DER

ab (m) → ∞. Otherwise, for k2 > 0, discriminability is no longer monotonic and will reach a
maximum at the above value while going to zero for both k1 → 0 and k1 →∞.

1.4.2 Sparsity

Eq. S.(2) with global sparsity pab = p is

DER
ab (m) =

ψab + ψbaδm,2√
k2
k21

(ψ2
ab + ψ2

baδm,2) + 2p2
[
k22
k21

+ 2k2 + k21 (1− p2)
] ∑
c=e,i

qcψ2
caψ

2
cb

(4)

which, by holding everything beside p constant, can be viewed as

DER
ab (m) =

φ1√
φ2 + p2 [φ3 + φ4 (1− p2)]

(5)

with all constants in ~φ ≡ φ
(
~ψ,~k
)

functionally dependent on one another and so cannot be altered

independently. The constant resulting from the sum over c is absorbed into the inner constants of
φ3,φ4. An applet that is useful in exploring this function is found in the accompanying code files; some
numerical results indicate that the ratio of k2 to k1 determines the existence of a minima or monotonicity
of the function, and that for certain blocks one is able to get non-monotonic behavior in changing k1 as
well.

If we relax the global sparsity to being cell-type dependent on the presynaptic cell, that is pab = pb,
then we can analytically describe the minima as occurring along the curve

pb =
φ3 + φ4
2φ4pa

=

2
∑
c=e,i

qcψ
2
caψ

2
cb

(
k22
k21

+ 2k2 + k21

)
4
∑
c=e,i

qcψ2
caψ

2
cbk

2
1pa

=

k22
k21

+ 2k2 + k21

2k21pa
=

(
k2 + k21

)2
2k41pa

=
1

2pa

(
k2
k21

+ 1

)2

=
1

2pa
(r + 1)2

so long as k2 6= 0 (more precisely 4φ2φ4 + φ2
3 + 2φ3φ4 + φ2

4 6= 0) and that the equation is restricted to
pb ∈ [0, 1], else the minima occur outside the valid interval and the behavior appears monotonic over
that range. Interestingly, this result theoretically holds no matter what the synaptic proportions are; it
is only a function of the ratio r which is the magnitude of synaptic variability relative to the square of
the magnitude of synaptic strength.

Further simplifying this analysis, if pa = pb = p, then it is simple to show that minima default
to the right endpoint when r ≥ 1, and that the location of the minima prior to that vary linearly as

p = r+1√
2
∈
(

1√
2
, 1
]

for r ∈ (0, 1].

Alternatively, if k2 = 0 we get

DER
ab (m) =

φ1√
p2 [φ4 (1− p2)]

=
φ5

p
√

1− p2
(6)

which has trivial minima fixed at 1√
2
≈ 0.71 and so we maintain a smooth transition over the closed

interval.

1.5 Marginal Unbiased Estimate Discriminability - Samples vs. Optimal

Define

DER,P̂
ab (m) = φ0D

ER
ab (m) so that φ0 =

DER,P̂
ab (m)

DER
ab (m)
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and by the previous assumption that the data powering the covariance estimation are Gaussian, that is

Σ̂ =
M∑
k=1

XT
kXk Xk ∼ N (0,Σ) P̂ = (M −N − 1) Σ̂

−1

then the statistical estimator will follow an Inverse-Wishart distribution

Σ̂
−1
| P→W−1 (P,M)

and then using the known variance of the Inverse-Wishart, the unconditional statistics are

E
[
P̂
]

= E
[
E[P̂|P]

]
= E

[
(M −N − 1)E

[
Σ̂
−1
|P
]]

= E[P] (unbiased)

V
[
P̂
ab

αβ

]
= V

[
E[P̂

ab

αβ|Pab
αβ]
]

+ E
[
V[P̂

ab

αβ|Pab
αβ]
]

= V[Pab
αβ] + E

[
S2
(
Pab
αβ

)]
for the complicated conditional variance term S2

(
Pab
αβ

)
which also implies

E
[
P̂
ab

αβ|S
]

= E[Pab
αβ|S]

V
[
P̂
ab

αβ|S
]

= V[Pab
αβ|S] +

1

M
σ2 (S)

for any conditioning set S independent of the estimator. Here, σ2 (S) is the unconditional average of
S2 (P|S) over P, and therefore only depends on the conditioning set. We have also here assumed that
M is large enough such that the exact scaling approximates

M −N + 1

(M −N) (M −N − 3)
≈ 1

M

and altogether implies that

DER,P̂
ab (m) =

signal
(
DER
ab (m)

)√
noise (DER

ab (m)) + S2

M

with S2 = N [σ2
(
Bab
αβ = 0

)
+ σ2

(
Bab
αβ 6= 0

)
] using our previous notation in dealing with S in terms of

B. Combining this with φ0 gives the simplification of

φ2
0 =

noise
(
DER
ab (m)

)
noise

(
DER,P̂
ab (m)

)
which may now be expanded as

φ20 =

vab + vbaδm,2 +
(
2− 4

N

) ∑
c=e,i

qcpcapcb
[(
vca + j2ca

) (
vcb + j2cb

)
− pcapcbj2caj2cb

]
vab + vbaδm,2 +

(
2− 4

N

) ∑
c=e,i

qcpcapcb [(vca + j2ca) (vcb + j2cb)− pcapcbj2caj2cb] + N
M

[
σ2
(
Bab
αβ = 0

)
+ σ2

(
Bab
αβ 6= 0

)]
and can be solved for M asvab + vbaδm,2 +

(
2−

4

N

) ∑
c=e,i

qcpcapcb
[(
vca + j2ca

) (
vcb + j2cb

)
− pcapcbj2caj2cb

]
+N

[
σ2
(
Babαβ = 0

)
+ σ2

(
Babαβ 6= 0

)] τ
T

φ20

= vab + vbaδm,2 +

(
2−

4

N

) ∑
c=e,i

qcpcapcb
[(
vca + j2ca

) (
vcb + j2cb

)
− pcapcbj2caj2cb

]
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N
[
σ2
(
Babαβ = 0

)
+ σ2

(
Babαβ 6= 0

)]
M−1φ20

=

vab + vbaδm,2 +

(
2−

4

N

) ∑
c=e,i

qcpcapcb
[(
vca + j2ca

) (
vcb + j2cb

)
− pcapcbj2caj2cb

](1− φ20)

M−1 =

vab + vbaδm,2 +

(
2−

4

N

) ∑
c=e,i

qcpcapcb
[(
vca + j2ca

) (
vcb + j2cb

)
− pcapcbj2caj2cb

] 1− φ20
N
[
σ2
(
Babαβ = 0

)
+ σ2

(
Babαβ 6= 0

)]
φ20

M =
φ20

1− φ20
×

N
[
σ2
(
Bab
αβ = 0

)
+ σ2

(
Bab
αβ 6= 0

)]
vab + vbaδm,2 +

(
2− 4

N

) ∑
c=e,i

qcpcapcb
[
(vca + j2ca)

(
vcb + j2cb

)
− pcapcbj2caj2cb

] ≈ φ20
1− φ20

Nκab (m)

where the constant κab (m) is approximated as the O (1) portion of the remaining terms with respect
to N . This becomes particularly relevant to the scaling of σ2 (S) with respect to N , which for different
estimators may scale differently.

1.6 Inverse Sample Covariance Estimate Discriminability

The previous section derives the general result for an arbitrary marginal estimate of precision. It should
be noted that nearly all estimators of precision are taken as matrix functions, and marginal statistics
are thus difficult to obtain. One of the only cases is for the inverse of sample covariance following an
Inverse-Wishart distribution. In general, this is not recommended for any application; regularization
methods such as GLASSO, sparse-latent methods, and many others are preferred to estimate global
precision structure. However, all such methods are purely numerical - they have no known analytical
form for their variability as estimators (in matrix or element-wise form) and this is why we use inverse
sample covariance here. Intuitively, the variance of the numerical estimators ought to be smaller, and
so this analysis serves as an upper bound on the amount of experiment time required to reach a desired
percentage of the optimal discriminability. For the corresponding Inverse-Wishart, the rescaled marginal
conditional variance are

V
[
P̂
ab

αβ|P
]

=

(
1− N

M
+ 1

M

)
P2
αβ +

(
1− N

M
− 1

M

)
PααPββ(

1− N
M

) (
1− N

M
− 3

M

)
which under the large M setting required for the CLT to hold anyway, leads to the much simpler
approximation of

V
[
P̂
ab

αβ|P
]
→ P2

αβ + PααPββ

and so

σ2 (S) = E[P2
αβ + PααPββ |S] = E[P2

αβ|S] + E[PααPββ |S]

and it is not difficult to see that E[Pa
ααP

b
ββ|S] = E[Pa

ααP
b
ββ] for our conditioning sets, we thus have only

three more quantities we must compute. A more careful investigation reveals that

E
[(

Pab
αβ

)2
|Bab

αβ = 0

]
∼ O

(
1

N

)
E
[(

Pab
αβ

)2
|Bab

αβ 6= 0

]
∼ O

(
1√
N

)
E[Pa

ααPb
ββ ] ∼ O (1)

and so for the O (1) approximation to σ2
(
Bab
αβ = 0

)
+σ2

(
Bab
αβ 6= 0

)
required for κ we need only the form

of the third quantity. For this calculation, we must recall that from the general equation for precision
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there is an identity matrix that has often been dropped in the majority of special forms of precision
throughout this paper as we have only previously been utilizing off-diagonal elements. Now it does
adjust the diagonal elements as

E[Pa
ααP

b
ββ] = E

{[
−1−

N∑
γ=1

(
Wca

γα

)2][−1−
N∑
γ=1

(
Wcb

γβ

)2]}

= 1 + E

[
N∑
γ=1

(
Wca

γα

)2]
+ E

[
N∑
γ=1

(
Wcb

γβ

)2]
+ E

[
N∑
γ=1

(
Wca

γα

)2]E[ N∑
γ=1

(
Wcb

γβ

)2]

and since

E

[
N∑
γ=1

(
Wca

γα

)2]
=

N∑
γ=1

{V[Wca
γα] + E2[Wca

γα]} =

(
1− 1

N

)∑
c=e,i

qc
(
zca + w2

ca

)
we may copy and adjust the indexing to get

E[Pa
ααP

b
ββ] = 1 +

∑
c=e,i

qc
(
zca + w2

ca

)
+
∑
c=e,i

qc
(
zcb + w2

cb

)
+

[∑
c=e,i

qc
(
zca + w2

ca

)] [∑
c=e,i

qc
(
zcb + w2

cb

)]
= 1 +

∑
c=e,i

qc
(
zca + zcb + w2

ca + w2
cb

)
+
∑
c=e,i

q2c
(
zca + w2

ca

) (
zcb + w2

cb

)
+ qeqi

[(
zea + w2

ea

) (
zib + w2

ib

)
+
(
zia + w2

ia

) (
zeb + w2

eb

)]
= 1 +

∑
c=e,i

qc
[
zca + zcb + w2

ca + w2
cb + qc

(
zcazcb + zcaw

2
cb + w2

cazcb + w2
caw

2
cb

)]
+ qeqi

(
zeazib + zeaw

2
ib + w2

eazib + w2
eaw

2
ib + ziazeb + ziaw

2
eb + w2

iazeb + w2
iaw

2
eb

)
= 1 +

∑
c=e,i

qc
{(
vcapca + j2capca − j2cap2ca + vcbpcb + j2cbpcb − j2cbp2cb + j2cap

2
ca + j2cbp

2
cb

)
+qc

[
pcapcb

(
vca + j2ca

) (
vcb + j2cb

)
− p2cap2cbj2caj2cb + p2cap

2
cbj

2
caj

2
cb

]}
+ qeqi[peapib

(
vea + j2ea

) (
vib + j2ib

)
− p2eap2ibj2eaj2ib + p2eap

2
ibj

2
eaj

2
ib

+ piapeb
(
via + j2ia

) (
veb + j2eb

)
− p2iap2ebj2iaj2eb + p2iap

2
ebj

2
iaj

2
eb]

= 1 +
∑
c=e,i

qc
[
pca
(
vca + j2ca

)
+ pcb

(
vcb + j2cb

)
+ qcpcapcb

(
vca + j2ca

) (
vcb + j2cb

)]
+ qeqi

[
peapib

(
vea + j2ea

) (
vib + j2ib

)
+ piapeb

(
via + j2ia

) (
veb + j2eb

)]
to largest order. Putting everything together, we find

κab (m) =
τE[PaααPbββ ]

vab + vbaδm,2 +
(
2 − 4

N

) ∑
c=e,i

qcpcapcb

[(
vca + j2ca

) (
vcb + j2

cb

)
− pcapcbj

2
caj

2
cb

]

=

τ

{
1 +

∑
c=e,i

qc

[
pca

(
vca + j2ca

)
+ pcb

(
vcb + j2cb

)
+ qcpcapcb

(
vca + j2ca

) (
vcb + j2cb

)]
+ qeqi

[
peapib

(
vea + j2ea

) (
vib + j2ib

)
+ piapeb

(
via + j2ia

) (
veb + j2eb

)]}
vab + vbaδm,2 + 2

∑
c=e,i

qcpcapcb

[(
vca + j2ca

) (
vcb + j2

cb

)
− pcapcbj

2
caj

2
cb

]

for this estimator.
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1.7 Supplementary Figures
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Figure 1: Example application of likelihood ratio thresholding improving inference whenever the original
curves traversed the main diagonal. (a) ROC curves for low-strength, high-noise setting; same as Fig.
2h in the main text. (b) Same data, but scores are transformed according to the likelihood ratio.

Figure 2: Same as Figures 8c from the main text, but over ten trials with randomly sampled hyperpa-
rameters.
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Figure 3: Same as Figures 8d from the main text, but over ten trials with randomly sampled hyperpa-
rameters.
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Figure 4: Same as Figures 8e from the main text, but over ten trials with randomly sampled hyperpa-
rameters.
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Figure 5: Distribution of p-values for the statistical test of mean-equality from section 11 of the main
text using 100, 000 trials with randomly sampled hyperparameters. The mean is approximately 0.0185
with a maximum of 0.2421 and only 0.25% of the points greater than 0.1.
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