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Abstract This is a theoretical study of correla-
tions in spiking activity between neuronal popula-
tions. We focus on the spike firing of entire local
populations without regard to the identities of the
neurons that fire the spikes, and show that such
a population-level metric is more robust than cor-

relations between pairs of neurons. Between any
source and target populations, there is an intrin-
sic response time characterized by the phase-shift
that maximizes the correlation between their spik-

ing. We find that the alignment of gamma-band
rhythms contributes significantly to the positive
correlations between populations. Hence, the cor-

relation metric sheds light on the transference of
gamma rhythms between populations; the effec-
tiveness of such transference has been hypothe-
sized to be connected to communication between

brain regions. We investigate the dependence of
correlations on connectivity and degree of synchrony,
and consider multi-component network motifs with
configurations known to occur in real cortex, study-
ing the correlations between components that are
directly or indirectly connected, by single or mul-

tiple pathways, with or without feedback. Mech-
anistic explanations are offered for many of the
phenomena observed.

Introduction

This paper reports on results of a theoretical study
of correlations in spiking activity between local
populations in the cerebral cortex. When a signal
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is transmitted from one region of the brain to an-
other, one expects activity levels in the source and
target regions to covary. Correlation is a measure
of the effectiveness of this information transfer. As
even fairly simple tasks involve multiple brain re-
gions and signals are passed around in complicated

ways, the relevance of correlations in activity level
between brain regions requires little justification.

In this paper, we carry out a study using semi-
realistic models. Our local populations are groups

of a few hundred Excitatory and Inhibitory integrate-
and-fire neurons, with connectivities similar to those
in local circuits of the cerebral cortex. Popula-
tion activity is driven by external input together

with dynamical interaction among the neurons. We
wanted our models to be realistic enough so that
our results can be guided by experiments. At the

same time, we do not wish to customize the study
to specific brain regions, preferring to produce broadly
relevant results. Three distinguishing features of
our study are:

(i) We focus on correlations in spike firing rather
than on currents, because spike counts are a

simple and direct measure of a region’s synap-
tic output.

(ii) We study correlations in population activity with-

out distinguishing between the spikes fired by
individual neurons in the local population. This
is a medium-size, low-variance statistic, one that
we believe is functionally more relevant than
correlations between specified pairs of neurons.

(iii) We build multi-component networks following
canonical motifs common in the cortex and study
correlations between components that are di-
rectly as well as indirectly connected, with or

without feedback, and with single or multiple
pathways of connections.
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A number of experimental correlation studies
have been reported in the literature. This includes
correlations between LFP in different regions of
cortex (Jia et al. 2013; Salazar et al. 2012; Bosman
et al. 2012; Jia et al. 2011), and between LFP
and spike firing, as in spike-field correlations (Gray
et al. 1989; Gray and Singer 1989; Zandvakili and
Kohn 2015; Jia et al. 2013). Correlations in spik-
ing behaviors between pairs of neurons have also
been measured experimentally and are found to
be very small (Zandvakili and Kohn 2015). Tech-
niques such as “shuffling” and “jittering” have been
devised to make these statistics more robust (Zand-
vakili and Kohn 2015; Jia et al. 2013). We propose
that correlations in spiking on the population level
are a natural alternative. We will connect these
quantities, which are not easy to measure in the
laboratory at the present time, to more accessi-
ble quantities by studying the dependence of cor-
relations on sample size. One of the aims of this

theoretical study is to inform and complement ex-
perimental measurements.

We have chosen to study correlated behaviors
on relatively short timescales. As local-in-time dy-
namics are dominated by gamma-band activity,

our study will in particular address the extent to
which gamma patterns are transferred from one
region to another. Some studies have suggested

the importance of gamma power and coherence in
relation to memory (Sederberg et al. 2003), per-
ception, and sensory-motor tasks (Buzsáki 2011).
Others have suggested that gamma rhythms are

a by-product of neuronal processes, hence indica-
tive of cortical state (Chariker et al. 2018). Both
views support the relevance of coherence of gamma

rhythms between brain regions. Because gamma
rhythms are a result of population dynamics and
are not reflected in the activity of individual neu-

rons, their coherence is captured only by population-
level metrics. One of our contributions in this pa-
per is to promote the use of such metrics.

A body of related work that has received a
great deal of attention goes by the name commu-
nication through coherence (Fries 2005, 2015). Co-
herence here is similar to what we call synchrony
and correlations in the present paper, and is also
closely related to rhythmic activity. There have
also been a number of theoretical studies focusing
on the transference of information through oscilla-
tory dynamics. While not unrelated, these studies

differ from ours in that the gamma-band rhythms
in this paper are irregular and episodic, following
experimental data for the sensory cortices (Henrie
and Shapley 2005). Relations between these works
and ours will be expanded on in the Discussion.

This paper is organized as follows: In Section 1,
we introduce a family of homogeneously connected
models to represent local populations and docu-
ment some spike-firing properties. In Section 2, we
build multi-component networks out of the local
populations in Section 1 and present the formal
definitions of population-level correlations and re-
sponse times, definitions that will be used through-
out. Section 3 studies in some detail correlations
between directly connected source and target pop-
ulations, and Section 4 treats more complicated
network motifs. Section 5 is on Methods.

1 Single-population models and their
spiking patterns

In this section we describe the models for the local
populations used in the correlation studies to fol-
low. We also document their gamma-band activity.
As we will show later on, these rhythms serve to

synchronize connected populations.

1.1 Model description

Local populations in this paper are intended to

model local circuits in the cerebral cortex. Typi-
cally they consist of a few hundred neurons, three
quarters of which are Excitatory (E) and the rest
Inhibitory (I). The neurons are randomly and ho-

mogeneously connected to one another according
to certain specified probabilities, and they are mod-
eled as integrate-and-fire neurons. Similar models

were used in Chariker and Young (2015).

The local population models used for the simu-
lations in this paper are networks consisting of 300
E and 100 I-neurons. On average each E-neuron

is postsynaptic to about 80 other E-neurons and
50 I-neurons, and each I-neuron is postsynaptic to
about 240 E-neurons and 50 other I-neurons. Con-
nectivity between pairs of neurons are subject to
variance, and are randomly drawn according to the
means above. These connection probabilities, with
E-to-E being more sparse than connections that in-

volve I-neurons, are consistent with neuroanatomy.

Leaving details to Supplementary Information,
we describe the dynamical interaction within the
local population. The dynamics of individual neu-
rons are governed by standard conductance-based
leaky integrate-and-fire (LIF) equations, in which
the membrane potential V of a neuron is normal-
ized so that when it reaches 1, the neuron fires an
action potential following which its membrane po-
tential is immediately reset to 0, where it remains

in refractory for a couple of milliseconds.
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The LIF equations contain 8 parameters. Four
of them, SQQ

′
,Q,Q′ ∈ {E, I}, represent the synap-

tic coupling weights from neurons of type Q′ to
neurons of type Q. Two others, τE and τI , denote
the rates at which the E and I-conductances, which
elevate upon the arrival of a spike, decay to zero.

In addition to the synaptic input received from
within the local population, each neuron receives
an excitatory external drive modeled as a Pois-
son point process. This drive is independent from
neuron to neuron. The external drive has two com-
ponents: a synaptic component, which consists of
E-spikes representing input from other regions of
the brain with synaptic weight SQE for neurons
of type Q, and an “ambient” component with a
smaller synaptic weight meant to represent all neu-
rotransmitters not specifically modeled. The am-
bient component’s Poisson rate is assumed to be
constant, whereas the synaptic component’s rates,
λE and λI for E and I-neurons, are assumed to be
low in background and to increase with drive.

The parameters above are chosen with guid-
ance from realistic models of the visual cortex such
as that in Chariker et al. (2016). Their exact values
are unimportant for purposes of the present study,

as long as they produce reasonable dynamics. For
example, since we are primarily interested in cor-
relations between populations when driven by a

stimulus, we use values of λE and λI that produce
average E-firing rates of about 15 spikes/sec, which
is consistent with the average stimulus- driven fir-

ing rates of local populations in realistic situations
(Chariker et al. 2016, 2018).

This completes our description of the model;

details of the LIF equations and exact parameters
used are given in Supplemental Information.

1.2 Gamma-band activity: an emergent
phenomenon

Interspike intervals of individual neurons have long
tail distributions that have been described as be-
ing exponential (Ostojic 2011) or obeying power
laws (Baddeley et al. 1997), and Figure 1a shows
that our model exhibits a similar behavior. These
long tails suggest that individual neurons do not
spike rhythmically. To contrast with that, we show

in Figure 1b, rasters of the population over a time
interval of 500 ms. Here one observes a tendency
for the spikes to occur in clusters, leading to rises
and falls in firing rates that produce a rhythm in
the gamma band, a phenomenon well known to oc-
cur in many parts of the brain (Henrie and Shap-
ley 2005; Pesaran et al. 2002; Khawaja et al. 2009;
Buzsáki 2011; Chariker et al. 2018). This rhythm

cannot be detected by observing individual or even
a handful of neurons. It is an example of an emer-
gent phenomenon, i.e., a phenomenon that is not
part of the rules of operation of individual neurons,
but that occurs only as a result of the interaction
among neurons.

To reconcile the seemingly incompatible behav-
iors shown in Panels a and b of Figure 1, let us first
recall how gamma-band rhythms come about. Up
until recently, a widely accepted explanation was
PING (Whittington et al. 2000), which is the re-
sult of a steady external drive together with E-to-
I and I-to-E interactions within the local popula-
tion. PING produces population spikes that are pe-
riodic and highly regular, contrary to experimen-
tal observations of gamma-band activity in cortex.
A more realistic phenomenon called multiple fir-
ing events (MFEs) was proposed in Rangan and
Young (2013), subsequently studied in Chariker
and Young (2015), and re-examined in Chariker
et al. (2018) using a previously constructed re-

alistic model of the visual cortex. A mechanism
for the formation of MFEs is recurrent-excitation-
inhibition (REI), which works as follows: The cross-

ing of threshold by a few E-neurons leads to recur-
rent excitation, which may or may not cause other
neurons to spike. If it leads to elevated spiking ac-
tivity, both E and I-neurons will be activated, and

the firing event will continue (usually for 2 − 3
milliseconds) until the voltages of the neurons are
pushed back by the inhibition. The decay of I-

conductance and the depolarization of E-cells due
to external input may then lead to the next event.
The time constant for I-conductance decay in the

LIF equations places the frequency of these spiking
events in the gamma band.

A major difference between REI and PING is
that in REI, events are not always identifiable, and

when they are, they involve variable fractions of
the population (depending on the voltages of neu-
rons postsynaptic to the first ones to cross thresh-
old), and inter-event times are variable (depending
on the fraction of I-neurons involved). Figure 1c
shows that typically no more than 10-15% of the
E-population participates in each event. Compar-

ing Panels a-c in Figure 1, one deduces from the
firing rates of individual neurons and the gamma
frequencies that each neuron participates in only
a fraction of the MFEs, skipping over seemingly
random stretches of spiking events as the long tail
of its ISIs would suggest. This, together with the
variations in spiking events, is what makes it pos-
sible to have the plots in both Figure 1a and b.
The periodic population spikes produced by PING
cannot be reconciled with the ISI plots in Figure
1a.
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Fig. 1: Spiking statistics in a strongly driven regime. a Interspike interval plots showing spike firing
statistics of individual neurons. We randomly chose 20 E neurons and for each, calculated a histogram
of time between each spike with 10 ms bins. We then averaged the 20 histograms to obtain a typical

interspike interval plot for an E neuron in the simulation. This was calculated using 8 seconds of simulation
data. Simulations using a single neuron produced very similar outputs when sampled over a much longer
time period. b Population statistics: Raster showing half a second of the simulation. Red dots represent

excitatory spikes and blue are inhibitory spikes. A rhythm in the gamma band is clearly visible. c Summed
spike plot for the E neurons of plot B, showing the fraction of the E-population spiking within each time
bin of 5 ms. d SSI values and PSD for the regime in panels a, b, and c

As mentioned in the Introduction, gamma-band

rhythms play a role in shaping correlations be-
tween brain regions.

Quantifying synchrony. Two metrics called SSI
(spike synchrony index) and SSI-quotient are used
to quantify the degree of synchrony in a local pop-
ulation. These metrics were introduced in Chariker
et al. (2018); we recall them in Section 5 (Methods)
for the convenience of the reader.

Informally, the definition of SSI is as follows.

We fix a window of length w (w = 4 ms is suitable
for capturing gamma-band activity and is assumed
in our simulations). At each E spike fired, we mea-
sure the fraction of the E population spiking within
a time interval of length w centered at the time of
this spike, and average over all the E-spikes fired
by the population, without distinguishing between
the activity of individual neurons. Roughly speak-
ing, SSI= 0.1 means that on average 10% of the ex-
citatory neurons in the population “fire together”,

(meaning within the same 4 ms interval); SSI= 1
means the E-population spikes fully synchronously.

SSI-null is the SSI of a perfectly homogeneously

spiking population having the same firing rate as
the one in question, and SSI-quotient = SSI / SSI-
null. For example, SSI-quotient = 2 means that on
average, spikes tend to form clusters with twice the

density of a uniform distribution.

A more traditional way to quantify both mean

frequency and the breadth of the frequency band
in gamma activity is to compute its power spectral
density (PSD). The precise definition of PSD is
also recalled in Section 5 for the convenience of
the reader.

Figure 1d shows the spike synchrony indices
and PSD of the same regime in Panels a-c.

1.3 Regimes with different degrees of synchrony

Gamma-band activity in sensory cortices is typ-
ically not much more synchronized than that in
the regime shown in Fig 1; our parameters were in
fact chosen to emulate data from the visual cor-
tex; see Henrie and Shapley (2005). Different cir-
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for details on computation. b Population statistics for a very synchronized regime. This panel follows the

format of panel a. Notice the changes in spectral power and peak frequencies as we go from the normal
regime in Figure 1d to the synched and the very synched regimes

cumstances may produce regimes in other parts
of real cortex that are more synchronized, such as
at the onset of a stimulus presentation, increased

attention, or the effects of drugs (such as anesthe-
sia or ketamine). It is far beyond the scope of the
present paper to explore these real cortical phe-

nomena, but it has been suggested (Fries et al.
2001; Fries 2005, 2015) that increased synchrony
enhances communication, and we will want to in-
vestigate this hypothesis in the context of our spik-
ing neuron models.

We present here systematic ways to produce
models with different degrees of synchrony. Similar

techniques were used in Chariker et al. (2018). Es-
sentially, we reduce the rise times of postsynaptic
excitatory conductances on E-cells, modeled here
as a brief time delay, and increase the inhibitory
conductance decay times for all neurons. The first
has the effect of increasing the speed of recur-
rent excitation, thereby allowing more E-neurons
to participate in a spiking event before it is stopped
by I-suppression. The second has the effect of hav-
ing the suppression last longer, thereby creating a
longer period with low firing, and hence, a more
synchronized regime.

Panels a and b in Figure 2 show two exam-
ples of local populations exhibiting more synchro-
nized spiking dynamics than those in Figure 1, and
the regime in Figure 2b is more synchronized than

the one in Figure 2a, as can be seen by their SSI-
quotients and PSDs. All three regimes, the one in
Figure 1 and the two in Figure 2a, b, have similar

firing rates.
Networks constructed using parameters from

these three regimes are used for the simulations in
the rest of this paper. We will refer to the regime

in Figure 1 as “normal”, the one in Figure 2a
as “synched”, and the one in Figure 2b as “very
synched”. We point out that even in the very synched

regime, gamma-band activity degrades and resyn-
chronizes (as it does in real cortex) and the PSD is
very far from a delta function, which is equivalent
to the regime being far from periodic.

2 Multi-component Networks and
Correlations in Population Activity

The two goals of this section are as follows: One is
to introduce the multi-component network models
studied in the rest of this paper (Sect. 2.1), and the
other is to fix a notion of correlations in spiking
activity between populations (Sect. 2.2).

2.1 Multi-component network models

The simple feedforward case. Given two net-
works, N1 and N2, of the type in Sect. 1.1, and a
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number p ∈ (0, 1), we first describe how to con-
struct a simple feedforward network, henceforth
abbreviated as

N1
p−→ N2 .

Here, N1 is the source network, N2 is the target
network, and there are excitatory connections from
N1 to both E and I-neurons inN2, chosen such that
on average, each neuron in N2 receives a fraction
p of its total excitatory input from N1. “Total ex-
citatory input” includes all sources that increase
E-conductances: from E-neurons within N2, from
the two external sources described in Sect. 1.1, and
from neurons in N1. Presynaptic neurons from N1

are chosen randomly.

To build this composite network, we simply
take away a suitable fraction of the synaptic com-
ponent of the external drive for neurons in N2,
and replace it by spikes from N1. Consider for def-
initeness, the E-neurons in N2. Using the mean
E-firing rate of N2, the mean number of presynap-
tic E-cells, synaptic coupling weights, and external
drive rates, we compute the number of spikes, x,

that provide a fraction p of their total excitatory
input. We then decrease the synaptic component
of the external drive by x spikes/sec, and estimate,

based on the E-firing rate in N1, the number k of
presynaptic E-neurons from N1 that will produce
x spikes. For each E-cell in N2, we then randomly

draw a group of E-cells in N1 of size k in mean,
and assign connections from this group to the cell
in question.

The same algorithm applies to I-neurons in N2.
The fraction of current, p, will be referred to in
the future as the “connectivity” from N1 to N2.
For the spikes from N1 to N2, we assume an addi-
tional δ ms transmission time. Unless stated oth-

erwise, δ = 1 in our simulations. Detailed formulas
for the construction of N1

p−→ N2 are given in Sup-

plementary Information.

Building general multi-component networks.
The coarse architecture of a multi-component net-
work consists of a finite, directed graph, i.e., a set
of nodes denoted {1, 2, . . . , n0}, a collection of di-
rected edges {i→ j} with 1 ≤ i, j ≤ n0 and i 6= j,
and a collection of numbers {pij}, one for each

edge. We can now construct a multiple-component
network where each node i in the graph corre-
sponds to a single-population model of the kind
in Section 1, each directed edge i → j represents
the presence of a connection from component i to
component j with connectivity pij . We will use this

construction for the larger network motifs used in
section 4.

2.2 Correlations between populations and
response times

In this paper, we focus on correlations on brief
time-scales of a few, up to ∼ 10, milliseconds (ms).
These timescales are of interest for brain regions
separated by no more than two or three synapses.

Given two networks N1 and N2 that are di-
rectly or indirectly connected (or not connected at
all), we now give the formal definition of correla-
tions between populations as used in the rest of
the paper. As we have stressed throughout, this
is strictly a population-level metric. It can be ex-
tended to correlations between smaller samples of
neurons randomly drawn from N1 and N2, but we
leave that for later.

The (unadjusted) notion of correlation of in-
terest to us is the time correlation of the spiking
activity in the two local populations N1 and N2.
We fix a large time interval [0, T ], and let F1(t)
and F2(t), t ∈ [0, T ], be the instantaneous popula-

tion firing rates of N1 and N2 (to be made precise
momentarily). Then the quantity of interest is

ρ(F1, F2) =
E(F1F2)− E(F1)E(F2)√

V ar(F1)V ar(F2)
(1)

where the underlying probability is the uniform
distribution on [0, T ].

The precise meaning of “instantaneous popu-
lation firing rate” of Ni, i = 1, 2, is as follows: For

t = 0, 1, 2, . . . , T − 4 ms, we let

Fi(t) =
1000

Ni

ni([t, t+ 4))

4

where ni([t, t + 4)) is the total number of spikes
fired by all neurons in Ni on the time interval
[t, t + 4) and Ni is the total number of E-neurons

in Ni (300, as per Section 1.1). The choice of 4
ms above reflects the time scales we find relevant
for our purposes: we are not especially interested
in pinpointing the exact timing of spikes, but want
short enough time intervals to reflect gamma-band
activity, which dominate local-in-time firing pat-
terns. To smooth out the statistics further, we use
sliding windows.

We will refer to the definition of correlation
above as “correlation without adjustment”. Under
many conditions, correlations in spiking activity
between two populations are larger if one measures
the spike times of one network with a time delay,
i.e., if instead of ρ(F1, F2), we consider

ρ(F1, F2,d) where F2,d(t) = F2(t+ d)

for a suitable d.
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Fig. 3: Correlations with time delay in network activity for N1
p−→ N2, p = 0.075. a Computed are

correlations between F1(t) and F2(t+ d) as functions of d (for 0.5 ms increments of d) for two networks
connected as in Sect. 2.1. Each color represents a different trial using a different network with the same
connection probabilities. The locations of the first peaks, which occur at approximately 3.5 − 4 ms for
all the trials, are taken to be the response time of N2 to N1. b shows the superimposed plots of F1(t)
and F2(t+d) for one of the trials in panel a, for d = 0, 3.5 and 11.5 ms from top to bottom, respectively;
the graph of F1(t) is in red, and that of F2(t+ d) is in black. Observe that the two plots in the bottom
graph of panel b are near anti-phase, consistent with the location of the first minimum in panel a

Consider, for example, the network N1
p−→ N2

discussed at the beginning of Sect. 2.1. It is rea-

sonable to expect that the spiking events in N1

would match those in N2 better if we measure the
spike times in N2 with a delay. To locate the op-
timal time delay, i.e., the time delay that maxi-

mizes their correlations (if there is one), we com-
puted ρ(F1, F2,d) for various values of d, at 0.5 in-
crements for d from 0 to 30 ms. Figure 3a shows

the function d 7→ ρ(F1, F2,d) for p = .075, i.e.,
when 7.5% of the excitatory drive in N2 comes
from N1. (Values of p in the real cortex obviously
vary, but p ∼ 0.075 to 0.1 is thought to be fairly
typical.) The 5 graphs superimposed are for 5 dif-
ferent networks (constructed with the same con-
nection probabilities) and 5 different sets of ini-

tial conditions. Across the trials, the optimal time
delay is approximately 3.5 − 4 ms. The low trial-
to-trial variation of these plots suggests that this
optimal time delay is intrinsic to the network ar-
chitecture and is not seriously affected by network
details or initial conditions that vary trial to trial.

Observe that the 3.5 − 4 ms optimal time de-
lay is significantly longer than the 1 ms transmis-
sion time imposed. This is because spikes from N1

do not cause spikes in N2 immediately. Instead,

they raise the excitatory conductance for neurons
in N2 and bring their membrane potentials closer
to threshold. During this process, some E-neurons
in N2 may fire. This will further raise the mem-
brane potential of other neurons in the network,

possibly pushing a larger percentage of the E- and

I-neurons in N2 to spike, and subsequently causing
an MFE; see the discussion in Sect. 1.2. As this is
not an instantaneous process, allowing a time de-
lay for the activity in N2 to build up increased the

correlations between F1 and F2.

Figure 3b shows the functions F1(t) and F2(t+
d) as functions of t for d = 0, 3.5, 11.5, from top
to bottom, respectively. In the top plot, one sees

that for d = 0, i.e., without a time delay, network
activity in N1 (red) peaks a little ahead of that
in N2 most of the time. In the middle plot where
the delay is optimal, one sees, in the center half
of the plot, an excellent alignment of the MFEs
produced by N1 and N2. Such alignments are not
always present, however, because gamma rhythms
degrade from time to time, as can be seen at the
beginning of the time interval shown. In the bot-
tom plot, one notes that the rhythms of the two

networks are almost exactly anti-phase – not unex-
pected given that correlation is at its most negative
with a delay d = 11.5 ms; see Figure 3a.

In the rest of this paper, when there exists a
number d such that independent of initial condi-

tions, the correlations between two networks, N1

and N2, are maximized when the spike times of
N2 are measured with a delay of ≈ d ms, we will
call d the response time of N2 to N1, and refer to
the correlations with this delay as the peak cor-
relations between the two networks. We remark
that when a response time exists, it represents an

intrinsic relationship between the two networks,
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namely how long it takes for spiking events in one
to “cause” spiking events in the other. In the case
of N1

p−→ N2 above, response time is well-defined.

For two networks embedded in a more complex
multi-component network, it is less clear if there is
a well-defined notion of response time.

The presence of a response time or phase-shift
between post-synaptic and pre-synaptic firing has
been observed experimentally (Zandvakili and Kohn
2015; Fries 2015, 2005; Jia et al. 2013; Bastos et al.
2015). On the other hand, we are unaware of in-
depth theoretical studies of this issue.

3 Analysis of two-component networks
with feedforward drives

This section studies exclusively the two-component
network

N1
p−→ N2

where N1,N2, and p are as defined in Sect. 1.1. In
Sect. 3.1 we investigate correlation properties as
functions of p and degree of synchrony, and in Sect.

3.2, we study the dependence of correlations on
sample size, connecting population-level metrics to
correlations between pairs of neurons.

3.1 Correlations as functions of connectivity and

synchrony

The results of this subsection are summarized in
Figure 4. We identify below a few points of note,
offering mechanistic explanations when we can.

First we discuss the black curve in Panel a of
Figure 4, showing peak correlations between two
networks in normal regimes connected at various
values of p. For each value of p, five different tri-
als using independently drawn networks (with the
same connection probabilities) and different ini-
tial conditions were performed. The variation from
trial to trial was small, so the metric is quite ro-
bust. Response times were well defined and easy to

locate down to p = 0.05. While it is to be expected
that correlations will increase with p, it is surpris-
ing how large these values are: For p = 0.075 to
0.1, i.e., with no more than 10% of the excitatory
input to neurons in N2 coming from N1, peak cor-
relations can be as large as 0.4. Below, we provide
an explanation for this unexpected finding.

Analysis: As we have seen in Figure 3b (mid-

dle panel), the strong positive correlation between
N1 andN2 comes from the tendency for their gamma
rhythms to align. In other words, gamma-band ac-
tivity helps synchronize the two networks. This may
at first seem contrary to our discussion in Sect.

1.2, where we described how gamma rhythms are
generated within local populations: How can two
rhythms that are locally, hence independently, gen-
erated match up so well irrespective of initial con-
dition? A more careful examination revealed that
there is no contradiction at all: while the tendency
to produce a rhythm comes from the internal dy-
namics within a local population, there is no in-
trinsic timing to the peaks and valleys of the spik-
ing events. A little extra help from N1 facilitates
events in N2, increasing the likelihood that the
rhythms will line up. However, since these rhythms
degrade, they also become “unsynchronized” after
a few events, hence the correlations are not higher
than they are.

This raises a number of interesting questions:
How do correlations depend on the degree of syn-
chrony of the networks, and must N2 share the
peak gamma frequency ofN1 for its gamma rhythm
to lock onto the one produced by N1? The other
plots in Fig 4a, answered the first question: Syn-
chronous source networks produce higher correla-
tions, i.e., they are more effective in entraining

populations downstream. This is true with or with-
out the peak gamma frequencies of the source and
target regimes coinciding.

For example, when we used a very synched
network, with a peak gamma frequency of ∼ 52

Hz, to drive one in the normal regime, with peak
gamma frequency > 60 Hz, correlations went up
to 0.5 − 0.6. This is considerably higher than the

correlations for normal-driving-normal networks at
corresponding values of p. It may well be true,
however, that all other things being equal, corre-
lations are higher when the intrinsic frequencies of
the gamma rhythms in the two networks coincide,
as in the case of a very synched source driving a
very synched target.

As to why synched source networks are more

effective in eliciting a higher correlation with the
target network, our analysis suggests the following
mechanistic explanation:

Analysis: In a synched N1, the spiking events
are more clearly defined, with cleaner gaps in be-
tween. The more convergent excitatory input pro-
vides a stronger drive to N2 during MFEs, and a
significantly decreased drive between MFEs. This
causes N2, which is affected by this time-varying
nature of the feedforward input, to lock onto the
peaks and troughs of N1-activity (with a phase-
shift). Hence, we see an increase in correlation com-

pared to where there is a more ambiguous feed-
forward signal from an N1 in the normal regime.
Incompatible gamma frequencies may lower cor-
relation but is not a serious obstruction because
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Fig. 4: Correlations between source and target networks. All target networks are in the normal regime

as defined at the end of Sect. 1. a Correlation as function of connectivity. Shown are peak correlations as
function of p. The three different plots represent different source regimes. For the black line representing
a normal source, the color dots are results from 5 trials using 5 different networks drawn with the same

parameters. Note the strong correlations, as well as the low trial-to-trial variability. The values for the
other lines were also averaged over 5 trials. Note that for the range that is most realistic (grey box), the
more synchronized source regimes produce higher correlations. b Rasters of N1 and N2 with a normal
source (top panel) and a very synched source regime (bottom panel). c Mean firing rates of N2, the

target network. x-axis is the percentage connectivity, 100p. The source networks are, from left to right:
normal, synched, and very synched. Bar graphs show the average of 5 trials, 8 sec each. Note that for
p ≤ 0.1, firing rate did not increase appreciably with the increased synchrony of the source network

gamma rhythms degrade and resynchronize, so N2

can realign itself with N1 again after several spik-
ing events.

These findings are consistent with the commu-
nication through coherence ideas in Fries (2005),
provided better communication is interpreted to
mean higher correlations. There is another com-
monly held belief, possibly (but not necessarily)
suggested also in Fries (2005), that synchronized
networks are more effective in causing higher fir-

ing rates downstream. We investigated the issue,
and found that for p ≤ 0.1, synchrony in the driv-
ing network does not lead to increased firing rate
in the target network. Such increases are observed
only for driving networks that are very synched,

and for p large, neither of which is typical. These
results are illustrated in Figure 4c.

3.2 Correlations between smaller samples

Correlations between pairs of neurons have been
studied in detail experimentally, and the numbers
found have been very small (Zandvakili and Kohn
2015; Kuhn et al. 2003). Since electrophysiology

does not offer information on the simultaneous ac-
tivity of large numbers of neurons, and calcium
dynamics are too slow to capture correlations on
these short time scales, population level correla-
tions of the kind we have been studying are, at
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Fig. 5: Correlations and optimal delays as functions of sample size N . a Correlation between target
and source (both normal regime, p = .075) as N increases. Results are based off of one, 8 second long
simulation, with correlations computed for N = 1, 10, 20, 30, ..., 290 randomly selected E-neurons. Shown
are results of 5 trials (a different sample for each trial) for each N . The population correlation using all
300 neurons is about 0.33 and is shown by the gray, dashed line. The inset shows more detail for smaller
samples, with N = 1, 3, 6, 9, ..., 30. b Maximum and minimum optimal time delays as a function of N ,

for the same simulation in panel a. The range of time delays was computed over 10 trials (again using a
different sample of neurons in each trial)

least for now, inaccessible in the laboratory. Cor-
relations between smaller samples, however, can be
captured by multi-unit recording. Hence, a natural

progression would be to understand theoretically
how correlations depend on sample size, such as
the minimum number of E-neurons needed to get

a reasonable estimate of the population correlation
and optimal time delay.

We studied this in the N1 → N2 network using

samples of N E-neurons from each layer, where N
varied from 1 to the size of the full population. The
correlation between a set of N E-neurons from N1

and a set of N E-neurons from N2 is as defined in
Sect. 2.2, but with F1 and F2 defined using only
the spikes times of the 2N neurons in the samples.

Results for p = 0.075 are shown in Figure 5,
with 5 trials for each N . Here N = 1 corresponds
to correlations between pairs of neurons. We see
that the numbers are very small, about a tenth

of the population correlations. In addition to hav-
ing small correlations, the trial-to-trial variances
are large, having the same order of magnitude as
the correlations themselves. These observations are
consistent with individual neuron spikes being al-
most “random”, as depicted in Figure 1a. We also
see that as N increases from a small value, corre-
lations increase rapidly, stabilizing at about N =
100 and asymptoting eventually to the population
value.

A noteworthy observation is that when using
as few as 10 neurons from each layer, the optimal

time delays already stabilize and are around 3.5-4
ms, which is the response time discussed above in
Section 2.2. Panel b in Figure 5 shows the range of

optimal time delays narrowing rapidly and stabi-
lizing fairly quickly as N increases. Thus unlike
population-level correlations, which are strongly
dependent on sample size, response time measure-

ments require few neurons and are relatively ac-
cessible using present technology.

4 Correlations in Larger Networks: Five
Canonical Motifs

Brain regions are, in general, interconnected in
complicated ways; see e.g. Binzegger et al. (2009).
Consider, for example, the primary visual cortex
V1, which has 6 layers with further subdivisions
within layers. Diagrams showing the connectivities
among layers can be complicated (Sincich and Hor-

ton 2005). Input from different regions converge,
there are feedback loops, and there can be multi-
ple pathways for signals to travel from Point A to
Point B. In this section, we study the correlations
and response times between pairs of components in
a few canonical network motifs that are known to
occur in the real cortex. Knowledge of such char-
acteristics in these smaller multi-component net-
works can help dissect how spiking in one area of
the brain affects spiking in another, when these
components are embedded in much more complex
distributed networks.
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Fig. 6: Diagrams of five network motifs, referred to in the text as Motifs A-E

As has been noted in Sects. 2.2 and 3.1, positive
correlations between populations arise in part from

the alignment of their gamma rhythms. We reiter-
ate that gamma rhythms in our local populations
(Sect. 1.2) are irregular; they degrade and resyn-
chronize as in real cortex and are quite far from

truly periodic and/or completely synchronous. These
characteristics are relevant to some of the phenom-
ena below.

All correlations below refer to those between
entire local populations. Each network motif was

selected to answer a question or test a hypothesis,
and the result will contain a specific message.

Motif A. Feedforward chain. We consider here
a chain of the form

N1 → N2 → · · · → N5

where each Nk is a local population described in
Section 1.1, following a normal regime. Correla-
tions between N1 and N2 were studied in section
3. We are now interested ρ(N1,Nk), the correla-

tions between N1 and Nk for k = 3, 4, 5. Similar
feedforward networks have previously been stud-
ied (Diesmann et al. 1999; Zandvakili and Kohn
2015).

The two messages from this study are as fol-
lows: (1) While correlations between consecutive
layers are strong, they decay rapidly with the num-
ber of intermediate layers, so that firing patterns
further downstream are only weakly correlated to

those of the source layer; see Fig 7a. (2) Meaning-
ful response times become fuzzier but persist for
2-3 layers downstream: One can see in Fig 7b that
optimal time delays between N3 and N1 are fairly
well described by 2d; between N4 and N1, 3d is a
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Fig. 7: Feedforward chain. All populations follow
the normal regime, with 7.5% connectivity from
layer to layer. a Correlations between N1 and Nk
for k = 2, 3, 4, 5, each averaged over 5 trials. b
Correlations as a function of time delay for the
same 5 trials in panel a. Grey arrows are placed
at 2d, 3d and 4d (top to bottom) where d is the
response time of N2 to N1 from Sect. 2.2. They

are to be compared to potential values of response
times between N1 and Nk for k = 3, 4, 5

reasonable indicator of optimal time delay in 3 or
4 out of the 5 trials, while the situation between

N5 and N1 becomes even less clear.

Motif B. Two independent sources. Here we

consider a network N2 driven by two local popu-
lations

N1,N ′1 → N2
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Fig. 8: Two independent sources driving one target. a Scatterplots showing correlations of N2 with N1

and N ′1, when both N1 and N ′1 are normal (orange) and when N1 is normal and N ′1 is synched (purple).
Results from 20 trials are shown. b Illustration of how N2 switches between aligning with N1 and N ′1.
Local-in-time spike rates for N1, N ′1, and N2, all synched, are shown on a time interval of 300 ms. Observe
that N2 tracked N1 for 30 ms or so before 4050, then slowly shifted to N ′1 which it tracked for a while,
to switch back to N1 by 4130. Sometimes the rhythms of N1 and N ′1 coincide. The plot for N2 has been
corrected for response times of ∼ 4 ms

where N1 and N ′1 are assumed to be independent:
they are unconnected and driven by independent

Poisson processes, so there is no reason why the
timing of their spiking events would coincide. In
this study, we sought to answer the following ques-
tions: Comparing this motif to the simple feedfor-

ward chain N1
p−→ N2, should we expect that “in-

terference” from N ′1 will disrupt the transference
of gamma patterns from N1 to N2, thereby lower-
ing their correlation? Will N2 lock on to one of its
sources, or try to follow both, and what causes it

to prefer one over the other?

We performed simulations with p = 0.075, and
found that when all 3 networks are in the normal

regime, ρ(N1,N2) and ρ(N ′1,N2) hover around 0.3,
which is a little, but not much lower than the cor-
relation of 0.35 for the simple N1 → N2 chain.
One of ρ(N1,N2) or ρ(N ′1,N2) is sometimes a lit-
tle larger than the other depending on network de-
tails; see the scatter-plot in Fig 8a. In the same
scatter-plot, we show that when N1,N2 are nor-

mal but N ′1 is synched, ρ(N ′1,N2) is significantly
higher than ρ(N1,N2). This is consistent with our
earlier observation (Sect. 3.1) that synchronized
networks are more effective in entraining spiking
events downstream.

These results raised the following questions: How
can N2 align with two separate populations with
independent spike times, and why does interfer-
ence from N ′1 not lower ρ(N1,N2) more?

Analysis: We examined more carefully the tem-
poral dynamics of the three networks, and found
that N2 follows N1 for a short time period, then
aligns itself with N ′1, switching back and forth,
as illustrated in Figure 8b. In other words, N2

manages to lock on to two networks with indepen-

dent dynamics by aligning with each one for only
a fraction of the time. As to why ρ(N1,N2) was
not significantly lowered by the “distraction” from

N ′1, observe that even in the absence of N ′1, the
rhythms of N1 and N2 are only partially aligned
(Fig 3b, middle panel): they match up and mis-

align as each population’s gamma rhythms wax
and wane, leaving plenty of room for N2 to engage
in other firing patterns.

Motif C. Network with feedback. We consider
next two-component networks of the form

N1 ←→ N2 ,

i.e., neurons in N2 both receive excitation from N1

and supply excitation to N1. The question of in-
terest is: will recurrent excitation help synchronize
the two populations, raising ρ(N1,N2)? There is
a vast literature on the synchronization or phase-

locking of coupled oscillators (see e.g. Pikovsky
(2001)), and we would like to investigate if the sit-
uation here is similar.

Our simulation results were unexpected: We
found that with p = 0.075 in both coupling di-
rections, the presence of feedback lowered correla-
tions significantly from 0.35 to about 0.2, a result

we confirmed by varying the feedback connectivity
from 0 to 0.075; see Figure 9.

Analysis: To explain these findings, we hy-
pothesized that the pulses that originated from
N1, passed to N2, and returned to N1 would ar-
rive with a 7-8 ms delay (it takes 3.5-4 ms for
N2 to respond and another 3.5-4 ms for N1 to re-
spond to N2). As this was about halfway into N1’s
gamma cycle, these pulses were unlikely to precip-
itate MFEs, i.e., the recurrent excitation was inef-
fective. Also, this timing was not conducive to the
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Fig. 9: Two-component network with feedback.
Both networks are in the normal regime. Feedfor-
ward connectivity is fixed at 7.5%, and the bar
graph shows correlations, averaged over 5 trials,
as function of feedback connectivity

alignment of gamma events in the two networks,
which as we have shown is important for positive
correlations (see the Analysis in Sect. 3.1).

To test the validity of these conjectures, we per-
formed simulations in which we gradually reduced
the rise times of E-conductances and transmission

times between N1 and N2 (see Supplementary In-
formation and Sect. 2.1) to speed up the recurrent
excitation. We found that as rise and transmission

times were decreased to 50% of their original val-
ues,

(i) in the feedforward chain N1
.075−−→ N2, correla-

tions increased from ∼ 0.36 to ∼ 0.46;

(ii) with a p = .075 feedback, the corresponding

values rose steadily from ∼ 0.2 to ∼ 0.6.

These results support the conjecture that recurrent
excitation can increase correlations, but the arrival

times of spikes, and likely other factors, also play
a role.

Unlike the case of a feedforward chain when the
target network is influenced by the source network

in a relatively straightforward way, feedback cre-
ates a more complex dynamic. A prudent conclu-
sion is that the situation warrants a more in-depth

study, which we leave to future work.

Motif D. Multiple pathways. In the real brain,
signals are often passed from Point A to Point B
via multiple pathways, some more direct than oth-
ers. The simplest example of a circuit in which
there are two ways to go from one local popula-
tion to another is shown in Figure 10.

What intrigued us here was the following: The
presence of two different pathways is akin to twice
the connectivity from N1 to N3. Since correlations
in simple feedforward chains increase rapidly with
connectivity (Figure 4a), would the presence of
a second pathway lead to higher correlations be-
tween N1 and N3, and which pathway would dic-
tate the response time, if it is defined?
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Fig. 10: Direct and indirect path from source to
target, with p = 0.075 for each feedforward con-
nection. The line plots show the correlations be-
tween N1 and N3 as functions of time delays for
10 different trials. The network was redrawn and
initial conditions changed for each trial. The black,
dashed line shows the plot for the simple feedfor-
ward chain N1 → N2 case, as in Figure 3a. The
horizontal grey bar indicates the spread of opti-
mal time delays across the 10 trials

Our findings are summarized in Figure 10. In-

terestingly, there is a fairly well defined response
time, which at 5−5.5 ms, is a compromise between
the two response times expected for the different
paths (see the results for Motif A in Fig. 7b). As for

correlations, ρ(N1,N3) is a little lower than that
of the simple feedforward chain N1 → N2, but not
by too much, as one can see by comparing the solid

and dashed graphs in Figure 10.

We hypothesize that as in the feedback case,
the differing response times provide interference in

internal gamma rhythms, which serves to counter
the increased excitation in the presence of multiple
pathways going from Point A to Point B.

Motif E. A ring network with connectivity
decaying with distance. Unlike the previous ex-
amples, this motif is intended to mimic networks
within a layer of cortex, e.g. layer 2/3 of V1, where
in addition to local circuits, long-range excitatory
connections exist between domains preferring like
orientation in different hypercolumns. These con-
nections can extend 2 − 3 mm, and are expected
to become less dense as distance increases. Here
we will use a 1D ring of local populations rather
than a 2D network (real cortex is more like a 2D
surface) because in 2D, the number of local pop-

ulations involved become large very quickly with
radius, making the simulations unwieldy.

The models studied here are densely connected
locally, with connectivity decaying with distance as
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Fig. 11: All-to-all coupled ring. Connectivities between two networks depend only on the distance be-
tween them; numbers on edges denote percentages of connectivity. The scatter plot shows the correlation
and optimal time delays for all pairs of local populations (Ni,Nj), i 6= j. Data are based off of one trial

of 8 second simulation. The colors of the open circles indicate the distance between the pair: distance 1
in red, distance 2 in blue, distance 3 in green, and distance 4 in orange. For each specific pair, correlation
is computed at the time delay that maximizes it. Crosses depict the average correlation and time delay

for each distance group of pairs

in V1. Transmission times are also assumed to be
slower with larger distance, as in V1.

Specifically, we considered a motif with 8 local
populations, labeledN1,N2, · · · ,N8, to be thought
of as arranged in a circle. The distance between

Ni and Nj , dist(Ni,Nj), is defined to be 1 if Ni
and Nj are neighbors, and to be 1+ the number
of populations separating Ni and Nj along the
shorter arc of the circle, in general. The connec-
tivities pij are taken to be 0.04, 0.02, 0.01, 0.005
for dist(Ni,Nj) = 1, 2, 3, 4 respectively. Thus lo-

cal populations in this motif are all-to-all coupled,
with coupling strength between populations de-
creasing exponentially as the distance between them
increases. Between Ni and Nj we impose a synap-
tic transmission delay of 3∗dist(Ni,Nj) ms. These
delays are consistent with the slow transmission
times within individual layers of V1, measured to

be 5− 10 ms per mm (Grinvald et al. 1994).

The results are summarized in the scatter-plot
in Fig 11. Correlations ρ(Ni,Nj) between all pairs
were computed using the optimal time delay for
that pair. The overall trends, indicated by the crosses,
are that as distance increases, correlations decrease
and optimal time delays increase. They are qualita-
tively similar to those for the feedforward chain in

Sect. 4.1. Correlations between neighbors are lower
than in most of the previous examples, consistent

with the weaker coupling and stronger interference
from multiple sources.

Looking at the data points for groups separated
by distances 1 and 2, we note that correlations had

a significantly larger variance than optimal time
delays, as was observed earlier in Figure 5 for a
different question we were investigating.

5 Methods

Spike synchrony index (SSI). The following
measures of synchrony were introduced in Chariker
et al. (2018). We recall them for the convenience of
the reader. Fix a window of length w ms. We used
w = 4 which was optimal for studying gamma-
band rhythms. For every excitatory spike that oc-
curs at time t, we compute the fraction of the ex-
citatory population that spiked within a window
of w ms centered at t. These fractions are then av-
eraged, giving the quantity we call SSI. Formally,
if N is the size of the excitatory population and

F = {ti, i = 1, 2, ...} is the set of times during the
simulation when an E neuron from the population
spiked, then

SSI =
1

|F |
∑
t∈F

1

N

∣∣∣F ∩ (t− w

2
, t+

w

2
)
∣∣∣ .

Here | · | denotes the cardinality of a set. If the
system fires population spikes, most of which fall
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within a 2 ms interval, then SSI ∼ 1. Since most
systems are nowhere close to being that synchro-
nized, the following quotient gives more useful in-
formation:

Given a neuronal system, let SSI-null be the
fraction of E-neurons spiking per w-sized bin if the
system was firing perfectly homogeneously. That
is, if F is the set of spike times during L seconds,
then

SSI-null =
|F |w

1000NL
,

and the SSI-quotient is defined to be

SSI-quotient =
SSI

SSI-null

where the null system is assumed to have the same
firing rate as the system in question. An SSI-quotient
of 2, for example, means that compared to the cor-
responding null system, the system in question has,
on average, twice as many spikes within a w-size
window centered at each spike fired.

We stress that SSI-values are signatures of pop-
ulation activity. They measure the degree of syn-
chrony of the population as a whole, without re-

gard to which neurons fired which spikes or the
level of correlated activity between specific pairs of
neurons. SSI has similarities with spike field coher-

ence (SFC), but differs because it considers spike-
spike synchrony while SFC considers spike-local
field potential synchrony (Chariker et al. 2018; Fries
2005; Chalk et al. 2010; Fries et al. 2001; Jia et al.

2013).

Power spectral density. This is a widely used
tool in the description of gamma-band activity in
experiments. It is the Fourier transform of the spike

density’s autocorrelation function (Wiener 1933).
The spike density, u(t), is the the expected number
of spikes/ms for an E neuron during the time bin
[t, t+∆t). We compute the PSD using 4 seconds of
simulation data and 200 ms overlapping windows
as follows: let the population have N excitatory
neurons. Consider a fixed time interval [0, T ) which
we divide into time bins, Bn = [(n−1)∆t, n∆t) for
n = 1, 2, ... Then, the spike density is

u((n− 1)∆t) = mn/(N∆t),

where mn is the total number of excitatory spikes
fired in Bn. For ease, we refer to u((n − 1)∆t)
as u(n). The discrete Fourier transform of un on
(0, T ) is given by the following:

û(k) =
1√
T

T/∆t∑
n=1

un∆te
−2πikn∆t .

The PSD is then defined as |û(k)2|, and for each k
represents the signal “power” concentrated at fre-
quency k. For our computations, we used T = 0.2
s, ∆t = 0.0025 s. The plots displayed in Figure 1e
and the bottom of Figure 2a,b show averages of
the PSD over sliding windows of length T in in-
crements of 2.5 ms. In essence, the PSD was com-
puted as described above for [0, T ), [0.0025, T +
0.0025), ... for the 4 seconds of simulation data.
Then, the resulting PSDs were averaged (Chariker
et al. 2018; Jenkins and Watts 1968).

Discussion

This paper contains a theoretical study of corre-
lations in spiking activity seen on the population
level, without distinguishing between the behav-
iors of individual neurons. Using a network motif
with multiple components, each one resembling a
group of neurons connected by local circuitry, we
studied how the spiking activity of two local pop-

ulations are correlated on timescales of a few mil-
liseconds.

Take-home messages. The main points of this

paper can be summarized as follows:

1. Spike-count correlations on the population level
provide more robust metrics than similar correla-

tions between pairs of neurons. They are an or-
der of magnitude larger and have smaller vari-
ability. We offer the following explanation based
on our analysis: Spike times of individual neurons

are relatively random as can be seen from their
ISI distributions. Collectively, neurons connected
by local circuitry produce gamma rhythms when
driven. Though the rhythm itself is generated from
within the local population, we have found that
the timing of spiking events is nontrivially influ-

enced by external inputs, so that rhythms in tar-
get populations have a tendency to partially lock
onto rhythms of source populations, producing the
strong positive correlations seen.

2. In all of the situations considered, we have found
that between source and target populations sepa-
rated by no more than 2-3 synapses, there is a
well defined notion of response time, i.e., there is
a value of time delay, depending on network at-
tributes but independent of initial condition, that
maximizes the correlation. We showed that when

subsampling, response times stabilize with as few
as 10 neurons, unlike correlations, which are highly
dependent on sample size.

3. We have found that synchrony in the source
network produces higher correlations downstream,
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as does higher connectivity between populations.
The situation vis a vis firing rates is less clear:
contrary to what is commonly thought, we found
that neither synchrony of the source network nor
stronger connectivity necessarily produces higher
firing in the target network.

4. We have also investigated correlations in some
network motifs that occur in the real brain. Our
main findings are (i) correlations between source
and target decay rapidly with the number of inter-
mediate layers; and (ii) in the presence of feedback
or multiple pathways, incompatible response times
may lead to lowered correlations, even as recurrent
excitation and/or connectivity are increased.

Gamma-band rhythms vs regular oscillations.
As noted in our first take-home message, the align-
ment of gamma-band rhythms contributes signif-
icantly to the positive correlations between local
populations. A distinguishing feature of this work

is that we have used models that produce rela-
tively realistic gamma-band rhythms (Sect. 1). In
the real brain, gamma rhythms are broad-band,

episodic, varying in frequency and in phase (Hen-
rie and Shapley 2005; Xing et al. 2012). They are
very far from regular oscillatory behavior, and pro-
duce correlations with a distinctive character.

For example, two populations that are oscil-

lating periodically can lock onto one another per-
fectly when their frequencies coincide, and if their
frequencies are incommensurate, then there will

necessarily be substantial periods of incoherence.
With realistic gamma properties, the situation is
more nuanced: Gamma rhythms of the target net-
work can partially lock onto that of the source net-
work irrespective of the peak frequencies of the
two populations (Sect. 3.1). This alignment, how-
ever, is not maintained, because realistic gamma

rhythms degrade and resynchronize. This enables
a population to be correlated to two independent
sources (Sect. 4, Motif B), while purely oscillatory
dynamics can never lock on to two other oscilla-
tions that differ either in frequency or in phase.
The same degradation causes correlations to de-
cay with distance from the source (Sect. 4, Motif

A), unlike purely oscillatory systems, which can
pass a signal perfectly along an arbitrarily long
feedforward chain.

Related Works. There is other literature on cor-
relations between brain regions, not surprisingly as
these are hypothesized to be important quantities
for information transfer. Some related experimen-
tal work was mentioned in the Introduction. We

postponed the discussion of theoretical results un-

til now so that we can discuss their relation to our
work.

A very influential idea proposed is communica-
tion through coherence (Fries 2005, 2015). We do
not know whether by “communication” the author
of Fries (2005, 2015) was referring to higher firing
rates or higher correlations. We sought to clarify
this in our study; the results are reported in Item
3 of the take-home messages.

Two theoretical papers with significant over-
lap with ours are Battaglia et al. (2012) and ter
Wal and Tiesinga (2017). Similar to the present
paper, Battaglia et al. (2012) investigated corre-
lations between components in multi-component
networks, but their goals were different, and they
mostly considered averaged potentials (as opposed
to the actual spikes) and rate models. See also San-
cristóbal et al. (2014). ter Wal and Tiesinga (2017)
focused on phases, including phase differences be-
tween stimuli and networks, as well as between
source and target networks. Spike events in their
networks (modeled on PING) seemed fairly peri-
odic, facilitating the study of phases. The idea of

phases appeared also in our work (Sect. 4, Motif
C), though phases are less well defined because of
the more episodic nature of our gamma rhythms.

The more nuanced properties of realistic gamma
and their roles in correlations between brain re-
gions are a novel feature of our paper not consid-

ered in Battaglia et al. (2012) nor ter Wal and
Tiesinga (2017), nor in any other paper that we
know of.

Also related are papers that considered oscilla-
tory feedforward input signals to populations, i.e.
correlations between a population’s response and a
signal, e.g. Gielen et al. (2010); Börgers and Kopell
(2008). There are also studies that modeled the
target population as signal filters, e.g. Akam and
Kullmann (2012).

Further afield are papers that modeled the en-
trainment of single or pairs of neurons, e.g. Gielen
et al. (2010); we have focused on population ac-
tivity though subsampling was also discussed. Fi-
nally, we mention that there is a literature on cor-
relations within single populations, as in (Brunel
2000; Brunel and Wang 2003; Rosenbaum and Do-
iron 2014). These papers have no overlap with us
as they do not discuss correlations between distinct

local populations.

Implications and potential applications. Func-
tions of gamma-band activity in the transmission
of information or in the organization of brain ac-
tivity have been hypothesized (Pesaran et al. 2002;
Buzsáki and Wang 2012; Gray 1999; Fries 2015). If
these hypotheses are valid, then correlations mea-
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sure the effectiveness in the transmission of gamma
patterns, which affects the above activities. It has
also been documented that diseases and drugs lead
to altered gamma characteristics. For example, in-
dividuals with disorders such as schizophrenia are
known to exhibit abnormal gamma-band activity
(Gonzalez-Burgos et al. 2010, 2015; Uhlhaas and
Singer 2010), and drugs such as anesthesia are
known to produce different gamma patterns (Mc-
Carthy et al. 2012). See also Chariker et al. (2018).
Analysis along the lines carried out in this paper
may shed light on whether (and if so, how) abnor-
mal gamma rhythms will manifest themselves in
unusual correlation values between local popula-
tions. Conversely, unusual correlation values may
be indicative of abnormal cortical states.

Lastly, the population metrics proposed in this
paper (with different window sizes) are applicable
to oscillations in the beta, alpha, and theta band.
It has been shown that these rhythms also lead
to correlations measured on different time scales
(Burke et al. 2013). Unlike gamma rhythms, which

are largely (though not completely) produced in
local populations, it has been proposed that these
slower rhythms are more likely top-down. The ideas
of this paper, namely correlations and response

times, are equally relevant for such processes as
they offer measures of how top-down effects are
propagated.
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Supplementary Information

Model equations and specifications To connect our
model neurons, we use the following rules: Each E-neuron
is postsynaptic to ζ1 E-neurons where ζ1 is a Gaussian
random variable with mean µ = 80 and standard devia-
tion σ = 15 truncated at one SD. It is also postsynaptic
to ζ2 I-neurons where ζ2 has the same form as ζ1 but
with µ = 50 and σ = 7.5. Each inhibitory neuron is post-
synaptic to ζ3 E-neurons with µ = 240 and σ = 37.5,
and to ζ4 I-neurons with µ = 50 and σ = 7.5. The
random variables ζi are independent from each other
and independent from neuron to neuron, and the sets of
presynaptic neurons are chosen randomly.

The dynamics of individual neurons are determined
by the following leaky integrate-and-fire (LIF) equa-
tions: The normalized membrane potential V of a neu-
ron n is governed by

V̇ = −
1

τleak
V − (V − VE)gE − (V − VI)gI (2)

where time is measured in ms, and V is normalized so
that when it reaches 1, the neuron n fires an action
potential following which its membrane potential is im-
mediately reset to 0. Eq. (2) has three constants: τleak
= 20 ms is the leak rate, and VE = 14

3
and VI = −2

3
are excitatory and inhibitory reversal potentials in nor-
malized units. These are accepted biophysical constants
(Koch 1999; Chariker et al. 2016). On the right side of
Eq. (2) are two functions gE(t) and gI(t), the excitatory
and inhibitory conductances of neuron n, the dynamics
of which are described below. When an action potential
is fired, we assume a refractory period of 2 ms during
which the potential does not update – though the con-
ductances gE and gI continue to evolve.

The equations governing the evolution of gE and gI
are as follows: We assume the neuron n in question is
of type Q ∈ {E, I}, and let ME(n) and MI(n) be its
sets of presynaptic excitatory and inhibitory neurons
respectively. Then

τE ˙gE =− gE + SQE
∑

m∈ME(n)

∞∑
i=1

δ(t− (tmi + delnm))

+ SQE
∞∑
i=1

δ(t− texti )

+ Samb
∞∑
i=1

δ(t− ti) (3)

τI ġI = −gI + SQI
∑

m∈MI(n)

∞∑
i=1

δ(t− (tmi + delnm)) (4)

The E- and I-conductances gE and gI are elevated when
neuron n receives some excitatory, respectively inhibitory,
input, and τE and τI are the rates at which they decay to
zero. The excitatory input to a neuron comes from three
sources: synaptic input from other neurons within the
local population, synaptic input from external sources
such as other regions of cortex, and an “ambient” source
representing unmodeled sources of neurotransmitters.
The inhibitory input to a neuron comes from only one
source, the synaptic input from other neurons in the
population.

The term with a double-sum on the right side of Eq.
(3) represents the synaptic excitatory input received by
neuron n: We assume that the coupling weight between
neurons depends only on their types, i.e. E or I, and SQE

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/839019doi: bioRxiv preprint 

https://doi.org/10.1101/839019


20 Sonica Saraf, Lai-Sang Young

is the coupling weight from E-neurons to neurons of type
Q. The sequence {tmi , i = 1, 2, ...} are the times when
neuron n successfully receives synaptic input from neu-
ron m. We assume a synaptic failure rate of 50%, which
means that a neuron will have a 50% chance of success-
fully receiving a spike when a presynaptic neuron fires an
action potential. We also assume that once a spike is re-
ceived, the change in conductance is not instantaneous,
i.e. there is some delay between presynaptic firing and
postsynaptic response. This is modeled with the delnm
terms. In case there is any notational ambiguity, our use
of the delta function is intended to say that if a spike
from neuron m ∈ ME(n) is received at time tmi to neu-

ron n, then gE will increase by the amount SQE

τE
at time

tmi + delnm. Eq. (4) is to be interpreted analogously.
Both excitatory and inhibitory neurons also receive

external excitatory drive in the form of Poisson spikes
arriving at random times {texti , i = 1, 2, ...}, which are
independent from neuron to neuron. The drive rates, λE
and λI for excitatory and inhibitory receiving neurons,
respectively, are variables we will modify and observe.
Each time such a Poisson kick is received, the excitatory

conductance of a neuron of type Q increases by SQE

τE
.

Lastly, each neuron receives an ambient drive, in
the form of Poisson kicks arriving at the times {ti, i =
1, 2, ...}. This is meant to model resting state drive from
neurotransmitters such as acetylcholine, and is repre-
sented by the term Samb

∑∞
i=1 δ(t − ti) in Eq (3). The

change in conductance caused by these kicks has mag-
nitude Samb, different from SQE .

Parameters used. We have tried to use parameters that
are both consistent with what is accepted biologically
and that produce the expected firing regimes in back-
ground and driven cases. Starting from the parameters
in Chariker and Young (2015); Chariker et al. (2016),
we made adjustments to accommodate for the smaller
size of the present model network. The simulations used
in this paper were produced using SEE = .0255, SIE =
.0095, SEI = .054, and SII = .0275. We set the exci-
tatory and inhibitory decay times to τE = 2ms and
τI = 4ms, respectively. As to the values for delnm, if n or
m is an inhibitory neuron, we set delnm = 1 ms. If both
n and m are excitatory, we assume delnm is uniformly
distributed on [1, 2.3] ms, to reflect the fact that exicta-
tory to excitatory synapses range from axodendritic to
axosomatic. The delays are set by pairs of neurons, and
remain constant throughout the simulation.

The ambient drive rate is λamb = .433 kicks per ms,
and Samb is set to .003. The ambient drive was chosen
such that, on average, around 10 percent of the total
amount of excitatory input to each neuron was ambient.

Finally, the external Poisson drive rates λE and λI
were allowed to vary to produce the desired firing rates
in background and driven regimes. To simulate back-
ground conditions, we set λbgE = .288 spikes per ms and

λbgI = .972 spikes per ms (consistent with the numbers of
presynaptic E-neurons for E and I cells from within the
local population). This gives an average spiking rate of
about 2.5 spikes per second for excitatory neurons and
7.5 spikes per second for inhibitory neurons. We vary the
external drive rates, λE and λI by choosing a constant,
c ≥ 1, and setting λE = cλbgE and λI = 1

2
(c + 1)λbgI .

The factor of increase in λE and λI are different to best
preserve the firing rate ratio of inhibitory neurons spik-
ing 3-4 more times per second than excitatory neurons
spike. We think of c = 1 as background and c = 2.25
as strongly driven, as they elicit firing rates consistent
with the range seen in, for example, the visual cortex.

Connecting two local populations (details for the con-
struction in Sect. 2.1) To model one neuronal layer feed-
ing into another, we first create two separate networks,
N1 and N2, to be thought of as the “source” and “tar-
get” networks respectively, following the specifications
in section 1. For m = 1, 2, we let Em and Im be the
set of excitatory and inhibitory neurons in the network
Nm. We then replace a certain percentage of the exter-
nal drive to neurons in E2 and I2 by excitatory input
from “feedforward” connections from E1.

More precisely, suppose we wish to have a fraction
p ∈ (0, 1) of the total excitatory drive to neurons in N2

be feedforward drive from N1. In the text, we refer to
this number p as the connectivity from N1 to N2. The
construction is carried out in four steps:

1. First we compute for E-neurons in N2 the mean num-
ber, fE , of presynaptic neurons from E1. Let the external
drive rates to E-neurons in Nm be λE,m and their firing
rates be rE,m for m = 1, 2. We solve for fE in

p =
0.5 rE,1SEEfE

Sambλamb + λE,2SEE + 0.5(80) rE,2SEE
. (5)

The denominator represents the total excitatory “drive”
received by an E-neuron in N2, counting the “drive”
from each of the three sources as the product of the
number of spikes and the synaptic weight of each spike.
In the last term, for example, 0.5 is the synaptic failure
rate, 80 is the mean number of presynaptic E-neurons
from within the local population, and rE,2 is the mean
firing rate of the E-population in N2. The numerator
in Eq. (5) is the total “drive” provided to the neuron
in question by the E-population from N1. The mean
number of presynaptic E-cells from N1 for each I-cell in
N2, denoted fI , is computed similarly. For the regime
depicted in Sect. 1.1, the computations above yield fE =
17.3 and fI = 47 at p = 0.1, to give an example.

2. Next we set the connections between N1 and N2: Let
ζ be the random variable in the “Model equations and
specifications” section above. For E-neurons in N2, we
set µ = fE and σ = 30p (so that at p = 0.1, µ = 17.3
and σ = 3, a variance roughly commensurate with those
within local populations). For I-neurons in N2, µ = fI
and σ = 90p. The random variable ζ is redrawn for each
neuron in N2, and the neuron is then postsynaptic to ζ
randomly selected neurons from E1.

3. Having added the feedforward drive to N2, we now
need to remove the corresponding fraction of λE,2 and
λI,2, in such a way that the total excitatory current from
external sources received by neurons inN2 is the same as
it would have been in the absence of the “feedforward”
drive from N1. This completes the network architecture
for the source-target pair N1 → N2.

4. Finally, spikes fired by neurons in E1 are received by
E- and I-neurons in N2 the same way that excitatory
spikes from within N2 are received — except for an ad-
ditional transmission time of δ+ ms. This parameter is
defined in the the text, within the context of different
network motifs.
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