Skip to main content

Advertisement

Log in

Dynamic responses of neurons in different states under magnetic field stimulation

  • ORIGINAL ARTICLE
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) is an effective method to treat neurophysiological disorders by modulating the electrical activities of neurons. Neurons can exhibit complex nonlinear behaviors underlying the external stimuli. Currently, we do not know how stimulation interacts with endogenous neural activity. In this paper, the effects of magnetic field on spiking neuron, bursting neuron and bistable neuron are studied based on the Hodgkin–Huxley (HH) neuron model. The results show that the neurons in three different states can exhibit different dynamic responses under magnetic field stimulation. The magnetic field stimulation could increase or decrease the firing frequencies of spiking neuron, bursting neuron and bistable neuron. The transitions between different firing patterns of neurons can be promoted by changing the parameters of the magnetic field. Magnetic field stimulation has a minimal impact on the firing temporal sequence sequences in bursting neuron than that in spiking neuron and bistable neuron. These results provided an insight into the impact of neuronal states on neuronal dynamic responses under brain stimulation and show that subtle changes in external conditions and stimuli can cause complex neuronal responses. This study can help us understand the state-dependent coding mechanism of neurons under electromagnetic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Badawy, R. A., Strigaro, G., & Cantello, R. (2014). TMS, cortical excitability and epilepsy: The clinical impact. Epilepsy Research, 108(2), 153–161.

    Article  Google Scholar 

  • Banerjee, J., Sorrell, M. E., Celnik, P. A., & Pelled, G. (2017). Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. PLoS ONE, 12(1), e0170528–e0170528.

    Article  Google Scholar 

  • Barker, A. T., Ri, J., & Freeston, I. L. (1985). Noninvasive Magnetic Stimulation of the Human Motor Cortex. Lancet, 1, 1106–1107.

    Article  CAS  Google Scholar 

  • Croarkin, P. E., & MacMaster, F. P. (2019). Transcranial Magnetic Stimulation for Adolescent Depression. Child and Adolescent Psychiatric Clinics of North America, 28(1), 33–43.

    Article  Google Scholar 

  • Eteme, A., & Mohamadou, A. (2019). Firing and synchronization modes in neural network under magnetic stimulation. Communications in Nonlinear Science and Numerical Simulation, 72, 432–440.

    Article  Google Scholar 

  • Fu, L., Rocchi, L., Hannah, R., Xu, G., Rothwell, J. C., & Ibáñez, J. (2019). Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation. The Journal of Physiology, 599(9), 2471-2482.

  • Gao, Y., Zheng, Y., Chen, R. J., Wang, H. Q., Dong, L., & Dou, J. R. (2016). Possible Mechanism for Effects Caused by Exposure to Extremely Low Frequency Magnetic Fields. Ieee Transactions on Magnetics, 52(12), 8.

    Article  Google Scholar 

  • Guerra, A., Suppa, A., D’Onofrio, V., Di Stasio, F., Asci, F., Fabbrini, G., et al. (2018). Anti-glutamatergic effect of safinamide in Parkinson’s Disease: A TMS study. Movement Disorders, 33, S709–S709.

    Google Scholar 

  • Guo, L., Hou, L., Wu, Y., Lv, H., & Yu, H. (2020). Encoding specificity of scale-free spiking neural network under different external stimulations. Neurocomputing, 418, 126–138.

    Article  Google Scholar 

  • Harris, E. J. (1954). Ionophoresis along frog muscle. Journal of Physiology, 124(2), 248–253.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current-voltage relations in the membrane of the giant axon of Loligo. Journal of Physiology, 116(4), 424–448.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., & Keynes, R. D. (1953). The mobility and diffusion coefficient of potassium in giant axons from Sepia. Journal of Physiology, 119(4), 513–528.

    Article  CAS  Google Scholar 

  • Irena, R., & Biundo, R. (2019). Non-invasive brain stimulation to treat cognitive symptoms of Parkinson’s disease. Parkinsonism & Related Disorders, 66, 1–2.

    Article  Google Scholar 

  • Isakovic, J., Dobbs-Dixon, I., Chaudhury, D., & Mitrecic, D. (2018). Modeling of inhomogeneous electromagnetic fields in the nervous system: A novel paradigm in understanding cell interactions, disease etiology and therapy. Science and Reports, 8(1), 12909.

    Article  Google Scholar 

  • Keil, J., Timm, J., Sanmiguel, I., Schulz, H., Obleser, J., & Schönwiesner, M. (2014). Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. Journal of Neurophysiology, 111(3), 513–519.

    Article  Google Scholar 

  • Lefebvre, J., Hutt, A., & Frohlich, F. (2017). Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. eLife, 6, e32054.

  • Li, D. X., Cui, X. W., & Yang, Y. C. (2018). Inverse stochastic resonance induced by non-Gaussian colored noise. Neurocomputing, 287, 52–57.

    Article  Google Scholar 

  • Li, G., Henriquez, C. S., & Fröhlich, F. (2019). Rhythmic modulation of thalamic oscillations depends on intrinsic cellular dynamics. Journal of Neural Engineering, 16(1), 016013–016013.

    Article  Google Scholar 

  • Lv, M., & Ma, J. (2016). Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 205, 375–381.

    Article  Google Scholar 

  • Lv, M., Wang, C., Ren, G., Ma, J., & Song, X. (2016). Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479–1490.

    Article  Google Scholar 

  • Ma, J., Mi, L., Zhou, P., Xu, Y., & Hayat, T. (2017). Phase synchronization between two neurons induced by coupling of electromagnetic field. Applied Mathematics and Computation, 307, 321–328.

    Article  Google Scholar 

  • Meisenhelter, S., & Jobst, B. C. (2018). Neurostimulation for Memory Enhancement in Epilepsy. Current Neurology and Neuroscience Reports, 18(6), 30.

    Article  Google Scholar 

  • Nobukawa, S., Nishimura, H., & Yamanishi, T. (2017). Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model. Science and Reports, 7(1), 1331.

    Article  Google Scholar 

  • Pall, M. L. (2013). Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. Journal of Cellular and Molecular Medicine, 17(8), 958–965.

    Article  CAS  Google Scholar 

  • Pellicciari, M. C., Bonni, S., Ponzo, V., Cinnera, A. M., Mancini, M., Casula, E. P., et al. (2018). Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. NeuroImage, 175, 365–378.

    Article  Google Scholar 

  • Romero, M. C., Davare, M., Armendariz, M., & Janssen, P. (2019). Neural effects of transcranial magnetic stimulation at the single-cell level. Nature Communications, 10, 11.

    Article  Google Scholar 

  • Ruddy, K., Balsters, J., Mantini, D., Liu, Q., Kassraian-Fard, P., Enz, N., et al. (2018). Neural activity related to volitional regulation of cortical excitability. Elife, 7, e40843.

  • Socorro, A., & Garcia, F. (2012). Simulation of magnetic field effect on a seed embryo cell. International Agrophysics, 26(2), 167–173.

    Article  Google Scholar 

  • Uzuntarla, M. (2019). Firing dynamics in hybrid coupled populations of bistable neurons. Neurocomputing, 367, 328–336.

    Article  Google Scholar 

  • Uzuntarla, M., Cressman, J., Ozer, M., & Barreto, E. (2013). Dynamical structure underlying inverse stochastic resonance and its implications. Physical review. E, Statistical, nonlinear, and soft matter physics, 88, 042712, 1-7.

  • Yi, G., Wang, J., Wei, X., Deng, B., Tsang, K. M., Chan, W. L., et al. (2014). Effects of extremely low-frequency magnetic fields on the response of a conductance-based neuron model. International Journal of Neural Systems, 24(1), 1450007.

    Article  Google Scholar 

  • Zamani, A., Novikov, N., & Gutkin, B. (2019). Concomitance of Inverse Stochastic Resonance and Stochastic Resonance in a minimal bistable spiking neural circuit. Communications in Nonlinear Science and Numerical Simulation, 82, 105024.

  • Zhao, Z. G., Li, L., Gu, H. G., & Gao, Y. (2020). Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation. Nonlinear Dynamics, 99(2), 1129–1154.

    Article  Google Scholar 

  • Zhou, P., Yao, Z., Ma, J., & Zhu, Z. (2021). A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons & Fractals, 145(9), 110751.

  • Zrenner, C., Desideri, D., Belardinelli, P., & Ziemann, U. (2018). Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimulation, 11(2), 374–389.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51737003, 51977060, 51607056, 52077056 and the Science and Technology Project of Hebei Education Department, CHINA under Grant No. BJ2016013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huilan Yang or Guizhi Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Action Editor: David Terman 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, H., Guo, L. et al. Dynamic responses of neurons in different states under magnetic field stimulation. J Comput Neurosci 50, 109–120 (2022). https://doi.org/10.1007/s10827-021-00796-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00796-3

Keywords

Navigation