Skip to main content
Log in

Improving Yield and Defect Tolerance in Subthreshold CMOS Through Output-Wired Redundancy

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents simulations of three different implementations of the minority-3 function, with special focus on mismatch analysis through statistical Monte Carlo-simulations. The simulations clearly favors the minority-3 Mirrored gate, and a gate-level redundancy scheme, where identical circuits with the same input drive the same output-node, is further explored as a means of increasing fault- and defect-tolerance. Important trade-offs between supply voltage, redundancy and yield are revealed, and V DD = 175 mV is suggested as a minimum useful operating voltage, combined with a redundancy factor of 2, in 90 nm CMOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreou AG, Boahen KA, Pouliquen PO, Pavasović A, Jenkins RE, Strohbehn K (1991) Current-mode subthreshold MOS circuits for analog VLSI neural systems. IEEE Trans Neural Netw 2(2):205–213, March

    Article  Google Scholar 

  2. Aunet S, Beiu V (2005) Ultra low power fault tolerant neural inspired CMOS logic. IEEE International Joint Conference on Neural Networks, IJCNN, Montréal, Canada, July 31–August 4, 2005

  3. Aunet S, Berg Y (2005) Three sub-fJ power-delay-product subthreshold CMOS gates. IFIP VLSI SoC, Perth, Australia, 17–19 October 2005

  4. Aunet S, Hartmann M (2003) Real-time reconfigurable linear threshold elements and some applications to neural hardware. International Conference on Evolvable Systems, ICES 2003, Trondheim, Norway, 17–20 March 2003

  5. Aunet S, Oelmann B, Abdalla S, Berg Y (2004) Reconfigurable subthreshold CMOS perceptron. International Joint Conference on Neural Networks, IJCNN, Budapest, Hungary, 25–29 July 2004

  6. Beiu V, Aunet S, Rydberg III RR, Djupdal A (2005) On the advantages of serial architectures for low-power reliable computations. Proceedings of the 16th International Conference on Application-Specific Systems, Architecture and Processors, ASAP’05, Samos, Greece, 23–25 July 2005

  7. Bryant A, Brown J, Cottrell P, Ketchen M, Ellis-Monaghan J, Nowak EJ (2001) Low-Power CMOS at Vdd=4kT/q. Dev Res Conf 2001

  8. Closing the nanometer yield chasm, cadence design systems. White Paper, 2001. Available: www.cadence.com/whitepapers/ClosingNanometer061301.pdf

  9. Eisele M, Berthold J, Schmitt-Landsiedel D, Mahnkopf R (1997) The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits. IEEE Transactions Very Large Scale Integr (VLSI) Syst 5(4):360–368, December

    Article  Google Scholar 

  10. Enz CC, Krummenacher F, Vittoz EA (1995) An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr Circuits Signal Process 8:83–114, July

    Article  Google Scholar 

  11. Enz CC, Vittoz EA (1996) CMOS low-power analog circuit design. In: Cavin et al (eds) Emerging technologies: designing low power digital systems. IEEE Press

  12. Granhaug K, Aunet S, Lande TS (2006) Body-bias regulator for ultra low power multifunction CMOS gates. International Symposium of Circuits and Systems, ISCAS 2006, Kos, Greece, 21–24 May 2006

  13. Iwamura H, Akazawa M, Amemiya Y (1998) Single electron majority logic circuits. IEICE Transac Electron, V E18 C, pp 42–48

  14. Kao JT, Miyazaki M, Chandrakasan AP (2002) A 175-mV multiply-accumulate unit using an adaptive supply voltage and body bias architecture. IEEE J Solid-State Circuits 37(11):1545–1554, November 2002

    Article  Google Scholar 

  15. Lehtonen T, Plosila J, Isoaho J (2005) On fault tolerance techniques towards nanoscale circuits and systems. TUCS Technical Report, no. 708, August 2005

  16. Leuenberger F, Vittoz E (1969) Complementary-MOS low-power low-voltage integrated binary counter. Proceedings of the IEEE 57(9):1528–1532, September

    Article  Google Scholar 

  17. Lin X, Rajski J (2006) The impacts of untestable defects on transition fault testing. Proceedings of the 24th IEEE VLSI Test Symposium, VTS’06, Berkeley, CA, USA, 30 April–4 May 2006

  18. Melek LAP, Schneider MC, Galup-Montoro C (2004) Body-bias compensation technique for subthreshold CMOS static logic gates. SBCCI’04, Ipojuca, Brazil, 7–11 September 2004

  19. Moore G (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  20. Nikolić K, Sadek A, Forshaw M (2002) Fault-tolerant techniques for nanocomputers. Nanotechnology 13:357–362, June

    Article  Google Scholar 

  21. Nowak EJ (2002) Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J Res Dev 46(2/3):169–180, March/May

    Article  Google Scholar 

  22. Rabaey J, Pedram M, Landman P (1995) Low power design methodologies. Kluwer, Boston, 1995

    Google Scholar 

  23. Schmid A, Leblebici Y (2003) Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors. Third IEEE Conference on Nanotechnology, IEEE-NANO, San Francisco, CA, USA, 12–14 August 2003

  24. Schrom G, Selberherr S (1996) Ultra-low-power CMOS technologies. International Semiconductor Conference, CAS’96, Sinaia, Romania

  25. Schultz K, Francis RJ, Smith KC (1990) Ganged CMOS: trading standby power for speed. IEEE J Solid-State Circuits 25(3):870–873, June

    Article  Google Scholar 

  26. Shibata T, Ohmi T (1991) An intelligent MOS transistor featuring gate-level weighted sum and threshold operations. Technical Digest of International Electron Devices Meeting, pp 919–922

  27. Soeleman H, Roy K, Paul, BC (2001) Robust subthreshold logic for ultra-low power operation. IEEE Transac Very Large Scale Integr (VLSI) Syst 9(1):90–99, Febuary

    Article  Google Scholar 

  28. Swanson RM, Meindl JD (1972) Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J Solid-State Circuits 7(2):146–153, April

    Article  Google Scholar 

  29. von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J (eds) Automata Studies. Princeton Univ. Press, Princeton, NJ, pp 43–98

    Google Scholar 

  30. Wang A, Chandrakasan A (2005) A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J Solid-State Circuits 40(1):310–319, January

    Article  Google Scholar 

  31. Weste N, Harris D (2004) CMOS VLSI design—a circuits and systems perspective, 3rd edn. Addison-Wesley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Granhaug.

Additional information

Responsible Editor: N. A. Touba

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granhaug, K., Aunet, S. Improving Yield and Defect Tolerance in Subthreshold CMOS Through Output-Wired Redundancy. J Electron Test 24, 157–163 (2008). https://doi.org/10.1007/s10836-007-5027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-007-5027-1

Keywords

Navigation