J Electron Test (2010) 26:535-547
DOI 10.1007/s10836-010-5164-9

Classification of Activated Faults in the FlexRay-Based

Networks

Yasser Sedaghat - Seyed Ghassem Miremadi

Received: 30 September 2009 / Accepted: 14 June 2010 /Published online: 20 July 2010

© Springer Science+Business Media, LLC 2010

Abstract FlexRay communication protocol is expected to
become the de-facto standard for distributed safety-critical
systems. This paper classifies the effects of transient single
bit-flip fault injections into the FlexRay communication
controller. In this protocol, when an injected fault is activated,
this may result in one or more error types, i.e.. Boundary
violation, Conflict, Content, Freeze, Synchronization, Syntax,
and Invalid frame. To study the activated faults, a FlexRay bus
network, composed of four nodes, was modeled by Verilog
HDL; and a total of 135,600 transient faults was injected in
only one node, called the target node. The results show that
only 9,342 of the faults (about 6.9%) were activated and their
effects were observed in the network nodes. The results also
show that the Synchronization error is the widespread error
with the occurrence rate of 70.1%. The Invalid frame,
Boundary violation, Syntax, Content, Freeze, and Conflict
errors have the occurrence rates of 51.1%, 32.4%, 24.6%,
20.6%, 17.3%, and 0.0%, respectively. Among the error
types, the Freeze errors are the most critical errors as they
mostly result in system failures. The results also show that
most of the activated faults, about 75.3%, were observed
simultaneously in the target node and a neighbor node. About
11.1% of the activated faults were observed only in the target
node and about 13.5% only in the neighbor node.

Keywords Safety-critical applications - Distributed
embedded systems - FlexRay protocol - Fault injection

Responsible Editor: C. Metra

Y. Sedaghat - S. G. Miremadi (<))

Dependable Systems Laboratory, Sharif University of Technology,
Tehran, Iran

e-mail: miremadi@sharif.edu

Y. Sedaghat
e-mail: y_sedaghat@ce.sharif.edu

1 Introduction

With the advent of distributed embedded systems and using
them in safety-critical applications such as avionics,
automotive, and railway, fault tolerance has become an
essential demand for these systems. A distributed embed-
ded system is composed of several different hardware units
(called nodes), e.g., processing units, sensors, and actuators,
interconnected by a communication network.

It has been reported that the overall reliability of a
safety-critical distributed embedded system not only
depends on the reliability of its nodes, but also more on
the reliability of its communication network [11, 14]. This
means that if a node fails, its task can be assigned to
another node, however, if a communication network fails,
the overall operation cannot be succeeded. Consequently,
the communication network is a critical part in the safety-
critical distributed embedded systems. A network failure
may occur either if a link fails or the communication
protocol fails.

Communication in a distributed architecture can be
triggered either dynamically, in response to an event (event-
driven), or statically, at predetermined moments in time (time-
driven). Examples of event-triggered protocols are Byteflight,
CAN, LonWorks, and Profibus. The main drawback of event-
triggered protocols is their lack of predictability [13].
Examples of time-triggered protocols are SAFEbus, SPI-
DER, and TTP/C. The main drawback of time-triggered
protocols is their lack of flexibility [13]. To resolve the
drawbacks of both event-triggered and time-triggered proto-
cols, other protocols such as TTCAN, FTT-CAN, and
FlexRay [5] are introduced. Among the latter protocols, the
FlexRay protocol is advancing as the predominant protocol
and is expecting to become the de-facto industry standard for
X-by-wire applications [7, 13, 14, 19]. As an example, the

@ Springer

536

J Electron Test (2010) 26:535-547

next edition of the BMW X35 uses the FlexRay protocol in its
electronically controlled dampers [19].

Several work have investigated the reliability and fault
tolerance of communication protocols. Effects of masquer-
ade failures [15] and message missing failures [16] have
been studied for the CAN protocol by the simulation-based
fault injection. Also, in [12], effects of simulation-based fault
injection in the CAN protocol has been investigated. Fault
tolerance of the TTP/C protocol has been assessed, by
heavy-ion fault injection [20] and physical pin-level fault-
injection [3]. Moreover, fault tolerance of the TTP/C
protocol and the failures have been studied using heavy-ion
fault injection and simulation-based fault injection [1].

An evaluation of the FlexRay protocol using simulation-
based fault injection has been reported in [10] and [9].
However, this evaluation has two main limitations: 1) faults
were injected only into 10% of the FlexRay registers, and
2) only three error types, i.e., Boundary violation, Content,
and Syntax were considered. In an experiment reported in
[17], faults were injected into all 408 registers of the
FlexRay to study the fault effects. In [18], the activated
faults presented in [17], have been classified into six error
types.

This paper extends the work presented in [18]. The
extension includes three parts: 1) A new error type called
Invalid frame error is added in the study; 2) Fault effects are
classified individually in the target node and in the neighbor
node; and 3) Error propagation rates from the target node to
the neighbor node are investigated. The work is evaluated
by simulation-based fault injection using the ModelSim5.5.
In the simulation, a FlexRay bus network, composed of
four nodes, is modeled by the Verilog HDL and the effects
of a total of 135,600 injected faults in the target node are
studied. In this study, the behavior of the target node and
one of its neighbor nodes is studied.

The remainder of the paper is organized as follows:
Section 2 introduces the FlexRay protocol briefly. Error
types and error handling mechanisms in this protocol are
presented in Section 3. In Section 4, the experimental
environment is introduced. Section 5 includes the experi-
mental results and finally, conclusions are given in
Section 6.

2 The FlexRay Protocol

The FlexRay protocol provides key features of synchroni-
zation that include scalable data transmission in both
synchronous and asynchronous modes. It can support the
data rate up to 10 Mbit/sec. The protocol itself offers
deterministic data transmission, guaranteed message latency
and message jitter. The FlexRay supports dual and redun-
dant transmission channels and transmission mechanism is

@ Springer

contention free. In addition, its physical layer provides
support for bus, star, and multiple star topologies [5].

From the dependability point of view, the FlexRay
documents [5] specify solely bus guardian mechanism and
clock synchronization algorithms. Other features, such as a
membership service or mode management facilities, should
be implemented in software or hardware layers on top of
the FlexRay. This will allow to conceive and to implement
exactly the services that are needed with the drawback that
correct and efficient implementations might be more dif-
ficult to achieve in a layer above the communication
controller [11].

The main purpose of this paper is to instruct the
developers of the FlexRay communication controller to
know that: 1) which errors are widespread, 2) which error
type is the most destructive, and 3) which error types are
propagated through the network. Based on fault injection
results and error analyses in this paper, it seems that in
addition to existing techniques in FlexRay communication
controller, other useful techniques should be applied.

2.1 Protocol Structure

The FlexRay communication controller consists of six
modules [5]: controller host interface (CHI), protocol
operation control (POC), coding and decoding (CODEC),
media access control (MAC), frame and symbol processing
(FSP), and clock synchronization process (CSP). Figure 1
illustrates the relation between these modules.

* The CHI module, manages data and control flow
between the host processor and the FlexRay protocol
engine within each node.

* Operational modes of the FlexRay modules are adjusted
by POC module. The purpose of the POC is to react to
host commands and protocol conditions by triggering
coherent changes to core modules in a synchronous
manner, and to provide the host with the appropriate
status regarding these changes.

* The CODEC module is responsible for encoding the
communication elements into a bit stream and for
receiving communication elements, making bit streams
and investigating correctness of bit streams.

* The MAC module controls access to the bus. In the
FlexRay protocol, media access control is based on a
recurring communication cycle. Within one communi-
cation cycle, the FlexRay offers the choice of two
media access schemes, i.e., Time Division Multiple
Access (TDMA) [22] scheme for a time-triggered (or
static) window, and Flexible TDMA (FTDMA) [4]
scheme for an event-triggered (or dynamic) window.
The communication cycle is the fundamental element of
the media access scheme within the FlexRay. Figure 2

J Electron Test (2010) 26:535-547

537

To/From
Host

Controller Host

Interface
J
Y
7 —® Protocol Operation
) Control -t
J
A
Clock

Synchronization |«

Process
[
4 4

Y A

. Frame and
Media Access
Symbol
Control | -
processing

A A

Coding and Decoding Unit

To Channel Interface From Channel Interface

Fig. 1 The FlexRay structure [5]

shows an example of a communication cycle in the
FlexRay protocol.

* The FSP module is responsible for checking the correct
timing of received frames and symbols with respect to
the TDMA scheme, applying further syntactical tests to
received frames, and checking the semantic correctness
of received frames.

* The CSP module is responsible for generation of timing
units in the FlexRay communication controller, e.g.,
communication cycles. Moreover this module uses a
distributed clock synchronization mechanism in which
each node individually synchronizes itself to its cluster
by observing the timing of transmitted sync frames
from other nodes.

In the FlexRay protocol, frames are sent in static slots or
dynamic slots of each communication cycle. Figure 3
shows the frame format in the FlexRay protocol. For more
details about the frame format in the FlexRay protocol,
readers are referred to FlexRay specifications [5], in
Chapter 4.

Fig. 2 Communication cycle in
the FlexRay protocol -

3 Error Types and Error Handling Approaches

Safety-critical applications have to function correctly even
in presence of faults. Faults can be permanent (e.g.,
damaged microcontrollers or communication links), tran-
sient (e.g., caused by single event upsets or electromagnetic
interferences), or intermittent (appear and disappear repeat-
edly). The transient faults are the most common, and their
number is dramatically increasing due to the continuously
raising level of integration in semiconductors [8]. Transient
single bit-flip errors, which are considered in this paper, are
more common consequences of the transient faults [2].

3.1 Error Types in the FlexRay Protocol

More detailed studies of the FlexRay specification documents
[5] showed that in the FlexRay protocol, due to faults, in
addition to six introduced error types [18], another error
type, which is named Invalid frame, is also possible. Then
these seven error types are:

1) Boundary violation error denotes whether a boundary
violation has occurred at the boundary of the
corresponding slot. A boundary violation occurs if
the node does not consider the channel to be idle at the
boundary of a slot.

2) Conflict error denotes whether reception was ongoing
at the time the node started a transmission.

3) Content error denotes the presence of an error in the
content of a received frame.

4) Synchronization error: In the FlexRay protocol, a clock
rate correction mechanism is used. In synchronization
process, if a fault results in failing the clock rate correction
mechanism, a Synchronization error is occurred.

5) Syntax error denotes the presence of a syntactic error
in a time slot; e.g. when a decoding error occurs.

6) Freeze error: In addition to mentioned error types, in
the FlexRay communication protocol, there are three
general conditions that trigger functional state of
communication controller to halt state, immediately.
In this state, POC stops activities of all other modules
and freezes the communication controller. After resolv-
ing freeze conditions, communication controller should
be started up through the host. Three freeze conditions
are: 1) Product-specific error conditions such as Built-
In Self-Test (BIST) and sanity check errors, 2) Error

Symbol
i i Dynamic Window :
Static Window > M > Wmdow. NIT
Symbol |NIT

A

Static Slots

Y
A
v

Dynamic Slots

@ Springer

538

J Electron Test (2010) 26:535-547

Reserved bit
Payload Preamble Indicator
Null Frame Indicator

Sync Frame Indicator

? Startup Frame Indicator

Fig. 3 Frame format in the FlexRay protocol [5]

conditions detected by the host that result in a FREEZE
command being sent to the POC via the CHI, and 3)
Fatal conditions detected by the POC or one of
communication controller mechanisms.

Product-specific and host detected errors, which are
accommodated by the POC and are beyond the scope of the
FlexRay specification, were not considered in this paper. Since
freezing the communication controller could be result in failing
this controller, occurrence of a freeze condition was assumed as
an individual error type which was named Freeze error.

7) Invalid frame error denotes whether an invalid frame
has been received in a slot of static or dynamic segments.

More detailed reinvestigations of the fault injection
results showed that due to an injected fault, a received
frame which has none of mentioned error types in [18] may
be dropped by the communication controller. Hence, the [5]
were reviewed again, carefully. Detailed study of the
FlexRay specifications showed that in the FSP module,
when a syntactically correct frame is received, this frame is
checked to meet frame acceptance conditions. If the frame
passes this check, it is marked as an accepted frame; otherwise,
an Invalid frame error occurs and the received frame is
dropped [5]. The frame acceptance conditions are [5]:

I- The frame ID included in the header of the frame
equals the slot number of static or dynamic slot which
the frame has been received in it.

2- The cycle count included in the header of frame
matches the communication cycle which the frame
has been received in it.

3- The payload length included in the header of a received

static frame matches the globally configured value of

the payload length of static frames (this value is
determined in the design time of the network).

The indicator bits of the received frame (please see Fig. 3)

matches with the expected type of received frame.

@ Springer

Frame | Payload| Header| Cycle

data 0 dat CRC

ID Lenght | CRC [counter aan
11|11] 11bits 7 bits 11 bits 6 bits 0... 254 bytes 24 bits

«—> «—> < > | «—

Y > Y Ll

Header Segment Payload Segment Trailer
Segment

It should be noticed that, none of the above conditions are
checked for detecting the previous error types. Furthermore,
the occurrence rate of this error type has a direct effect on the
estimation of network bandwidth utilization in the presence of
faults. Then, in addition to the previous error types [18], the
Invalid frame error type was also considered.

It should be mentioned that, investigations showed that in
the FlexRay communication controller, an injected transient
single-bit flip fault may be overwritten, or may result in one or
more discussed error types, simultaneously. For example, if a
fault causes a Freeze error, other error types such as the Syntax
error, Content error, Boundary violation error, and even the
Invalid frame error can be occurred.

3.2 Error Handling Approaches in the FlexRay
Communication Controller

To handle the mentioned error types in the FlexRay
protocol, only two main approaches are used. 1) Occur-
rence of the Boundary violation, Conflict, Content, Invalid
frame, and Syntax errors is reported to the host via the CHI
module and the host responses to these error types, based on
its error handling mechanisms. 2) Occurrence of the Syn-
chronization and Freeze errors is reported to the POC module
and this module, based on a graceful degradation mechanism
[5], reacts to it.

In the FlexRay protocol, to check the operational
conditions of the communication controller some registers
are employed in the FlexRay modules. In the normal
operation of the controller, the behavior of these registers
has been determined by the FlexRay specifications [5]. If
one of these registers behaves unexpectedly during the
operation of the controller, this indicates that an error
condition has fulfilled. Then, the related module to that
register determines the type of the occurred error and
reports it to the CHI or POC modules. In this paper, these
registers are referred as “error indicator registers”. Table 1

J Electron Test (2010) 26:535-547

539

shows these registers and their related modules of the
FlexRay communication controller. This table also shows
error types which are determined by these error indicator
registers. For example, if a frame is received by the
controller and there is an error in it such that the CRC
check for this frame is failed, the CODEC module sets the
“Frame_crc_error” error indicator register and reports a
Syntax error to the CHI module.

4 Experimental Environment

The FlexRay communication controller, according to its
specifications [5], was implemented by hardware descrip-
tion language, Verilog HDL, and specifications of this con-
troller, e.g. timing and configuration, were tested according
to the FlexRay protocol conformance test specification [6].
As for the experiment setup, a cluster was formed
consisting of four nodes with single bus topology. In this
topology, a node is composed of a host and a communica-
tion controller. The host typically is a hardware unit that
generates data to exchange with other neighbor nodes
through a communication channel. In the experiments,
instead of a real host, a data generator was implemented to
generate static frames with fixed length and dynamic
frames with variable length at the start of the communica-
tion cycles. Within the cluster, all nodes were scheduled to
send/receive frames to/from the communication channel.
The simulation time included five communication cycles.
Each communication cycle composes of ten static slots and 20
mini-slots. Two, three, two, and three static slots assigned to
Nodel, Node2 (the target node), Node3, and Node4 (the
observed neighbor node), respectively. Moreover, 20 mini-
slots were assigned to four nodes, equally. In the dynamic
segment of the each communication cycle, data generators
generates dynamic frame randomly for their nodes. For

example, it is possible that in a communication cycle only
Node 1 transmits a dynamic frame in its mini-slots and the
other nodes do not send any thing.

Consequently, to decrease the effects of the used bench
mark on the results, faults were injected into the communica-
tion controller registers of the target node during two
communication cycles, at a random time. Also, to guarantee
that presented results have lower dependency on the used
bench mark, 50 faults were injected to each bit of all
communication registers in these two communication cycles,
at a random time.

To investigate the fault tolerance of the FlexRay commu-
nication controller, transient single bit-flip faults were injected
into all registers of communication controller modules of a
node which is named target node and their effects on the error
indicator registers were observed in the target node and in a
neighbor node which is called an observed neighbor node. It
should be noticed that in this investigation, the faults were not
injected to the data registers, i.e. input and output data
registers, of the communication controller; because these
registers have no effects on the operation of the communica-
tion controller and if a fault affects these registers, only
transmitted or received data is affected.

It should be mentioned that, if effects of an injected fault
in the target node is observed on a neighbor node, because
of broadcasting data in the FlexRay bus-based network, the
same effects are also observable in all other neighbor nodes.
Consequently, to investigate the effects of injected faults on
the neighbor nodes, it is enough to observe the effects on
one of the neighbor nodes.

4.1 Error Classification Methodology
The error classification methodology includes two phases.

In the first phase, a fault should be injected into a flip-flop
(one bit of a register) of communication controller; and if

Table 1 Error indicator registers in the FlexRay communication controller

Registers FlexRay module Error types Registers FlexRay module Error types
decoding_error on_A CODEC Syntax zSyncCalcResult CSP Sync*

TSS ok vPOC_Freeze POC Freeze
TSS too long vPOC_CHIHaltRequest

FSS ok vPOC_ErrorMode

payload ok Content_error on_ A FSP Content
trailer_ok Fatal protocol_error Freeze
BSS ok T StatusSlot SyntaxError Syntax
FES_ok T_StatusSlot_ContentError Content
zBssError T_StatusSlot_TxConflict Conflict

Header_crc_error

Frame crc_error

T_StatusSlot_BViolation
T_StatusSlot_ValidFrame

Boundary violation

Invalid frame

* . .
Synchronization

@ Springer

540

J Electron Test (2010) 26:535-547

injected fault results in at least one error, in the second
phase, type of occurred error(s) should be determined.

For the first phase and injecting the transient single bit-
flip faults at the behavioral level in the target node, the
SINJECT fault injection tool [23] was used. There are three
steps to use of SINJECT tool:

Stepl: When the given workload is applied, behaviors of
the error indicator registers of the target node and
the observed neighbor node in a fault-free network
are simulated and stored.

In the second step, to consider fault effects, the
given workload is applied again to the network, a
single transient bit-flip fault is injected to one bit of
a communication controller register of the target
node at a random time, and the behavior of the
error indicator registers of the target node and the
observed neighbor node are observed.

In the last step, the faulty network behavior is
compared with the behavior of the fault-free
network, which is gathered at first step, and if
there is a mismatch, that injected fault which
causes at least one error, is considered as an
activated fault and otherwise, that injected fault is
considered as an overwritten fault.

Step2:

Step3:

After these steps, if the injected fault was activated, the
second phase of error classification methodology is started.
In the second phase, based on unexpected changing of error
indicator registers, types of occurred errors are determined.
To obtain a careful investigation of the fault tolerance of
one bit, several faults should be injected to this bit and then
these two phases must be repeated severally.

5 Experimental Results

To assess effects of activated faults due to injected faults in
the FlexRay communication controller, presented in [17]
and [18], and to determine widespread and destructive error
types in the FlexRay protocol, the nodes were connected
through a passive bus network. The main reason of
selecting bus topology was preventing some error prop-
agations by a bus guardian unit [21] which sited in star
coupler of star topology. This prevention can result in
hiding effects of activated faults in communication control-
ler registers of one node on its neighbor nodes.

For simulating the experiments, the ModelSim 5.5
simulation environment was used. In this paper in compar-
ison with [17], the simulation includes five communication
cycles; in the second and third cycles, a single transient bit-
flip fault was injected randomly, then simulation was
resumed two cycles to guarantee that the injected fault
shows its effects or is overwritten.

@ Springer

As mentioned in the description of the used methodology
for error classification, the behaviors of the error indicator
registers of the target and the observed neighbor nodes are
observed during the simulations. In the first communication
cycle, some of the error indicator registers have an unknown
value, i.e., ‘X’ value, until to the second communication cycle.
If a fault is injected when at least one of the error indicator
registers has an unknown value, the fault injection results will
not be trustworthy. Consequently, in this paper, fault
injections were allowed after the first communication cycle.

To obtain a careful investigation of the fault tolerance, 50
transient bit-flip faults were injected to each bit of all FlexRay
controller registers. Hence, a total of 135,600 transient single
bit-flip faults were injected to all 408 single-bit and multiple-
bit registers of the communication controller in the target
node. After that in [18], all occurred error types in the
network nodes (i.e., the target node and an observed
neighbor node), due to injected faults in the target node,
were determined. Also In this paper, error types which
occurred in the target node and in the observed neighbor
node were analyzed, separately. Finally, rates of fault effects
which have propagated from the target node to its neighbor
nodes (e.g., the observed neighbor node) were calculated.

Occurence rate of one error type for a unit

Number of the error type in the unit

= 100%
Number of all activated faults in the unit . ’

5.1 Error Types Statistics in the Overall Network [18]

In this section, various types of all occurred errors in the
network which are due to injected faults in the target node
have been classified. To reach this goal, occurrence rate of
each error type for every bit of communication controller
registers of the target node, using Equation 1, was
calculated; and then occurrence rate of these error types
was achieved for each communication controller modules.

Table 2 shows the total of activated faults and their rates,
occurrence number of each error type, and the occurrence
rate of them for all FlexRay communication controller
modules. It should be mentioned that, in this sub-section, in
addition to reported occurrence rates which were reported
in [18], the occurrence rate of the Invalid frame error have
been reported.

The presented results in the Table 2 show that the Syntax
error in the CODEC module and the Invalid frame error in
the CHI module are the more frequent error, whereas in the
other modules the Synchronization error is the more
frequent error. Furthermore, the Conflict error is not
occurred due to single bit-flip fault injections. In the POC
module which is responsible for controlling the protocol
operation, the occurrence rate of the Freeze error is

J Electron Test (2010) 26:535-547

541

noticeable; based on its destructive property, we convince
FlexRay developers to pay more attention to design the
POC module.

Figure 4 shows the occurrence rate of the error types for
each FlexRay communication controller modules. Accord-
ing to this figure, the Synchronization error in the CSP
module is the most probable and the occurrence probability
of the Conflict error due to injected faults in the all FlexRay
modules is zero.

The overall results in Fig. 5 show that the Synchroniza-
tion error, the Invalid frame error, and the Boundary
violation error are widespread occurred errors; but the
Synchronization error is the more occurred than both
the Invalid frame and the Boundary violation errors. In
the FlexRay protocol, to tolerate the Synchronization errors,
for deferring to enter a halt state, at least temporarily, a
graceful degradation mechanism is used; Moreover in
FlexRay based communication networks, to prevent the
Boundary violation error from propagation, bus guardian
mechanism which is responsible for watching communication
boundaries, is applied; however, it should be mentioned that
no technique is applied in order to prevent the Invalid frame,
the Syntax, and the Content errors from propagation.

In [18], all occurred error types in the FlexRay network
due to injected faults in the target node have been
classified, but these results cannot be used for analyzing
effects of injected faults on the network nodes, individually.
In distributed embedded systems, a fault not only affects
the target node (fault site node), but also it affects the other
neighbor nodes. Individual investigations of fault effects on
the target and observed neighbor nodes are important for
system designers; because these results help them to
understand which error types may occur in the neighbor
nodes and which error types may occur only in the target
node. For example, investigations show that the Freeze
error type only occurs in the target node. Hence, a Freeze
error in a network node does not occur due to a fault in
another node. Contrary to the Freeze error, the Synchroni-
zation error type may occur in the observed neighbor node
due to a fault in the target node. Then, the designers should
provide a useful mechanism to protect network nodes
against this error type. Consequently, in this paper the work
presented in [18] has been extended by investigating the
fault effects on the target node and on a neighbor node,
individually.

5.2 Error Types Statistics in the Target Node

Table 3 shows statistics on all activated faults and all
occurred error types in the target node due to fault
injections in this node. As seen in this table, about 6.0%
of all injected faults to communication controller registers
of the target node were activated in this node. As described

Table 2 Statistics on the all error types in the overall FlexRay network

Invalid frame
errors

Syntax
errors

Synchronization

errors

Freeze errors

Content
€erTors

Conflict
errors

Boundary

All activated faults in
the FlexRay network

Injected Faults in

Modules

violation errors

the target node

%

%

%

%

%

%

%

%

7.2 3606 64.1 1899 33.7 4165 74.0

13.7
0

2054 36.5 0 1290 22.9 406

17.4

5628

32350
32300
47850

HI

C

15.5 40 98 33.7 135 46.4 56 19.2
1272 222

45
333

13.7
434

40
570

0.9

2.7

291
1314

CODEC
CSP

16.9

3.8
3.0

18.5

50

96.8
46.3

253

31.1

51

51 31.1 76
509

987

6548

31.1

51

17.7
36.6

29
240

164 2.3
655

1290
9342

6850

FSP

12.7

83
235
4812

121

71.7

22.0

144
979
1620

16.6

109

59
24.8

11050

MAC
POC

18.2

6.7
24.6

87

2297

76.5

75.9

7.2
20.6

93
1921

7.0
324

90
3023

5200
135600

51.5

70.1

17.3

0

6.9

TOTAL

@ Springer

542

J Electron Test (2010) 26:535-547

Fig. 4 All error types in the
overall FlexRay network 100

90 -
80

®Boundary violation

® Conflict ™ Content

M Freeze WSynchronization Syntax ®lnvalid frame

Occurrence Rate (%)
o o o o

before, each activated fault resulted in one or more error
types.

Figure 6 shows the occurrence rate of the error types due
to fault injections in each FlexRay communication control-
ler modules of the target node. In this figure, the
Synchronization error in the CSP module, the Invalid frame
error in the CHI module, and the Synchronization error in
the MAC module are more probable than the other error
types; also occurrence rates of Conflict error in all module,
the Syntax error in the FSP module, and the Freeze error in
the CSP module are zero.

Whereas the occurrence rate of the Syntax error due to
fault injections in the FSP module in Table 2 is not zero,
this fact shows that all reported Syntax errors for the FSP in
Table 2, are related to the occurred Syntax error in the
observed neighbor node. It is important to mention that,
Table 2, as compared with Table 3, reports a union of
occurred error types in both the target node and the
observed neighbor node.

Figure 7 shows the overall occurrence rate of all the
error types which occurred in the target node due to fault
injections in the communication controller of this node. As
illustrated in this figure, the Synchronization, the Invalid
frame, and the Boundary violation errors are higher
occurrence rate than the other error types. This figure also
shows that, the Syntax error as compared with Fig. 5 has a

Fig. 5 Overall error types in the 100
FlexRay network 20

70

60

50 —

-

3.

2.

w Tl

0 =
CHI

CODEC csp

IIi”Jl..l
FSP MAC POC

noticeable lower rate. This means that injected faults result
in more Syntax errors in the neighbor nodes than the target
node.

5.3 Error Type Statistics in the Observed Neighbor Node

As mentioned before, in the distributed embedded systems,
because of using communication networks, an error in a
node not only occurs due to a fault in that node, but also an
error can occur due to propagated fault effects from an
occurred fault in a neighbor node. Also, it should be
mentioned that handling the faults as close as possible to
the fault origin, i.e. in the target node, does not provide a
sufficient protection. The main reasons are: 1) Protecting all
fault sensitive registers of the communication controller in
the target node, incurs noticeable hardware overhead to the
controller. Moreover, the imposed delays due to the
hardware overhead cause to threat timing constraints of
the communication protocol. 2) Also, it is possible that,
before an occurred fault is detected in the target node
(because of fault latency), its effects affect the neighbor
nodes, simultaneously. Furthermore, investigations showed
that some injected faults in the target node had no effect in
this node, nevertheless these faults caused to error(s) in the
observed neighbor node. Consequently, the designers
should be known about the error types which can be occur

Occurrence Rate (%)

Boundary
vialation

@ Springer

Cenflict Content Freeze Synchrenization Syntax Invalid frame

J Electron Test (2010) 26:535-547

543

Table 3 Statistics on the error types in the target node

Invalid frame

errors

Syntax
errors

Synchronization

CITors

Freeze errors

Content
errors

Conflict
errors

Boundary

Activated faults
in target node

Injected Faults in the

target node

Modules

violation errors

X

%

%

%

%

%

%

%

25.7 406 9.1 3467 77.7 274 6.1 3701 83.0
43.2

1146

0.0

1613 36.2

13.8
0.9
2.7
2.4
5.6

23.8

4460

32350
32300
47850

CHI

20.0

56
23

45 16.1 40 14.3 93 332 121
1272

333

0.0

13.6

38
541

280
1314

CODEC
CSp
FSP

o0

2.5

33

96.8

0.0

31.1

253

0.0

41.2

—
—
o

51

0.0
3.1

46.3

76
508
987

6403

31.1 51

51

0.0

17.7

29
180

164
620
1240
8078

6850
11050

134

83
235
4149

19
66
513

81.9

23.2

144
979
1620

83 134

88
1746

0.0

29.0

MAC
POC

53 19.0

79.6

7.1 79.0

0.0

7.1

88
2489

5200
135600

514

79.3 6.4

21.6 20.1

0.0

30.8

6.0

TOTAL

due to propagation of fault effects. In this section, the
effects of injected faults in the target node on one of its
neighbor nodes, called the observed neighbor node, have
been presented.

Statistics on all activated faults and all occurred error
types in a neighbor node due to fault injections in the
target node have been presented in Table 4. The
presented results show that from 135,600 injected faults
in the communication controller modules of the target
node, effects of 8,301 faults (about 6.1%) caused one or
more error types in the observed neighbor node. It should
be noticed that an injected fault in the target node may
result in error(s) in the target node and also its neighbor
nodes, simultaneously.

As mentioned before, Table 2 reports a union of
occurred error types in both the target node and the
observed neighbor node; whereas, Table 4 reports only
error types which have been occurred in the observed
neighbor node. For example, among all of reported Syntax
errors due to injected faults in the CSP module (50 errors),
all of these errors were observed in the observed neighbor
node; whereas only 33 Syntax errors were observed in the
target node. Also, among all reported Invalid frame errors
due to injected faults in the FSP module (51 errors), all of
these errors were observed in the target node; whereas only
15 Invalid frame errors were observed in the observed
neighbor node.

As seen in this table, the Freeze error has not
occurred in the observed neighbor node; in the other
hand, transient single-bit faults in one node cannot
freeze the other network nodes. Figure 8 shows the
occurrence rate of the error types in the observed neighbor
node due to injected faults in each module of the FlexRay
controller in the target node. As seen in this figure, the
Invalid frame error and the Synchronization error due to
fault injections in the CHI and the POC modules of the
target node are the widespread occurred error types in the
observed neighbor node.

Also Fig. 9 shows the overall occurrence rate of all error
types which occurred in the observed neighbor node due to
injected faults in the communication controller of the target
node. As illustrated in this figure, the Synchronization, the
Invalid frame, and the Syntax errors are higher occurrence
rate than the other error types. Moreover, in the observed
neighbor node, occurrence rate of the Conflict and the
Freeze errors are zero.

6 Discussion
As seen in Figs. 5, 7, and 9, the Synchronization error type

is the more frequent error type. Investigation on Tables 2, 3,
and 4, shows that injecting faults in the CSP module of the

@ Springer

544

J Electron Test (2010) 26:535-547

Fig. 6 All Error types in the
target node 100

®mBoundary violation

 Conflict

®Content MFreeze MSynchronization Syntax ® Invalid frame

Occurrence Rate (%)

target node results in noticeable the Synchronization errors
in the target node. This is because the CSP module is
responsible for generating timing units in the FlexRay
communication controller. In addition, in this module a
distributed clock synchronization mechanism is used to
synchronize the node with other neighbor nodes. Also, fault
injections in the MAC module (which controls node access
to the communication channel), and in the POC module
(which reacts to the Synchronization errors using a graceful
degradation mechanism), of the target node results in
noticeable the Synchronization errors in both nodes.

Another widespread error type is the Invalid frame error.
Invalid frame errors cause to drop received frames by the
communication controller and to reduce the bandwidth
utilization. Investigations on the presented results show that
injecting faults to the CHI modules of the target node
results in noticeable the Invalid frame errors in both the
target and the observed neighbor nodes. This is because that
the CHI module contains all configuration information and
registers, e.g., the frame ID, the payload length of static
frames, and other configuration registers.

The Freeze error type is the most critical error type as it
mostly results in communication controller failures. The
fault injection results show that this error type does not

Fig. 7 Overall error types in 100 -
the target node 90

£

@

"

@ 60

g 50

g 4w

3 30

o

o 20+
10+
0.

Boundary

violation

@ Springer

il i,

CHI CODEC C

POC

propagate to neighbor nodes. The presented results show
that injecting faults to the POC module of the target node
result in noticeable freeze errors in the target node. The
main reason of this vulnerability is that the POC module is
responsible for adjusting the operational modes of the
FlexRay modules.

The Syntax error type occurs when a syntactic error in a
timing slot is observed. Because the CODEC module
encodes the communication elements into a bit stream,
receives communication elements, makes bit streams, and
investigates correctness of bit streams, injecting faults to
this module cause to occur noticeable syntax errors in the
both nodes.

Also, the Boundary violation error type occurs when a
node does not consider the channel to be idle at the
boundary of a slot. Occurrence of this error type is more
probable when the faults are injected to the CSP, MAC, and
CHI modules. This is because that the CSP module
generates timing units and determines boundaries of each
slot, the MAC module controls the access to the bus
(includes the access time), and the CHI module contains all
configuration information, specially timing information.

Finally, occurrence of the Content error type is more
probable in the target node when the faults are injected to

Content

Conflict Freeze Synchronization Syntax Invalid frame

J Electron Test (2010) 26:535-547

545

Table 4 Statistics on error types in the observed neighbor node

Modules Injected Activated Boundary Conflict Content Freeze Synchronization Syntax Invalid
Faults in faults in violation erTors errors errors erTors errors frame errors
the target the observed errors
node neighbor

node
% # % # o % # % #o% # % # % # %

CHI 32350 5113 158 972 19.0 0 0 180 35 0 0 2750 53.8 1696 332 4165 81.5

CODEC 32300 129 0.4 6 47 0 0 0 00 0 O 58 45.0 55 426 20 155

CSP 47850 1191 2.5 554 465 0 0 308 259 0 O 548 46.0 50 42 222 18.6

FSP 6850 55 0.8 10 182 0 0 10 182 0 O 19 345 5 9.1 15 273

MAC 11050 580 52 91 157 0 0 40 69 0 O 350 60.3 119 205 40 6.9

POC 5200 1233 237 85 69 0 0 87 71 0 O 980 79.5 80 6.5 26 2.1

TOTAL 135600 8301 6.1 1718 207 0 0 625 75 0 0 4705 56.7 2005 242 4488 54.1

the FSP, CHI, and CSP modules; whereas, occurrence of
this error type is more probable in the observed neighbor
node when the faults are injected to the CSP and FSP
modules of the target node. This is because that the CHI
module contains all configuration information and registers,
the FSP modules is responsible for checking the semantic
correctness of received frames, and the CSP module
generates timing units in the FlexRay controller.

As mentioned before, in the FlexRay protocol, to tolerate
the Synchronization errors, a graceful degradation mecha-
nism is used. Also, to prevent the Boundary violation error
from propagation, bus guardian mechanism is applied;
however, it should be mentioned that no technique is applied
in order to tolerate the other error types. The above analyses
in this discussion instruct the designer to reduce occurrence
rate of a specific error type by specifying FlexRay modules

Fig. 8 Error types in the ob-
served neighbor node

®mBoundary violation
100

40 -

30 -

20+

1E,__I_ |

04 - i
CHI

Occurrence Rate (%)
o
(=]

u Conflict ™ Content

which should be protected. Moreover, these analyses show
that the designer should pay more attention to fault-tolerant
design of the CHI and the CSP modules.

6.1 Error Propagation Rates

The presented results in Tables 2, 3, and 4 showed that
about 6.1% of all injected faults in the modules of the target
node caused at least one error type in the observed neighbor
node, whereas only 6.0% of all injected faults caused at
least one error type in the target node. This means that fault
injections in a node of the bus-based FlexRay network,
affect all its neighbor nodes more than the target node.
Investigations showed that among all 9,342 activated
faults, 7,037 activated faults (about 75.3%) caused at least
one error type in both the target node and the observed

B Freeze WSynchronization Syntax @ Invalid frame

P MAC POC

CODEC csp F

@ Springer

546

J Electron Test (2010) 26:535-547

Fig. 9 Overall error types in the 100

observed neighbor node e 205
¥ 80
,E 70
@ 60
2 I
2 50
g a0
g 30
O 20
0 4

Boundary

vinlation

neighbor node, simultaneously. Moreover, 1041 of all
activated faults (11.1%) were observed only in the target
node and 1264 of all activated faults (13.5%) were ob-
served only in the observed neighbor node.

Table 5 shows fault activation rates in the target and in
the observed neighbor node as compared with the rates of
all activated faults in the network. As seen in this table, in
the modules of the target node, only injected faults in the
CHI module have more effects on the observed neighbor
node and injected faults in the other modules more affect
the target node.

Moreover, Table 5 also shows that more than 90% of
activated faults due to injected faults in the POC, CHI, and
the CSP modules of the target node, propagated their effects
to the observed neighbor node. Investigations showed that
these ultra high rates are because of more important roles of
these modules in the FlexRay protocol. The POC module
adjusts operational modes of the communication controller
of a node, the CHI module includes all registers which
configure all network parameters, and the CSP synchro-
nizes its node to other network nodes.

Syntax

Conflict Content Freeze Synchronization Invalid frame

7 Conclusion

To design a fault-tolerant system, in addition to fault
models, probable error types must be known. In this paper,
widespread and destructive error types in the FlexRay
communication protocol, based on 135,600 injected tran-
sient bit-flip faults, have been introduced and their
occurrence rates in two network nodes, i.e., the target node
and a neighbor node, have been determined. Investigations
of the activated faults in the FlexRay network showed that
the Synchronization error has the occurrence rate of 70.1%.
After that, the Invalid frame, Boundary violation, Syntax,
Content, Freeze, and Conflict errors have the occurrence
rates of 51.1%, 32.4%, 24.6%, 20.6%, 17.3%, and 0.0%,
respectively. Among the error types, the Freeze errors are
the most critical errors as they mostly result in system
failures. The results also showed that most of the activated
faults, about 75.3%, were observed simultaneously in the
target node and a neighbor node. About 11.1% of the
activated faults were observed only in the target node and
about 13.5% only in the neighbor node.

Table 5 Fault activation rates in

the target and in the observed Modules All activated faults ~ Activated faults in target ~ Activated faults in the observed neighbor

neighbor node as compared with node node

all activated faults

% # %

CHI 5628 4460 79.2 5113 90.8
CODEC 291 280 96.2 129 443
CSP 1314 1314 100 1191 90.6
FSP 164 164 100 55 335
MAC 655 620 94.6 580 88.5
POC 1290 1240 96.1 1233 95.6
Total 9342 8078 86.5 8301 88.9

@ Springer

J Electron Test (2010) 26:535-547

547

References

1. Ademaj A, Sivencrona H, Bauer G, Torin J (2003) Evaluation of
fault handling of the time-triggered architecture with bus and star
topology. Proc of International Conference on Dependable
Systems and Networks (DSN’03), San Francisco, CA, USA, June
22-25, pp 123-132

2. Armengaud E, Rothensteiner F, Steininger A, Horauer M (2005)
A method for bit level test and diagnosis of communication
services. Proc of 8th International IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS’05),
Sopron, Hungary, April 13-16, pp 69-74

3. Blanc S, Gil PJ (2003) Improving the multiple errors detection
coverage in distributed embedded systems. Proc of 22nd
International Symposium on Reliable Distributed Systems
(SRDS’03), Florence, Italy, October 618, pp 303-312

4. Cena G, Valenzano A (2004) Performance analysis of byteflight
networks. Proc of 5th IEEE international Workshop Factory
Communication Systems (WFCS’04), Vienna, Austria, September
22-24, pp 157-166

5. FlexRay Communications System - Protocol Specification V2.1
Revision A, www.flexray.com

6. FlexRay Communications System - Protocol Conformance Test
Specification V2.1, www.flexray.com

7. Hagiescu A, Bordoloi UD, Chakraborty S (2007) Performance
analysis of FlexRay-based ECU networks. Proc of 44th ACM/
IEEE Design Automation Conference (DAC ‘07), San Diego, CA,
USA, June 4-8, pp 284-289

8. Izosimov V, Pop P, Eles P, Peng Z (2005) Design optimization of
time- and cost-constrained fault-tolerant distributed embedded
systems. Proc of Design, Automation and Test in Europe
Conference and Exhibition 2005 (DATE’05), vol 2, Munich,
Germany, March 7-11, pp 864-869

9. Lari V, Dehbashi M, Miremadi SG, Amiri M (2007) Evaluation of
babbling idiot failures in FlexRay-based networks. Proc of 7th [FAC
International Conference on Fieldbuses and Networks in Industrial and
Embedded Systems (FET’07), Toulouse, France, November 7-9, pp 8

10. Lari V, Dehbashi M, Miremadi SG, Farazmand N (2007)
Assessment of message missing failures in FlexRay-based net-
works. Proc of 13th Pacific Rim International Symposium on
Dependable Computing (PRDC’07), Melbourne, Australia, De-
cember 17-19, pp 191-194

11. Navet N, Song Y, Simonot-Lion F, Wilwert C (2005) Trends in
automotive communication systems. Proc IEEE 93(6):1204—-1223

12. Perez J, Reorda MS, Violante M (2003) Dependability analysis of
CAN networks: an emulation-based approach. Proc of 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT’03), Boston, MA, USA, November 3—5, pp 537-544

13. Pop T, Pop P, Eles P, Peng Z (2007) Bus access optimization for
FlexRay-based distributed embedded systems. Proc of Design,
Automation & Test in Europe Conference & Exhibition 2007
(DATE “07), Nice, France, April 1620, pp 1-6

14. Pop T, Pop P, Eles P, Peng Z, Andrei A (2006) Timing analysis of
the FlexRay communication protocol. Proc of 18th Euromicro
Conference Real-Time Systems (ECRTS’06), Dresden, Germany,
July 5-7, pp 203-216

15. Salmani H, Miremadi SG (2005) Contribution of controller area
networks controllers to masquerade failures. Proc. of 11th Pacific Rim
International Symposium on Dependable Computing (PRDC’05),
Changsha, Hunan, China, December 1214, pp 310-316

16. Salmani H, Miremadi SG (2005) Assessment of message missing
failures in CAN-based systems. Proc of IASTED International
Conference on Parallel and Distributed Computing and Networks,
Austria, February 15-17, pp 387-392

17. Sedaghat Y, Miremadi SG (2008) Investigation and reduction of
fault sensitivity in the FlexRay communication controller regis-
ters. Proc of 27th International Conference on Computer Safety,
Reliability and Security (SAFECOMP’08), Newcastle upon Tyne,
UK, September 22-25, pp 153-166

18. Sedaghat Y, Miremadi SG (2009) Categorizing and analysis of
activated faults in the FlexRay communication controller registers.
Proc of 14th European Test Symposium (ETS’09), Seville, Spain,
May 25-29, pp 121-126

19. Sethna F, Stipidis E, Ali FH (2006) What lessons can controller
area networks learn from FlexRay. Proc of 2nd Vehicle Power and
Propulsion Conference (VPPC ‘06), Windsor, UK, September 6—
8, pp 14

20. Sivencrona H, Johannessen P, Persson M, Torin J (2003) Heavy-
ion fault injections in the time-triggered communication protocol.
Proc. of 1st Latin American Symposium on Dependable Comput-
ing (LADC ’03), Sao Paulo, Brazil, October 21-24, pp 69-80

21. Temple C (1998) Avoiding the babbling-idiot failure in a time-
triggered communication system. Proc of 28th Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS‘98),
Munich, Germany, June 23-25, pp 218-227

22. Tindell K, Clark J (1994) Holistic schedulability analysis for
distributed hard real-time systems. Trans on Microproc Microprog
40(2-3):117-134

23. Zarandi HR, Miremadi SG, Ejlali A (2003) Dependability analysis
using a fault injection tool based on synthesizability of HDL
models. Proc of 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems(DFT’03), Boston, MA,
USA, November 3-5, pp 485-492

Yasser Sedaghat received his B.S. in Computer Engineering from
Ferdowsi University of Mashhad, and his M.Sc. in computer
engineering from Sharif University of Technology in 2004 and
2006, respectively. He is currently a PhD. student at department of
Computer Engineering, Sharif University of Technology. His research
interests include Dependable Embedded Systems, Distributed Embed-
ded Systems, Embedded Communication Protocols, and FlexRay
Protocol.

Seyed Ghassem Miremadi is a Professor of Computer Engineering at
Sharif University of Technology. As fault-tolerant computing is his
specialty, he initiated the “Dependable Systems Laboratory” at Sharif
University in 1996 and has chaired the Laboratory since then. The
research laboratory has participated in several research projects which
have led to several scientific articles, conference papers and technical
reports. Dr. Miremadi and his group have done research in Physical,
Simulation-Based and Software-Implemented Fault Injection, Depend-
ability Evaluation Using HDL Models, Fault-Tolerant Embedded
Systems, Fault-Tolerant NoCs, and Fault Tree Analysis. He was the
Education Director (1997-1998), the Head (1998-2002), and the
Research Director (2002-2006) of Computer Engineering Department
at Sharif University. Dr. Miremadi is currently the Director of the
Hardware Group at the Computer Engineering Department. He is the
Editor of the Scientia Journal on Computer Science and Engineering.
He served as the general chair of the 13th Int’l CSI Computer
Conference (CSICC 2008). Dr. Miremadi got his MSc in Applied
Physics and Electrical Engineering from Link6ping Institute of
Technology and his Ph.D. in Computer Engineering from Chalmers
University of Technology, Sweden, in 1984 and 1995, respectively. He
is a senior member of the IEEE Computer Society, IEEE Reliability
Society.

@ Springer

http://www.flexray.com
http://www.flexray.com

	Classification of Activated Faults in the FlexRay-Based Networks
	Abstract
	Introduction
	The FlexRay Protocol
	Protocol Structure

	Error Types and Error Handling Approaches
	Error Types in the FlexRay Protocol
	Error Handling Approaches in the FlexRay Communication Controller

	Experimental Environment
	Error Classification Methodology

	Experimental Results
	Error Types Statistics in the Overall Network [18]
	Error Types Statistics in the Target Node
	Error Type Statistics in the Observed Neighbor Node

	Discussion
	Error Propagation Rates

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

