Skip to main content
Log in

An Oscillation-Based Technique for Degradation Monitoring of Sensing and Actuation Electrodes Within Microfluidic Systems

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

There is significant interest in the use of electrodes for sensing or actuation in bio-fluidic microsystems. Within these systems high levels of reliability are crucial and complimented by requirements for extremely low probabilities of false positive and false negatives. This paper extends previous work on impedance and oscillation based condition monitoring of electrode arrays by investigating the application of oscillation built-in self-test to a microfluidic based electrodes for conductance measurements and a system level implementation for monitoring multiple electrodes on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Al-Gayem Q, Liu H, Richardson A, Burd N (2009) Built-in test solutions for the electrode structures in bio-fluidic microsystems. Proceedings of the IEEE European Test Symposium 73–78

  2. Al-Gayem Q, Liu H, Richardson A, Burd N, Kumar M (2010) An on-line monitoring technique for electrode degradation in bio-fluidic microsystems. Proceedings of IEEE International Test Conference

  3. Arabi K, Kaminska B (1996) Oscillation-test strategy for analog and mixed-signal integrated circuits. Proceedings of 14th VLSI Symposium 476–482

  4. Baker R, Schubert D, Levels K, Bezgin G, Bojak I, Kotter R (2009) Classification of cortical microcircuits based on micro-electrode-array data from slices of rat barrel cortex. Neural Netw 22:1159–1168

    Article  Google Scholar 

  5. Bazant MZ, Squires TM (2010) Induced-charge electrokinetic phenomena. Curr Opin Colloid Interface Sci 15:203–213

    Article  Google Scholar 

  6. Berdondini L, Massobrio P, Chiappalone M, Tedesco M, Imfeld K, Maccione A, Gandolfo M, Koudelka M, Martinoia S (2009) Extracellular recording from locally dense microelectrode arrays coupled to dissociated cortical cultures. J Neurosci Meth 177:386–396

    Article  Google Scholar 

  7. Beroulle V, Bertrand Y, Latorre L, Nouet P (2002) Evaluation of the oscillation-based test methodology for micro-electro-mechanical systems. Proceedings of 20th IEEE VLSI Test Symposium 439–444

  8. Brewer GJ, Boehler M, Ide AN, Wheeler BC (2009) Choric electrical stimulation of cultured hippocampal networks increases spontaneous spike rates. J Neurosci Meth 148:104–109

    Article  Google Scholar 

  9. Chakrabarty K (2010) Design automation and test solutions for digital microfluidic biochips. IEEE Trans Circuits Syst 57:4–17

    Article  Google Scholar 

  10. Datta S, Joshi B, Ravindran A, Mukherjee A (2009) Efficient parallel testing and diagnosis of digital microfluidic biochips. ACM J Emerg Technol Comput Syst 5: Article 10

  11. Fei S, Chakrabarty K, Fair RB (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans Comput Aided Des 25:211–223

    Article  Google Scholar 

  12. Gregory TAK (1994) Chapter 7. In: Enabling technologies for cultured neural networks. Academic Press, ISBN 978-0126659702

  13. Ide AN, Andruska A, Boehler M, Wheeler BC, Brewer GJ (2010) Chronic network stimulation enhances evoked action potential. J Neural Eng 7:1–15

    Article  Google Scholar 

  14. Kerkhoff HG (2007) Testing of microelectronic-biofluidic systems. IEEE Des Test Comput 24:72–82

    Article  Google Scholar 

  15. Kerkhoff HG, Zhang X, Liu H, Richardson A, Nouet P, Azais F (2005) VHDL-AMS Fault simulation for testing DNA bio-sensing arrays. Proceedings of 4th IEEE Conference on Sensors 1030–1033

  16. Liu H, Kerkhoff HG, Richardson A, Zhang X, Nouet P, Azais F (2005) Testing and design of an oscillation-based system architecture for DNA sensor array. Proceedings of 11th International Mixed-Signal Test Workshop 234–239

  17. Liu H, Richardson A, Harvey T, Ryan T, Pickering C (2008) Embedded test & health monitoring strategies for bio-fluidic microsystems. Proceedings of the IEEE Electronic Systems Technology Conference 463–469

  18. Liu F, Roper CS, Chu J, Carraro C, Maboudian R (2010) Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes. Sens Actuators A Phys. doi:10.1016/j.sna.2010.02.024

    Google Scholar 

  19. Multi-Channel Systems, GmbH (2005) Micro-Electrode Array (MEA) User Manual. Aspenhaustraße 21, 72770 Reutlingen, Germany, http://www.multichannelsystems.com/

  20. Nyholm L (2005) Electrochemical techniques for lab-on-a-chip applications. Analyst 130:599–605

    Article  Google Scholar 

  21. Ramasubramanian MK, Alexander SP (2009) An integrated fiberoptic-microfluidic device for agglutination detection and blood typing. Biomed Microdevices 11:217–229

    Article  Google Scholar 

  22. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377(3):486–495

    Article  Google Scholar 

  23. Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems. Proceedings of the International Test Conference 1192–1200

  24. Su F, Hwang W, Mukherjee A, Chakrabarty K (2005) Defect-oriented testing and diagnosis of digital microfluidics-based biochips. Proceedings of IEEE International Test Conference 487–496

  25. Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sens J 5:763–773

    Article  Google Scholar 

  26. Zadeh EG, Sawan M, Shabani A, Zourob M, Chodavarapu V (2008) Bacteria growth monitoring through an on-chip capacitive sensor. Proceedings of 14th IEEE International Mixed-Signal Test Workshop

  27. Zhao Y, Chakrabarty K (2008) Fault diagnosis for lab-on-chip using digital microfluidic logic gates. Proceedings of 14th IEEE International Mixed-Signal Test Workshop

  28. Zhao Y, Chakrabarty K (2009) On-line testing of lab-on-chip using reconfigurable digital-microfluidic compactors. Int J Parallel Program 37:370–388

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank the EPSRC Innovative Electronics Manufacturing Centre “I-Health” project and Dr Tim Ryan from EPIGEM for supplying the SU8 microfluidic chips. Qais Al-Gayem was supported in this work by a grant from Ministry of Higher Education in Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qais Al-Gayem.

Additional information

Responsible Editor: H. Stratigopoulos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Gayem, Q., Richardson, A., Liu, H. et al. An Oscillation-Based Technique for Degradation Monitoring of Sensing and Actuation Electrodes Within Microfluidic Systems. J Electron Test 27, 375–387 (2011). https://doi.org/10.1007/s10836-011-5203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-011-5203-1

Keywords

Navigation