Skip to main content
Log in

Digital-Compatible Testing Scheme for Operational Amplifier

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents a digital-compatible testing scheme for operational amplifier (op amp). In the proposed scheme, the op amp device under test (DUT) is configured to a unity-gain buffer which is responded to a testing pulse, could be realized by a ring oscillator circuit. The output of the configured unity-gain buffer is digitized by simple digital counter and then the digitized counting number is compared to a predetermined critical value to evaluate the op amp DUT. The digitized counting number is sensitive to the specification of op amp DUT and easily to be observed in the digital domain. The testing parameters of testing setup of stimulus, testing result, testing accuracy, and testing time are also investigated to detail the proposed scheme. Digital compatibility and simplicity are main advantages of the proposed testing scheme. In addition, no complicated analog comparator and reference voltages are required. Behavioral and circuit level simulations are performed to show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abidi AA (2006) Phase noise and jitter in CMOS ring oscillators. IEEE J Solid State Circ (JSSC) 41(8):1803–1816

    Article  Google Scholar 

  2. Arabi K, Kaminska B (1998) On chip testing data converters using static parameters. IEEE Trans Very Large Scale Integr (VLSI) Syst 6(3):409–419

    Article  Google Scholar 

  3. Arabi K, Kaminska B (1998) Design for testability of embedded integrated operational amplifiers. IEEE J Solid State Circ (JSSC) 33(4):573–581

    Article  Google Scholar 

  4. Argüelles J, Martínez M, Bracho S (1994) Dynamic i dd test circuits for mixed signal ICs. Electron Lett 30(3):485–486

    Article  Google Scholar 

  5. Baker RJ (2002) CMOS mixed-signal circuit design. IEEE, New York

    Google Scholar 

  6. Bui H-T, Wang Y, Jiang Y (2002) Design and analysis of low-power 10-transistor full adders using XOR-XNOR Gates. IEEE Trans Circ Syst II (CASII) 49(1):25–30

    Article  Google Scholar 

  7. Chang S-J, Lee C-L, Chen J-E (2002) Structural fault based specification reduction for testing analog circuits. J Electron Test Theor Appl (JETTA) 18(12):571–581

    Article  Google Scholar 

  8. Cheng K-T, Chang H-M (2010) Recent advances in analog, mixed-signal, and RF testing. IPSJ Trans Syst LSI Des 3(2):19–46

    Article  Google Scholar 

  9. Domínguez MA, Ausín JL, Duque-Carrillo JF, Torelli G (2006) A 1-MHz area-efficient on-chip spectrum analyzer for analog testing. J Electron Test Theor Appl (JETTA) 22(12):437–448

    Article  Google Scholar 

  10. Font J, Ginard J, Picos R, Isern E, Segura J, Roca M, García E (2003) A BICS for CMOS opamps by monitoring the supply current peak. J Electron Test Theor Appl (JETTA) 19(10):597–603

    Article  Google Scholar 

  11. Franco S (1998) Design with operational amplifiers and analog integrated circuits. McGraw-Hill, New York

    Google Scholar 

  12. Goel S, Elgamel A, Bayoumi MA, Hanafy Y (2006) Design methodologies for high-performance noise-tolerant XOR-XNOR circuits. IEEE Trans Circ Syst I (CASI) 53(4):867–878

    Article  Google Scholar 

  13. Hajimiri A, Limotyrakis S, Lee T (1999) Jitter and phase noise in ring oscillators. IEEE J Solid State Circ (JSSC) 34(1):790–804

    Article  Google Scholar 

  14. Herzel F, Razavi B (1999) A study on oscillator jitter due to supply and substrate noise. IEEE Trans Circ Syst II (CASII) 46(1):56–62

    Article  Google Scholar 

  15. Johns D, Martin K (1997) Analog integrated circuit design. Wiley, New York

    Google Scholar 

  16. Kabisatpathy P, Barua A, Sinha S (2005) Fault diagnosis of analog integrated circuits. Springer, New York

    Google Scholar 

  17. Mancini R (2002) Op amps for everyone. Texas Instrumentation, Houston

    Google Scholar 

  18. Miller I, Freund JE, Johnson RA (1990) Probability and statistics for engineers. Prentice-Hall, Eaglewood Cliffs

    MATH  Google Scholar 

  19. Rayane I, Velasco-Medina J, Nicolaidis M (1999) A digital BIST for operational amplifiers embedded in mixed-signal circuits. In: Proc IEEE VLSI Test Symp (VTS) pp 304–310

  20. Razavi B (1995) Data conversion system design. IEEE, New York

    Google Scholar 

  21. Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York

    Google Scholar 

  22. Roh J, Abraham JA (2003) A comprehensive signature analysis scheme for oscillation-test. IEEE Trans Comput Aided Des (CAD) 22(10):1409–1423

    Article  Google Scholar 

  23. Shin H, Yu H-O, Abraham JA (2004) LFSR-based BIST for analog circuits using slope detection. In: Proc ACM Great Lake Symp on VLSI (GLSVLSI) pp 316–321

  24. Ting H-W, Chang S-J, Huang S-L (2011) A design of linearity built-in self-test for current-steering DAC. J Electron Test Theor Appl (JETTA) 27(2):85–94

    Article  Google Scholar 

  25. Variyam PN, Chatterjee A (2000) Digital-compatible BIST for analog circuits using transient response sampling. IEEE Des Test Comput 17(7):106–115

    Article  Google Scholar 

  26. Vazquez D, Huertas JL, Rueda A (1996) Reducing the impact of DFT on the performance of analog integrated circuit: improved SW-OPAMP design. In: Proc IEEE VLSI Test Symp (VTS) pp 42–47

  27. Wong W-T (2000) On the issue of oscillation test methodology. IEEE Trans Instrum Meas (IM) 49(4):240–245

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to express his gratitude to the National Chip Implementation Center, Taiwan, R.O.C., for supporting the chip implementation and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Wen Ting.

Additional information

Responsible Editor: M. Sachdev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, HW. Digital-Compatible Testing Scheme for Operational Amplifier. J Electron Test 28, 267–277 (2012). https://doi.org/10.1007/s10836-012-5290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-012-5290-7

Keywords

Navigation