Skip to main content
Log in

A Preliminary Study about SEU Effects on Programmable Interconnections of SRAM-based FPGAs

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

SRAM-based Field Programmable Gate Arrays (SRAM-FPGA) are more and more employed in today’s applications. In space and avionic applications their operations might be harmed by occurrence of radiation-induced upsets, or Single Event Upsets (SEU), which require the adoption of mitigation techniques. In these devices the majority of the configuration memory rules the interconnection setting. In devices employing “switch matrix” routing, the density of interconnections in switch arrays seems to be a critical point. The higher the interconnection density (i.e., the higher the number of interconnection segments activated by the same switch matrix), the higher the probability of an upset due to a configuration bit controlling the switch matrix. This paper presents an approach to estimate the SEU sensitivity of programmable interconnections of SRAM-based FPGAs as a function of the density of programmable interconnection points inside device configurable logic blocks. A probabilistic model of the SEU effects in programmable interconnection points of Xilinx SRAM-FPGAs is described. The application of the proposed approach to a set of sample designs is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adell P, Allen G, Swift G, McClure S. Assessing and mitigating radiation effects in Xilinx SRAM FPGAs. In: Proceedings of the 2008 European Conference on Radiation and Its Effects on Components and Systems (RADECS), September 2008, pp 418–424

  2. Aguirre M, Tombs JN, Muñoz F, Baena V, Torralba A, Fernández-León A, Tortosa F, González-Gutiérrez D. An FPGA based hardware emulator for the insertion and analysis of Single Event Upsets in VLSI Designs. In: Proceedings of the Conference on Radiation Effects on Components and Systems (RADECS), Madrid, Spain, Sept. 2004

  3. Alderighi M, Casini F, D’Angelo S, Mancini M, Merodio Codinachs D, Pastore S, Poivey C, Sechi GR, Sorrenti G, Weigand R (2010) Experimental validation of fault injection analyses by the FLIPPER tool. IEEE Trans Nucl Sci 57(4):2129–2134

    Article  Google Scholar 

  4. Antoni L, Leveugle R, Fehér B. Using run-time reconfiguration for fault injection in hardware prototypes. In: Proceedings of the 15th Int’l Symposium on Defect and Fault Tolerance in VLSI Systems, Oct. 2000, pp 405–413

  5. Asadi G, Tahoori, MB. Soft error rate estimation and mitigation for SRAM-based FPGAs. In: Proceeidngs of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays, Feb 2005, pp 149–160

  6. Asadi H, Tahoori MB, Mullins B, Kaeli D, Grunlund K (2007) Soft error susceptibility analysis of SRAM-based FPGAs in high-performance information systems. IEEE Trans Nucl Sci 54(6):2714–2726

    Article  Google Scholar 

  7. Battezzati N, Sterpone L, Violante, M (2011) Reconfigurable field programmable gate arrays for mission-critical applications, Springer, 1st Edition

  8. Beckhoff C, Koch D, Torresen J. The Xilinx Design Language (XDL): tutorial and use cases. Proceedings of the 2011 6th International Workshop on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), June 2011

  9. Berg M, Poivey C, Petrick D, Espinosa D, Lesea A, LaBel KA, Friendlich M, Kim H, Phan A (2008) Effectiveness of internal versus external SEU scrubbing mitigation strategies in a Xilinx FPGA: design, test, and analysis. IEEE Trans Nucl Sci 55(4):2259–2266

    Article  Google Scholar 

  10. Bridgford B, Carmichael C, Tseng CW. “Single-event upset mitigation selection guide”, XAPP 987, 2008, available at http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf

  11. Brun R, Rademakers F (Sep 1996) ROOT - an object oriented data analysis framework. Proceedings AIHENP’96 Workshop, Lausanne. Nucl Inst Meth Phys Res A 389(1997):81–86, see also http://root.cern.ch/

  12. Caffrey M, Graham P, Johnson E, Wirthlin M. Single-event upsets in SRAM FPGAs. In: Proceedings of Military and Aerospace Applications of Programmable Logic Devices (MAPLD) International Conference, September 2002

  13. Carmichael C, Fuller E, Fabula J, De Lima F. Proton testing of SEU mitigation methods for the Virtex FPGA. In: Proceedings of Military and Aerospace Applications of Programmable Logic Devices (MAPLD) International Conference, Sept. 2001

  14. Civera P, Macchiarulo L, Rebaudengo M, Sonza Reorda M, Violante M (2001) Exploiting circuit emulation for fast hardness evaluation. IEEE Trans Nucl Sci 48(6):2210–2216

    Article  Google Scholar 

  15. Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602

    Article  Google Scholar 

  16. López-Ongil C, García-Valderas M, Portela-García M, Entrena L (2007) Autonomous fault emulation: a new FPGA-based acceleration system for hardness evaluation. IEEE Trans Nucl Sci 54(1):252–261

    Article  Google Scholar 

  17. Pouget V, Douin A, Lewis D, Fouillat P, Foucard G, Peronnard P, Maingot V, Ferron JB, Anghel L, Leveugle R, Velazco R. Tools and methodology development for pulsed laser fault injection in SRAM-based FPGAs. In: Proceedings of the 8th Latin American Test Workshop (LATW 2007), March 2007

  18. Quinn H, Graham P, Morgan K, Baker Z, Caffrey M, Smith D, Bel R. On-orbit results for the Xilinx Virtex-4 FPGA. 2012 IEEE Radiation Effects Data Workshop, pp 1–8, July 2012

  19. Rebaudengo M, Sonza Reorda M, Violante M. Simulation-based analysis of SEU effects on SRAM-based FPGAs. In: Proceedings of FPL2002: International Conference on Field Programmable Logic and Application, Sept. 2002, pp 607–615

  20. Sterpone L, Violante M (2005) A new analytical approach to estimate the effects of SEUs in TMR architectures implemented through SRAM-based FPGAs. IEEE Trans Nucl Sci 52(6):2217–2223

    Article  Google Scholar 

  21. Sterpone L, Violante M, Harboe Sorensen R, Merodio D, Sturesson F, Weigand R, Mattsson S (2007) Experimental validation of a tool for predicting the effects of soft errors in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(6):2576–2583

    Article  Google Scholar 

  22. Sturesson F. Particle test of Xilinx Virtex-II FPGA using XTMR mitigation technique. European Space Agency Contract Report, Saab Ericsson Space AB, ESA_QCA0415S_C, 20 Sept. 2006, available at https://escies.org/download/webDocumentFile?id=888

  23. Sundararajan P, Patterson C, Carmichael C, McMillan S, Blodget B. Estimation of single event upset probability impact of FPGA designs. In: Proceeidngs of Military and Aerospace Applications of Programmable Devices (MAPLD) International Conference, September 2002

  24. Virtex-II Platform FPGAs: Complete Data Sheet, DS031 (v3.5) November 5, 2007, available at http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf

  25. XTMR Tool User Guide, Xilinx, 2004, Xilinx User Guide, UG156

  26. Yui CC, Swift GM, Carmichael C, Koga, R, George JS. SEU mitigation testing of Xilinx Virtex II FPGAs. 2003 IEEE Radiation Effects Data Workshop Record, July 2003, pp 92–97

Download references

Acknowledgments

The authors would like to thank Dr. Roland Weigand from ESA/ESTEC for providing the FFT design for this study, and Dr. Massimo Violante and Dr. Luca Sterpone from Politecnico di Torino for kindly providing STAR and for their valuable help in discussing the outcomes of the STAR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alderighi.

Additional information

Responsible Editor: M. Violante

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alderighi, M., Casini, F., D’Angelo, S. et al. A Preliminary Study about SEU Effects on Programmable Interconnections of SRAM-based FPGAs. J Electron Test 29, 341–350 (2013). https://doi.org/10.1007/s10836-013-5387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-013-5387-7

Keywords

Navigation