Skip to main content
Log in

A Novel Formalism for Partially Defined Asynchronous Feedback Digital Circuits

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

In contrast to combinational logic and master clocked sequential logical, asynchronous feedback circuits are partially defined due to analogous meta-stabilities. We present a novel formalism to exactly explore this digitally assisted analog phenomenon in order to build up a representative test bench that is able to enforce race constraints (meta-stable behavior) for non-deterministics, instabilities as well as for oscillations in feedback structures. Further, we introduce our definitions for consistently modeling under state transition graphs, we provide all entities for modeling asynchronous feedback structures and state our proposed methodology with an exemplary asynchronous circuitry. The given example is explained at a high level of abstraction, all data for revision is provided, too. The approach seems to be capable to test for meta-stabilities, analog behavior in feedback digital structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. In topological manner of speaking, a topological hole [45]

  2. If the automaton acts independent of input, then we say that it is an autonomous one.

  3. A trivial one is e.g. an OR gate which is feedback with itself, hence realizing a monotonically increasing function.

  4. Obviously, to observe outputs is essential for testability. Consider that any observation point is marked with τ. Thus τ divides a wire into two pars, one part is assigned with new analog signal information before observation and test resp., and the other part is assigned with old information after observation and test.

  5. In short, to embed and operate partially uniquely

  6. Like e.g., in case of the so called barcodes [10]

  7. Which is observed e.g., by static 0-function-hazards

  8. AND and OR are isomorphic to the Boolean lattice V = {0, p, q, 1}

  9. Here, the literal - stays for the initial state, and should not be confused with the don’t care symbol.

  10. Verbalized: the state ∗ is in \(Z_{RS}^{*}\), if there is no hyper event σ defined to trigger a transition ∗σ

  11. Here, “to conserve a meta-stability” does not apply to an analog meta-stable signal but a digital meta-stable state

References

  1. Alekseyev A, Khomenko V, Mokhov A, Wist D, Yakovlev A (2011) Improved parallel composition of labelled petri nets. In: 2011 11th international conference on application of concurrency to system design (ACSD), pp 131–140

  2. Ament C (2005) 3. Ereignisdiskrete Systeme (Vorlesung Steuerungsentwurf für Eingebettete Systeme), Albert-Ludwigs- Universität Freiburg. [Online]. Available: http://www.imtek.de/systemtheorie/content/upload/vorlesung/2005/steuerungsentwurf-ss2005-03.pdf

  3. Antsaklis PJ, Koutsoukos XD, Dame N (2002) Hybrid systems control. Electr Eng 7:1–30. [Online]. Available: http://www.nd.edu/isis/techreports/isis-2001-003.pdf

    Google Scholar 

  4. Bertol M (1996) Effiziente Normalform-Algorithmen für Ersetzungssysteme über frei partiell kommutativen Monoiden. Ph.D. dissertation, Universität Stuttgart

  5. Bouyer P, Brinksma E, Larsen KG (2008) Optimal infinite scheduling for multi-priced timed automata. Form Methods Syst Des 32:3–23. [Online]. Available: http://dl.acm.org/citation.cfm?id=331427.1331460

    Article  MATH  Google Scholar 

  6. Brin MG (1998) Groups acting on 1-dimensional space. University Binghamton

  7. Cai L, Gajski D (2003) Transaction level modeling:an overview. In: First IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis, pp 19–24

  8. Chen S, Hua Zhou C, Guang Ju S, Yang Li H (2010) Analysis for the composition of information flow security properties on Petri net. In: 2010 2nd international conference on information science and engineering (ICISE), pp 1859–1863

  9. Choquet-Geniet A, Grolleau E (2004) Minimal schedulability interval for real-time systems of periodic tasks with offsets. Theor Comput Sci 310(1–3):117–134. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0304397503003621

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins A, Zomorodian A, Carlsson G, Guibas LJ (2004) A barcode shape descriptor for curve point cloud data. Comput Graph 28(6):881–894. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0097849304001542

    Article  Google Scholar 

  11. Davoren J, Nerode A (2000) Logics for hybrid systems. In: Proceedings of the IEEE. Springer

  12. Diekert V (1990) Combinatorics on traces. In: Lecture notes in computer science, vol 454. Springer, New York

  13. Diekert V, Vogler W (1988) Local checking of trace synchronizability. In: Chytil M, Koubek V, Janiga L (eds) Mathematical foundations of computer science 1988, ser. lecture notes in computer science, vol 324. Springer, Berlin/Heidelberg, pp 271–279

    Chapter  Google Scholar 

  14. Diekert V, Vogler W (1989) On the synchronization of traces. Math Syst Theory 22(3):161–175

    Article  MathSciNet  MATH  Google Scholar 

  15. Foley C (1996) Characterizing metastability. In: Proceedings second international symposium on advanced research in asynchronous circuits and systems 1996, pp 175–184

  16. Ginosar R (2011) Metastability and synchronizers: a tutorial. Design & Test 28(5):23–35

    Article  Google Scholar 

  17. Ginzburg A (1968) Algebraic theory of automata. Academic

  18. Goldwurm M, Santini M (1998) Clique polynomials and trace monoids. Scienze dell’Informazione, Università degli Studi di Milano, Tech. Rep.

  19. Haydt M, Mourad S, Terry W, Terry J (2002) A new model for metastability. In: 9th international conference on electronics, circuits and systems, 2002, vol 1, pp 413–416

  20. Huang K, Bacivarov I, Hugelshofer F, Thiele L (2008) Scalably distributed SystemC simulation for embedded applications. In: International symposium on industrial embedded systems, 2008. SIES 2008, pp 271–274

  21. International Technology Roadmap for Semiconductors Design (2005). [Online]. Available: www.itrs.net/Links/2005ITRS/Design2005.pdf

  22. Jaffe JM (1980) Efficient scheduling of tasks without full use of processor resources. Theor Comput Sci 12(1):1–17. [Online]. Available: http://www.sciencedirect.com/science/article/pii/030439758090002X

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson DB (1975) Finding all the elementary circuits of a directed graph. SIAM J Comput (1):77–84. [Online]. Available: doi:10.1137/0204007

  24. Khomenko V, Schaefer M, Vogler W, Wollowski R (2009) STG decomposition strategies in combination with unfolding. Acta Inform 46:433–474. [Online]. Available: http://dl.acm.org/citation.cfm?id=669896.1669898

    Article  MathSciNet  MATH  Google Scholar 

  25. Koutsoukos X, He K, Lemmon M, Antsaklis P (1998) Timed Petri nets in hybrid systems: stability and supervisory control. J Discret Event Dyn Syst Theory Appl 8:137–173

    Article  MathSciNet  MATH  Google Scholar 

  26. Kwon O-H, Chwa K-Y (1999) Scheduling parallel tasks with individual deadlines. Theor Comput Sci 215(1–2):209–223. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304397597001783

    MathSciNet  MATH  Google Scholar 

  27. Li D, Chuang P, Sachdev M (2010) Comparative analysis and study of metastability on high-performance flip-flops. In: 2010 11th international symposium on quality electronic design (ISQED), pp 853–860

  28. Lohrey M (1999) Das Konfluenzproblem für Spurersetzungssysteme. Ph.D. dissertation, Universität Stuttgart

  29. Lunze J (2006) Ereignisdiskrete Systeme. Oldenbourg Wissenschaftsverlag

  30. Lunze J (2008a) Automatisierungstechnik. Oldenbourg Verlag München Wien

  31. Lunze J (2008b) Fault diagnosis of discretely controlled continuous systems by means of discrete-event models. Discret Event Dyn Syst 18:181–210. [Online]. Available: http://dl.acm.org/citation.cfm?id=371052.1371075

    Article  MathSciNet  MATH  Google Scholar 

  32. Nowick S, Dill D (1995) Exact two-level minimization of hazard-free logic with multiple-input changes. IEEE Trans Comput Aided Des Integr Circ Syst 14(8):986–997

    Article  Google Scholar 

  33. Oischinger M (2004) Entwicklung sicherheitskritischer Systeme. 1. [Online]. Available: http://www3.informatik.uni-erlangen.de/Lehre/ZuvSichAsp/WS2003/vortrag11.pdf

  34. Rabaey JM(ed) (1998) VLSl design and implementation fuels the signal-processing revolution. IEEE (magazine) 15(1)

  35. Schaefer M (2008) Advanced STG decomposition. Books on demand GmbH. [Online]. Available: http://books.google.de/books?id=GQMBvIqhyfkC

  36. Scott P (2000) Some aspects of categories in computer science. In: Hazewinkel M (ed) ser. Handbook of algebra, vol 2. North-Holland, pp 3–77. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1570795400800273

  37. Steinbach B, Posthoff C (2009) Logic functions and equations: examples and exercises. Springer Publishing Company, Incorporated

  38. Tang T (1991) Experimental studies of metastability behaviors of sub-micron cmos asic flip flops. In: ASIC conference and exhibit, 1991. Fourth annual IEEE international proceedings, p 7–4/1–4

  39. Tiwari A (2008) Abstractions for hybrid systems. Form Methods Syst Des 32:57–83. doi:10.1007/s10703-007-0044-3

    Article  MATH  Google Scholar 

  40. Uygur G, Sattler SM (2013) Using analog meta-stabilities in asynchronously feed-backed circuits. In: edaWorkshop, vol 13. Electronic design automation (EDA). VDE Verlag GmbH, Dresden

  41. Vachoux A, Grimm C, Einwich K (2005) Extending SystemC to support mixed discrete-continuous system modeling and simulation. In: IEEE international symposium on circuits and systems, 2005. ISCAS 2005, vol 5, pp 5166–5169

  42. Wist D, Schaefer M, Vogler W, Wollowski R (2010) STG decomposition: internal communication for SI implementability. In: 2010 10th international conference on application of concurrency to system design (ACSD), pp 13–23

  43. Wuttke H-D, Henke K (2003) Schaltsysteme—Eine automatenorientierte Einfhrung. Pearson Studium

  44. Zander HJ (1989) Logischer Entwurf binärer systeme, 3rd edn. Verlag Technik, Berlin

    Google Scholar 

  45. Zomorodian AJ (2005) Topology for computing (Cambridge monographs on applied and computational mathematics), 1st edn. Cambridge University Press, Cambridge. [Online]. Available: http://www.worldcat.org/isbn/0521836662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürkan Uygur.

Additional information

Responsible Editor: S. Ray

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uygur, G., Sattler, S.M. A Novel Formalism for Partially Defined Asynchronous Feedback Digital Circuits. J Electron Test 29, 697–714 (2013). https://doi.org/10.1007/s10836-013-5410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-013-5410-z

Keywords

Navigation