Skip to main content
Log in

Wide Dynamic Range CMOS Amplifier Design for RF Signal Power Detection via Electro-Thermal Coupling

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

A differential temperature sensor for on-chip signal and DC power monitoring is presented for built-in testing and calibration applications. The amplifiers in the sensor are designed with class AB output stages to extend the dynamic range of the temperature/power measurements. Two high-gain amplification stages are used to achieve high sensitivity to temperature differences at points close to devices under test. Designed in 0.18 μm CMOS technology, the sensor has a simulated sensitivity that is tunable up to 210 mV/°C with a corresponding dynamic range of 13 °C. The sensor consumes 2.23 mW from a 1.8 V supply. A low-power version of the sensor was designed that consumes 1.125 mW from a 1.8 V supply, which has a peak sensitivity of 185.7 mV/°C over a 8 °C dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdallah L, Stratigopoulos HG, Mir S, Kelma C (2011) RF front-end test using built-in sensors. IEEE Des Test Comput 28(6):76–84

    Article  Google Scholar 

  2. Aldrete-Vidrio E, Mateo D, Altet J (2007) Differential temperature sensors fully compatible with a 0.35-μm CMOS process. IEEE Trans Components Packag Technol 30(4):618–626

    Article  Google Scholar 

  3. Altet J, Mateo D, Gomez D, Perpina X, Vellvehi M, Jorda X (2012) DC temperature measurements for power gain monitoring in RF power amplifiers. In: Proc IEEE Intl Test Conference (ITC), p 1–8

  4. Altet J, Rubio A, Rossello J, Segura J (2003) Structural RFIC Device testing through built-in thermal monitoring. IEEE Commun Mag 41(9):98–104

    Article  Google Scholar 

  5. Altet J, Rubio A, Schaub E, Dilahire S, Claeys W (2001) Thermal coupling in integrated circuits: application to thermal testing. IEEE J Solid-State Circ 36(1):81–91

    Article  Google Scholar 

  6. Carballido J, Hermosillo J, Veloz A, Arditti D, Del Rio A, Borrayo E, Guzman ME, Lakdawala H, Verhelst M (2013) A programmable calibration/BIST engine for RF and analog blocks in SoCs integrated in a 32 nm CMOS WiFi transceiver. IEEE J Solid-State Circ 48(7):1669–1679

    Article  Google Scholar 

  7. Dermentzoglou LE, Arapoyanni A, Tsiatouhas Y (2010) A built-in-test circuit for RF differential low noise amplifiers. IEEE Trans Circ Syst I 57(7):1549–1558

    Article  MathSciNet  Google Scholar 

  8. Fan X, Onabajo M, Fernandez-Rodriguez FO, Silva-Martinez J, Sanchez-Sinencio E (2008) A current injection built-in test technique for RF low-noise amplifiers. IEEE Trans Circ Syst I 55(7):1794–1804

    Article  MathSciNet  Google Scholar 

  9. Feng J, Onabajo M (2013) A wide dynamic range temperature sensor for on-chip power monitoring. In: Proc. IEEE North Atlantic Test Workshop (NATW)

  10. Gonzalez JL, Martineau B, Mateo D, Altet J (2011) Non-invasive monitoring of CMOS power amplifiers operating at RF and mmW frequencies using an on-chip thermal sensor. In: Proc IEEE Radio Frequency Integrated Circuits Symposium (RFIC), p 1–4

  11. Kulhalli S, Seth S, Fu S (2004) An integrated linear RF power detector. In: Proc Circuits and Systems, (ISCAS) vol. 1, p I-625–8

  12. Mattisson S, Hagberg H, Andreani P (2008) Sensitivity degradation in a Tri-band GSM BiCMOS direct-conversion receiver caused by transient substrate heating. IEEE J Solid-State Circ 43(2):486–496

    Article  Google Scholar 

  13. Nakamoto H, Kudo M, Niratsuka K, Mori T, Yamaura S (2012) A real-time temperature-compensated CMOS RF on-chip power detector with high linearity for wireless applications. In: European Solid-State Circuits Conference (ESSCIRC), p 349–352

  14. Onabajo M, Altet J, Aldrete-Vidrio E, Mateo D, Silva-Martinez J (2011) Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensor. IEEE Trans Circ Syst I 58(3):458–469

    Article  MathSciNet  Google Scholar 

  15. Onabajo M, Gómez D, Aldrete-Vidrio E, Altet J, Mateo D, Silva-Martinez J (2011) Survey of robustness enhancement techniques for wireless systems-on-a-chip and study of temperature as observable for process variations. Springer J Electron Test Theory Appl 27(3):225–240

    Article  Google Scholar 

  16. Valdes-Garcia A, Venkatasubramanian R, Silva-Martinez J, Sanchez-Sinencio E (2008) A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans Instrum Meas 57(7):1470–1477

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Chun-hsiang Chang from Northeastern University for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Onabajo.

Additional information

Responsible Editor: T. Xia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Onabajo, M. Wide Dynamic Range CMOS Amplifier Design for RF Signal Power Detection via Electro-Thermal Coupling. J Electron Test 30, 101–109 (2014). https://doi.org/10.1007/s10836-013-5427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-013-5427-3

Keywords

Navigation