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ABSTRACT 

 

On-chip memory arrays are widely used in systems-on-chip. Prior research has shown 

that timing critical paths often go through these memories. Embedded memories are 

typically tested using memory built-in self-test and macro test. However, these 

techniques have relatively low small delay fault coverage, so functional test must be 

used to accurately determine maximum operating frequency. In this work we achieve 

high delay fault coverage by testing the timing critical paths in and out of embedded 

memories, including the paths in the surrounding logic. 

We use our prior work on pseudo functional K longest path per gate test generation 

and extend it to handle memory test. In pseudo functional test, low-speed preamble 

cycles are used to stabilize the supply voltage before the at-speed launch and capture 

cycles. Since the memory cells are non-scan, a value that is captured in the memory must 

be moved to a scan cell using low-speed coda cycles. This approach tests any path 

through a non-scan latch. Our approach eliminates the coverage “shadows” around 

embedded memories and non-scan latches. 

We have established a flow to test industrial circuits with embedded memory.  

Industrial circuits with different size memory arrays are used to justify the efficiency of 

the flow. Our results demonstrate that we can effectively generate patterns that cover 

paths in and out of the memories. 

 

 

 



 

iii 
 

 

DEDICATION 

 

 

 

 

 

 

 

 

To those who love me 

  



 

iv 
 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor and committee chair, Dr. Duncan M. (Hank) Walker 

for his advice and support throughout my M.S. studies at Texas A&M University. His 

insights in this particular research area, his technical guidance and spiritual support were 

invaluable to this work. This dissertation would never have been completed without his 

advice and encouragement. I owe him lots of gratitude for making my research life 

enjoyable and rewarding. What I learned from him will benefit my future career. 

I am grateful to my committee members, Dr. Sunil Khatriand Dr. Paul Gratz for their 

valuable suggestions and personal encouragement. I want to thank Dr. Rabi Mahapatra 

for his advising in my final defense. I would also like to thank Weizhong Chen, Yujia 

Liu and Tengteng Zhang for their accompany during my life at office.  

At the end, thanks for my family for what they have given to me. 

 

 

 

 

 

 

 

 



 

v 
 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT ....................................................................................................................... ii 

DEDICATION ..................................................................................................................iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES .......................................................................................................... vii 

LIST OF TABLES ............................................................................................................ ix 

1. INTRODUCTION ....................................................................................................... 1 

1.1 Delay Testing ....................................................................................................... 1 

1.2 Delay Fault Models .............................................................................................. 2 
1.2.1 Transition Fault Model .............................................................................. 2 

1.2.2 Gate Delay Fault Model ............................................................................ 3 
1.2.3 Line Delay Fault Model ............................................................................ 3 

1.2.4 Path Delay Fault Model............................................................................. 4 

1.3 Scan Based Delay Test ......................................................................................... 4 
1.3.1 Scan Cell Types ......................................................................................... 6 

1.3.2 Scan Based Delay Testing ......................................................................... 8 
1.4 Memory Model in Scan-based Delay Test ......................................................... 10 

1.4.1 Black Box ................................................................................................ 10 

1.4.2 Memory Bypassing ................................................................................. 11 
1.5 KLPG Algorithm and CodGen ........................................................................... 12 

1.6 Pseudo Functional Test ...................................................................................... 13 
1.7 Structure of This Dissertation ............................................................................ 15 

2. PSEUDO FUNCTIONAL PATH DELAY TEST THROUGH EMBEDDED 

MEMORY ........................................................................................................................ 16 

2.1 Motivation .......................................................................................................... 16 

2.2 Proposed PFT through Embedded Memory Test Generation Flow ................... 17 

2.3 Memory Model ................................................................................................... 18 
2.4 Synthesis............................................................................................................. 19 

2.5 Longest Paths Into and Out of the Embedded Memory Array ........................... 24 



 

vi 
 

 

2.5.1 Longest paths into the memory ............................................................... 24 

2.5.2 Longest Paths Out of the Memory .......................................................... 25 

3. MODIFICATION OF CODGEN ................................................................................. 29 

3.1 Description of CodGen....................................................................................... 29 

3.2 Non-Scan Cells in CodGen ................................................................................ 31 

3.2.1 Testing Longest Paths into the Memory ................................................. 31 
3.2.2 Testing Longest Paths Out of the Memory ............................................. 33 

3.3 Coda Cycle in Codgen........................................................................................ 33 
3.4 Experimental Results.......................................................................................... 33 

3.4.1 Standalone Memory ................................................................................ 34 

3.4.2 Memory Array with Combinational Logic Inputs................................... 36 
3.4.3 Memory Array in Industrial Design ........................................................ 37 

4. TECHNIQUES TO IMPROVE SAT EFFICIENCY ................................................... 40 

4.1 Limitation of PODEM Justification Method ...................................................... 40 

4.2 Using SAT as Justification Method ................................................................... 41 
4.3 Further improvements in SAT Solver ................................................................ 43 

5. CONCLUSIONS AND FUTURE WORK .................................................................. 45 

REFERENCES ................................................................................................................. 46 

  
  



 

vii 
 

 

LIST OF FIGURES 

 

                                                                                                                                       Page 

 
Figure 1 Structure of scan design ............................................................................  5 

 
Figure 2 Muxed-D scan cell ....................................................................................  6 

 

Figure 3 LSSD scan cell ..........................................................................................  7 
 

Figure 4 Example of enhanced scan cell .................................................................  8 
 

Figure 5 Clock diagram for scan based delay testing ..............................................  9 

 
Figure 6 Memory black box model .........................................................................  11 

 
Figure 7 Bypassing model .......................................................................................  12 

 

Figure 8 Probabilistic distribution of path lengths ..................................................  13 
 

Figure 9 Delay test induces drop of power supply voltage .....................................  14 
 

Figure 10 Clock diagram of pseudo functional test ...................................................  15 

 
Figure 11 Paths into and out of memory ...................................................................  17 

 
Figure 12 Proposed Flow of PFT KLPG  ..................................................................  18 

 

Figure 13 Verilog template for memory behavior model ..........................................  20 
 

Figure 14 General structure of a memory array.........................................................  21 
 

Figure 15 Logical model of 4x3 memory array .........................................................  22 

 
Figure 16 Output decoding structure in a 256x8 memory .........................................  23 

 
Figure 17 Multiple coda cycles..................................................................................  25 

 

Figure 18 Launching a transition by toggling the address .........................................  27 
 

Figure 19 Necessary assignments inside a multiplexer to propagate a transition .....  27 



 

viii 
 

 

 

Figure 20 Coda cycles in PFT KLPG........................................................................  28 
 

Figure 21 Basic CodGen algorithm ...........................................................................  30 
 

Figure 22 Example of sensitizable path ....................................................................  31 

 
Figure 23 Path finding in the Coda Cycle .................................................................  32 

 
Figure 24 Standalone memory test ............................................................................  34 

 

Figure 25 Memory fed through combinational logic ................................................  36 
  



 

ix 
 

 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 1 Results of PFT KLPG standalone memory arrays ....................................  35 

Table 2 Results of memory PFT KLPG with adder in front ..................................  37 
 

Table 3 Results of PFT KLPG with controller .......................................................  38 

 
Table 4 Results of controller with 2048x8 memory as white box..........................  38 

 
Table 5 Comparison of PODEM and SAT with small circuit ................................  43 

Table 6 Comparison of PODEM and SAT with industrial circuit .........................  43 

Table 7 Result of SAT with different implemented map on small circuit .............  44 

Table 8 Result of MAP with different implemented map on industrial circuit ......  44 

  



 

1 
 

 

1. INTRODUCTION 

 

1.1 Delay Testing 

 

During fabrication, physical defects may happen, which will affect circuit 

functional performance. These defects can be detected with traditional test methods 

[1][2][3]. However, manufacturing defects that could not cause a functional failure in the 

circuit, may only affect the timing performance of the circuit. In order to ensure that the 

manufactured chips work within the specific timing requirement, those small 

manufacturing defects should be detected by delay tests. It becomes essential to apply 

delay tests since fabrication processes are becoming much more complex and the system 

frequency is raised. Delay faults can be divided into global delay fault, which are result 

from the variations of global process and local delay faults, which are result from the 

variations of local process. In order to automatically generate test patterns (ATPG) [4][5] 

and estimation the fault coverage [6] for delay faults, delay fault models [7][8] have 

been introduced as the abstraction of delay defects. In section 1.2, different kinds of 

delay fault models are discussed. Among them, the path delay fault (PDF) is efficiency 

to cover Small Delay Defects (SDDs). In section 1.3, design for test structures and 

approaches for testing delay defects are described. Section 1.4 and 1.5 described pseudo-

functional testing and the idea of K Longest Path Per Gate (KLPG) delay test method. 
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1.2 Delay Fault Models 

 

Delay fault models are the abstraction of  the behaviors of the circuits which 

have delay defects. In the following section, popular delay fault models such as 

transition fault model, gate delay fault model, line delay fault model, path delay path 

model are introduced. 

 

1.2.1 Transition Fault Model 

 

Among different delay fault models, the transition fault(TF) model [7] is the 

most popular one. It assumes that the delay fault only affects one place in the whole 

circuit. Two transition faults, a slow-to-rise and a slow-to-fall delay fault, are related to 

each gate. Thus, the number of transition faults is linear in gate counts of the circuit. 

Also, it assumes the transition fault effect can be observed through any path to any 

primary output or pseudo primary output, regardless of the path’s length. With such 

assumption, transition fault tests don’t need to consider the circuit timing.  

In order to generate tests for transition faults [2], stuck-at fault test generation 

tools could be easily adopted and extended. One vector is firstly applied to initialize the 

circuit, and another one sensitizes and propagates the fault response to the primary 

outputs (PO) or pseudo primary outputs(PPO). Thus the test vector of a transition fault 

test is a vector pair.  
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Because of the “lazy” nature of transition fault test generator, short paths are 

chosen to sensitize and propagate the fault response. Thus small delay defects and 

accumulated delay defects along the path, may be neglected when performing the TF test 

[9][10]. Also, glitches generated from the fault sites [11] could degrade the test quality. 

 

1.2.2 Gate Delay Fault Model 

 

The gate delay fault model [4][5][6][12] is a quantitative model for delay faults. 

It assumes the characteristics, such as size and location, and the delays through logic 

gates, are known. Also, it assumes the defect is lumped on the input or output of the 

gate. The main advantage of gate delay fault model is that it could model all gates. 

However, in this model, distributed defects are not considered, also the exact defect size 

may not be available. 

 

1.2.3 Line Delay Fault Model 

 

The line delay fault model [13][14] is a combination of the transition delay fault 

model and path delay fault model. It requires generating a rising or falling transition 

through target line. Thus, the number of fault sites is twice the number of lines in the 

circuit. One main advantage is that, the distributed and accumulated small delay defects 

are considered. However, lines on some shorter paths which have hard constrains may 

not be tested.  
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1.2.4 Path Delay Fault Model 

 

Compared with fault model listed before, the path delay fault model [8] can 

cover small delay defects(SDD) and accumulated delay on a path. This model could deal 

with paths with any size of delay. Typically, a circuit is considered faulty with a path 

delay fault if any one path is slow for a rising or falling transition. Thus tests for the path 

delay fault model can be used to detect Small Delay Defects (SDDs) in the circuit. The 

main constraint of this fault model is that the number of paths in the circuit can be 

exponentially proportional to the number of gates in the circuit. Thus, it is not practical 

to cover all the paths in the circuit.  

 

1.3 Scan Based Delay Test 

 

Design-For-Test (DFT) techniques are used to improve the testability of a circuit 

[15], among which the SCAN design is most popular. In scan design, storage elements 

such as latches and flip-flops in the circuit are replaced by scan cells. Then scan cells are 

“stitched” together to form one or more scan chains. In this way, internal storage 

elements can be accessed in the circuit which are not directly observable without DFT 

structure. Thus the testability of the circuit is improved. Also the complexity of test 

generation is significantly reduced. 

 The idea of scan design is illustrated in Figure 1. 
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Figure 1. Structure of scan design 

 

The procedure of a typical scan based testing is shown below: 

a) The Circuit-Under-Test(CUT) is set to scan mode and test vectors are shifted in to 

scan cells serially.  

b) The Circuit-Under-Test (CUT) switches to functional mode and the test vectors 

are applied to the combinational logic.  

c) The test results are captured into the scan cells at the next clock cycle.  

d) The CUT is then switched to scan mode and the test results are serially shifted out 

and compared with the expected responses. And the next test vector can be shifted 

in at the same time. 
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1.3.1 Scan Cell Types 

 

1.3.1.A Muxed-D Scan 

 

Muxed-D scancell, shown in Figure 2, is composed of a multiplexer and a 

standard D flip-flop (FF).The scan enable (SE) signal is used to select between the data 

input (D) and scan input (SI). Clock signal (CP) is used to clock the flip-flop in both 

normal and test modes.  

 

 

Figure 2. Muxed-D scan cell 

 

1.3.1.B LSSD Scan 

 

Level sensitive scan design (LSSD) [16][17] scan cell contains a pair of latches 

in “master-slave” model. As shown in Figure 3, a master two-port D latch L1 is followed 

by a slave D latch L2. Three clocks A, B, and C are used to select between the data input 

D and the scan input I. LSSD is then clocked appropriately during test mode. Based on 
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different clock schemes, LSSD can be implemented by a single-latch design [16] or a 

double-latch design [18] based on different clock schemes. 

 

 

Figure 3. LSSD scan cell 

 

1.3.1.C Enhanced Scan 

 

Enhanced scan [19][20], shown in Figure 4, are introduced to achieve higher 

fault coverage, and reduce the requirement of timing constrain of control signal. It could 

be achieved by adding an extra holding latch to the output of each flip-flop. In this way, 

it could store two bits at the same time and enable to apply an arbitrary pair of test 

vectors. Obviously, the extra holding latch will introduce extra area consumption, timing 

and power consumption. 
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Figure 4. Example of enhanced scan cell 

 

1.3.2 Scan Based Delay Testing 

 

During delay testing, transitions are launched into the circuit, thus a vector pair 

{V1, V2} are needed. The first vector V1initializes the circuit and the second vectorV2 

launches the transitions. Based on the relationship between V1 and V2, delay tests can be 

mainly divided into two types: Launch-On-Shift (LOS) [21][22] and Launch-On-Capture 

(LOC). [23]. Figure 5 gives an example of both LOS and LOC. 
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Figure 5. Clock diagram for scan based delay testing 

 

1.3.2.A Launch-On-Shift 

 

In the Launch-On-Shift (LOS) scheme, V2 is a one-bit shift of the first vector V1. 

After the last shift, one at-speed capture clock cycle is then applied to capture the test 

response. Thus, it’s necessary to at-speed switch between scan mode and functional 

mode, which needs an at-speed Scan Enable (SE) signal. The at-speed SE signal need to 

be routed as clock tree, which is not practical in high-speed designs. 

 

1.3.2.B Launch-On-Capture 

 

In the Launch-On-Capture (LOC) scheme, the second vector V2 is the 

combinational circuit’s response to the first vector V1. In the first capture clock cycle, 
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V2is captured into the scan cells. In the second capture clock cycle, transitions are 

launched into the circuit, and are also used to capture the test response. 

In LOC design, the speed of SE signal is relaxed, since the mode could be 

switched slowly. Thus LOC is widely used in high-speed designs. 

 

1.4 Memory Model in Scan-based Delay Test 

 

1.4.1 Black Box 

 

As shown in Figure 6,the memory has input and output ports without internal 

description, which is called a “black box”. Any transitions captured into memory are lost 

and also no transitions are launched. Only unknown (X) values can be obtained from the 

black box. This technique creates “shadow” regions around the memory which cannot be 

tested and reduce the fault coverage. 
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Figure 6. Memory black box model 

 

1.4.2 Memory Bypassing 

 

Memory bypassing mode, as shown in Figure 7, is introduced to alleviate 

coverage loss result from X values. In this mode, the output of the memory is fixed to a 

certain value or the input into the memory is transferred to the output. Thus, “X” values 

are reduced. However, the power supply noise (PSN) is not similar to functional memory 

operation, since in bypass mode, only the address decoder related to a special bypass 

word in the memory could be activated. 
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Figure 7. Memory bypassing model 

 

1.5 KLPG Algorithm and CodGen 

 

From previous works [24][25], the K Longest Path Per Gate (KLPG) algorithm 

has been proposed to generating vectors efficiently for delay test. In KLPG based path 

delay test generation, each gate have K longest rising and falling paths going through it. 

The reason why we want to find K longest paths is, there exits process variations [26] in 

the fabricated chips. As illustrated in Figure 8, because of process variation, each path 

can be the longest path with certain probability. In order to achieve high small delay, 

defect fault coverage, those paths need to be covered.  
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Figure 8. Probabilistic distribution of path lengths 

 

1.6 Pseudo Functional Test 

 

In traditional delay tests, the slow scan-in cycles are followed by the at-speed 

cycles. One problem result from this clocking scheme is that, the circuit will suffer DI/dt 

noise and IR-drops. Thus the voltage level of the circuit will act like an inductive 

ringing, as shown in Figure 9. However, the voltage level of the power grid in the circuit 

is important to the accuracy of delay test results [27] [28]. If the power supply voltage is 

lower than functional mode during the path delay test, the chip will run more slowly than 

normal and fail the test. This is termed overkill.  

 

 PDF P2 P1 

0 
1 

tmax 

P0 P3 

2 

Delay 
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Figure 9. Delay test induces drop of power supply voltage [27] 

 

One solution to address the mismatch of power supply voltage between test mode 

and normal mode, is a Pseudo Functional Test (PFT). In the PFT, there exist several 

clock cycles between slow scan-in clock cycles and at-speed test cycles, we call it 

preamble cycles.  After those preamble cycles, the power supply voltage will be 

stabilized, and the chip is in the pseudo functional mode. The clock scheme is shown in 

Figure 10.  

However, in PFT, ATPG will need more effort to generate feasible vectors. 

Instead of back-trace through two at-speed preamble cycle in the traditional delay test 

scheme, the ATPG now need to back-trace extra preamble cycles.  
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Figure 10. Clock diagram of pseudo functional test 

 

1.7 Structure of This Dissertation 

 

The rest of this dissertation is structured as follows: In Section 2, the proposed flow is 

presented. In this section, we will also discuss the memory model and test method. 

Section 3 discusses the modification and implementation of the current PFT KLPG 

(PKLPG) tool in order to support the memory model. We then discuss experimental 

results on benchmark and industrial circuits. In Section 4, we discuss algorithm 

performance and demonstrate speedup using Boolean Satisfiability (SAT). Section 5 

concludes with directions for future work. 

 

...CLK

SE ...

Scan In Scan OutTestPreamble

...CLK

SE ...

Scan In Scan OutTestPreamble
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2. PSEUDO FUNCTIONAL PATH DELAY TEST THROUGH EMBEDDED 

MEMORY 

 

2.1 Motivation 

 

On-chip memory arrays are widely used in Systems-on-Chip (SoCs). Typically, 

embedded memory arrays are tested using functional March patterns [29][30]. Those 

patterns could be generated on chip with memory built-in self-test (MBIST) 

[31][32][33][34]. Similar to MBIST, an Embedded Micro-Tester can be used to test the 

components of a source at speed [35]. Macrotest [36] embeds memory tests in scan tests.  

With the above technologies, latch-based embedded arrays can be tested using scan 

test[37]. Non-scan cells can be tested using at-speed functional patterns [38]. Although 

the logic surrounding the memory can be tested using scan [39], the memory is still 

tested using BIST/functional patterns. 

The above techniques provide good fault coverage of the Memory arrays 

themselves, and can thoroughly cover the delay defaults within the memory when 

supported by appropriate Design-for-Test (DFT) structures. However, they do not target 

small delay defects on the paths into and out of memory cells, non-scan flip-flops and 

latches. Prior research has shown that timing critical paths often pass through embedded 

memory arrays. As shown in Figure 11, the paths through embedded memory arrays 

consist of a write path and a read path. These paths must be tested to achieve good 

correlation between the maximum operating frequency (FMAX) of functional and 

structural delay test [29][30], and to significantly reduce defect levels.    
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Figure 11. Paths into and out of memory 

 
The motivation of this research is to establish an effective flow that can perform 

pseudo functional path delay test through embedded memory arrays. 

 

2.2 Proposed PFT through Embedded Memory Test Generation Flow  

 

In order to perform path delay test through embedded memory, we need to 

propose a standard flow that can handle a circuit with embedded memory arrays. The 

first step is to model the memories for ATPG usage. Since memory cells are non-

scanned cells, we must model memory with this feature. Then, we need to combine the 

memory model and original circuit to get the circuit with the memory as a “white box” 

structural model. This white box model can then go through flattening, leveling and 

partitioning, and test generation, using the existing in-house KLPG tool Codgen. The 

flow is shown in Figure 12. 
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Figure 12. Proposed flow of PFT KLPG 

 

2.3 Memory Model 

 

There are many choices for mapping a memory to a logic circuit. A common 

example is the CRAM (combinational SRAM) model available in many commercial 

ATPG systems. In our work, we have modeled the memory array with asynchronous 

read and synchronous write (using a global clock). In this model, data is written to the 

memory arrays during the clock edge, when the correct address is decoded and write and 

chip enable signals are active low.  

Typically, when a value is written in a memory cell it might not be read for a 

long time because such memory cells are enabled by the address and the same address 

may not be decoded frequently. However, industry feedback suggests that the value 

written in cells will usually be read within the next few clock cycles. So we immediately 

read from the memory after writing the value into the memory. This permits the scan 
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tests for different memory words to be independent. Furthermore, the memory is 

modeled as a uniform delay model such that all the delays are lumped at interface gates, 

with the same delay to and from every memory cell. Therefore, every path to and from 

each memory cell must be tested, to ensure that the longest paths have been tested. 

Large memories, such as L2 and L3 cache arrays, are not a uniform array, but a 

hierarchy of memory arrays and interconnection networks. In this case, we assume that 

the network is already described and we just synthesize the memory sub-arrays. 

 

2.4 Synthesis 

 

If a structural implementation of the memory is available, we use that directly. 

Otherwise, we need to synthesize the behavioral description of the memory array to get 

the structural model. We assume the memory behavioral model is available in Verilog, 

as depicted in Figure 13. 

In legacy test models where a logic simulation model is not available,  the 

memory arrays may be “black boxes”, which has no internal description. In this 

situation, we need to write a behavior Verilog description.  

The structural model of memory is achieved by synthesis the behavioral model 

achieved before, with commercial logic synthesis tool or memory compiler.  These tools 

synthesize the behavioral description to a gate level implementation. During the 

synthesis, memory cells are mapped to flip-flops with multiplexers on their inputs to 

select between the data input of the memory or  the outputs of the flip-flop. Also, the 



 

20 
 

 

multiplexer is controlled by the address decoder. Figure 14 shows the general logic 

model of the memory arrays, which contains memory cells and feedback multiplexers. If 

the correct address is decoded, and write enable and chip enable are active low, new data 

is written to the memory on the clock edge, otherwise the same data recirculates. The 

data can be read any time once the address is decoded. 

 

`define addressBusSize  A 

`define dataBusSize  B 

module memoryArray AxB (  

  input [`addressBusSize-1:0] A, //Address     

  input CLK,      

  input [`dataBusSize-1:0] D, // Data In     

  input EZ, // Enable chip, active low      

  input WZ,//Write enable , active low     

  output [`dataBusSize-1:0] Q // Data out   

); 

  //total depth = 2^addressBusSize  

  parameter depth=1<<`addressBusSize;  

  reg [`dataBusSize-1:0]reg_file[depth-1:0]; //total storage 

  //read operation. When chip enable is low 

  assign Q=(EZ==0)?reg_file[A]:`dataBusSize'bx; 

  //write operation. when both write and chip enable are low 

  always @ (negedge CLK) 

  begin 

 if (WZ==0 && EZ==0)     

   reg_file[A]<=D;   

  end 

endmodule 

Figure 13. Verilog template for memory behavior model 
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Figure 14.  General structure of a memory array 

 

At first glance, the synthesized logic model is not close to a real six-transistor 

SRAM cell with bit line pre-charge and sense amplifier logic. However, this structural 

model is acceptable for ATPG purposes. In real design, small memory arrays are 

implemented as latch or flip-flop arrays in standard cell flows. Also the reading and 

writing operations mimic the real SRAM operation. A more realistic structure can be 

created using a template with address-decoded enables feeding latches, which in turn 

feed tristate output bit lines. However, compared with the general synthesis flow,  this 

fixed template cannot handle diverse memory types. 

Although optimization is not necessary for the ATPG usage,  the synthesis tool 

limits the fan-in of multiplexer and creates multiplexer tree for larger memories. Also, it 

takes advantage of AND-OR-INVERTER (AOI) and OR-AND-INVERTERS (OAI) 

cells in the library for optimization purpose. 

Figure 15 shows a synthesized 4x3 memory array, which is composed of 12 non-

scan cells, 4 bit width address and 3 data bits. So each address selects 4 non-scan cells. 

Layers of gates are generated for writing and reading the data. For reading the data, the 
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first logic layer contains a  series of AND-NOR gates given by U53, U52, U56, U55, 

U61 and U58, and gives a total of 6 possible data bit values out of 12 non-scan cells. 

Depends on the decoded address, U53 and U52 selects one  output data out of the first 

four possible non-scan cells. The memory array can be visualized as a 2D array of 

memory[4][3], where the first index is the memory address and the second index is the 

data bit. Since the memory gives a 3-bit output for any address, U53 and U52 gives the 

value of memory[X][0] where X can be from 0 to 3.  

 

 
Figure 15. Logical model of 4x3 memory array 

 

The decoding logic adds more logic, if the number of address bits increases. For 

each additional address bit, one level of decoding logic is added. For example, if we 
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have an 8x3 memory array, one extra level will be needed, compared with the 4x3 

memory array shown in Figure 15, to select each data bit from the 8 addresses.  

The output decoding of one-bit slice of a 256x8 memory array is shown in Figure 

16.  The first data bit (0th) is decoded out of 256 possible addresses. Once the decoded 

address X is sent to the treelike combinational logic, the 0th data from the memory cell of 

this decoded address is then obtained from the output of the 2:1 multiplexer. The 

decoding logic depends upon the design library of synthesis tool and the optimization 

used. For example, minimum power or minimum area consumption can be applied 

during the synthesis which will result in a different decoding structure. We use the 

default setting of medium power and minimum area in our synthesis.  

 

 

Figure 16. Output decoding structure in a 256x8 memory 
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The address decoding for memory writing is obtained  by similar combinational 

logic. If the address bits increase, the logic levels of decoding logic will also increase. 

These levels are similar to the treelike combinational logic for reading the data. 

 

2.5 Longest Paths Into and Out of the Embedded Memory Array 

 

Longest paths through memory arrays could be divided into two types: longest 

paths into memory arrays and longest paths out of memory arrays.  

 

2.5.1 Longest paths into the memory 

 

The longest paths into a memory or non-scan cell are tested during at-speed 

launch and capture cycles as the typical delay test. However, the Boolean values of this  

path are captured in a non-scan memory cell, which is not observable directly. Those 

values are needed to be observed so that the paths are kept. To address this problem, we 

add one or more( if needed) clock cycles to the original clock scheme and further extend 

Codgen to support this feature. The untimed( and so use a low-speed clock) extra cycles 

are termed coda cycles. 

In the coda cycles, any paths could be used for propagating the captured Boolean 

value. The details of choosing paths in coda cycle will be discussed in the later section.  

Once the coda path is selected, then the path is justified. Since the at-speed path might 
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be a sequential false path, it can be more efficient to first justify the at-speed path before 

finding paths in the coda cycles. 

If there exist pipelined memories in the design, such as registers in a classic 5-

stage processor data pipeline, it may take several coda cycles to propagate the captured 

Boolean value to primary outputs or pseudo primary outputs, as shown in Figure 17. 

During the test, a fixed number of coda cycles are assumed. Thus to cover all targeted 

path, a test set may have tests with several different coda cycles may be needed. 

 

 

Figure 17.  Multiple coda cycles 

 

2.5.2 Longest Paths Out of the Memory 

 

It requires launching a transition at the memory output to test the longest paths 

out of the memory, as the read path in Figure 11. If the memory models are “black box”, 

no transitions could be launched. Also, with the typical memory bypassing where 

outputs are assigned a fixed value, no transitions could be launched neither. Enhanced 

scan enable transition generation at the memory output, but at an area and delay cost. In 

our work, we proposed a way to launch the transition by using the existing preamble 
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cycles to initialize the memory array with values that can then be read to launch the 

transition. 

Suppose we have a 2x1 memory array with two cells, C0 and C1, as shown in 

Figure 18. We have one data output. The output is multiplexed between C0 and C1, as 

controlled by the address line. 

If C0 holds 0 and C1 holds 1, if we want to launch a rising transition from the 

memory, then the address line switches from 0 to 1. Prior to the at-speed address 

transition, we must write C0 and C1, during the preamble cycles. 

To show the launch of a falling output transition F, the multiplexer in Figure 18 

is decomposed to primitive gates in Figure 19. The rising transition R, starts from the 

select line of multiplexer, which is actually the address line of the memory array. The 

path will grow through NOT gate and the AND1 gate.  

In the two at-speed time frames, the A need to be {1,1} for robust test. Those 

values are obtained from the non-scan cell C0, which are written in preamble cycle. The 

path will further add the OR gate in the partial path along with all the necessary 

assignments. 
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Figure 18.Launching a transition by toggling the address 

 

 

Figure 19. Necessary assignments inside a multiplexer to propagate a transition 

 

During the preamble cycles, the necessary assignments (NAs) are written to the 

non-scan cells. To set all the necessary values, a sufficient number of preamble cycles 

are needed. Assuming only one word can be written at a time, at least two preamble 

cycles are needed to generate transitions by toggling between two bits. More than two 

preamble cycles can be used to reduce the dI/dt noise and IR drop before the at-speed 

test. 

Figure 20 shows the clocking scheme of a PKLPG test with coda cycles. In this 

example, 4 preamble cycles, 2 at-speed test cycles and 4 coda cycles are used, along 

with scan in and out cycles.  
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Figure 20.  Coda cycles in PFT KLPG 
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3. MODIFICATION OF CODGEN 

 

This research is built on top of prior work with CodGen, which is a KLPG based 

path delay test generator supporting Pseudo Functional Test (PFT) [40] and dynamic 

compaction [41]. 

 

3.1 Description of CodGen 

 

The basic CodGen algorithm is shown in Figure 20. In CodGen, path delay tests 

are generated in three steps: 

 Path Search: The KLPG algorithm will generate K longest rising and falling 

paths through each target fault site. In order to sensitize the searched path, a set 

of Necessary Assignments(NAs) is generated along with the searched path. For 

example, in order to propagate the value from the input to the output, a NA is 

logic one for one input of an  AND gate. 
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Figure 21. Basic CodGen algorithm 

 

 Path Justification: After path search, the founded path need to be justified. The 

reason is that, some paths which pass the direct implication and false paths prune 

methods, may still be unsensitizable. Path justification will find a set of value for 

primary inputs(PIs) and pseudo primary inputs(PPIs) to guarantee the necessary 

assignments found in the previous stage. As shown in Figure 21, to sensitize the 

path from b to g, a=0 and c=1 are necessary assignments(NAs), and {X,0}, {1,1} 

are the values in two vectors on a and c to generate necessary assignments. 
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Figure 22. Example of sensitizable path 

 

 Dynamic Compaction: In order to reduce the final vector count, vector for each 

justified path can be compact together. If the compaction is done after all the 

vectors are generated, the compaction is called static compaction. Another 

compaction method is dynamic compaction which compacts the vectors during 

the path finding. Compared with static compaction, this method will improve the 

compaction ratio while take more CPU time. 

 

3.2 Non-Scan Cells in CodGen 

 

Non-scan cell behavior differs in testing the path into memory and the path out of 

the memory. 

 

3.2.1 Testing Longest Paths into the Memory 

 

When testing the longest path into the memory, the transition will be captured in 

a non-scan cell. Once the value is captured in a non-scan cell, we need to start path 
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finding in the coda cycle. The ATPG uses SCOAP (Sandia Controllability Observability 

Analysis Program) metrics to first select the easiest (most observable, with the fewest 

necessary assignments) path to a Primary Output or a Pseudo-Primary Output, which is 

the data input of a scan cell. If that fails, it tries the next path, and repeat until 

successfully finding a path. The search space is shown in Figure 23. 

 

 

Figure 23. Path finding in the Coda Cycle  

 

In the above search space, assume the feasible path is 5th path and the 1st path is 

the most observable path at the beginning. If the 1st path fails the final justification, the 

tool simply backtracks to the latest decision made point and tries the next path, 2nd path 

in this case. It will repeat backtracking until the 5th path is tried.  

After finishing propagation, the complete path is put into the path pool for final 

justification. 
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3.2.2 Testing Longest Paths Out of the Memory 

 

When testing longest paths out of the memory, the transition is launched through the 

address line. The contents of memory cells are initialized during the preamble cycles. 

Since the memory cells are functional during the preamble cycles, we need to justify 

them during these cycles. If the constraint is too tight to initialize memory cells, the 

paths related to these cells are not sensitizable. 

 

3.3 Coda Cycle in Codgen 

 

In order to support coda cycles in Codgen, extra time frames are added. If we 

denote the total number of cycles as #FRAMSC and that of unmodified cycles as 

#FRAMS, the number of coda cycles is #FRAMSC-#FRAMS. As described previously, 

if there exists a pipelined memory structure, more than one coda cycle will be needed to 

propagate the captured response to a scan cell. 

 

3.4 Experimental Results 

 

To test the proposed ATPG flow, experiments are performed on a 3.4 GHz Intel 

Core i7 processor with 8 GB of memory. Robust tests are used to test the paths in and 

out of the memory. A total of 2 preamble cycles are used in all tests. Since in our 

experiments either we placed a scan chain on the memory output or we assume there are 
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scan cells between pipelined memory arrays,  only 1 coda cycle is used. Dynamic 

compaction is used to compact the tests together. This compaction does not exploit the 

word-oriented nature of the memory.   

Different memory arrays were synthesized with Synopsys Design Compiler. The 

memory size is given as AxB where A denotes the total number of words and B denotes 

the number of output bits.  

 

3.4.1 Standalone Memory 

 

In this experiment, the memory is directly controlled by the Primary Inputs (PIs) 

and observed by the Primary Outputs (POs), as shown in Figure 24. 
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CONTROL LOGIC

PI PO
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Figure 24. Standalone memory test 

 

Table 1 shows the number of paths (rising and falling paths are counted 

separately), compacted patterns, CPU time, and gate count of the synthesized test model. 

The patterns generated are sufficient to test all of the paths in the memory arrays. In the 

8x256 memory, the paths can be tested by writing eight words of 0s and eight words of 
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1s and reading can be tested by reading those eight words of 0s and eight words of 1s. 

So, 32 patterns are necessary to test the memory. CodGen generates a total of 33 

patterns. A 256x8 memory can be tested by 1024 patterns of 8-bits each, while dynamic 

compaction achieves 1114 patterns. The dynamic compaction algorithm is greedy, so 

may not find the minimum test set. A second reason is that a limited pool of paths is kept 

in memory, which may cause the algorithm to write a pattern to memory, when there are 

still paths that might compact into the pattern. Note that despite the presence of non-

functional paths, the pattern count is close to the functional pattern count. For example, 

the non-functional flip-flop feedback path cannot have transitions on it when the flip-

flop is holding its state. 

 

Table 1. Results of PFT KLPG standalone memory arrays 

Memory Size Paths Patterns Time  Gate count 

4x3 58 16 0:00:01 106 

4x8 232 16 0:00:02 320 

8x4 227 33 0:00:02 297 

16x8 1022 73 0:00:12 1310 

8x16 1044 34 0:00:09 1310 

64x8 4161 305 0:01:54 5217 

8x64 4116 35 0:01:28 5150 

128x8 8428 608 0:09:10 10462 

8x128 8212 34 0:05:30 10270 

256x8 16661 1114 0:52:58 20793 

8x256 16404 33 0:25:28 20510 

 

The paths, pattern and gate count increase approximately linearly with memory 

size. The number of paths is slightly more than linear and the number of gates slightly 

less than linear, due to the select logic overhead. However, CPU time increases 
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approximately quadratically with circuit size. The CPU time for the 8x16 memory array 

is 9 seconds and for the 8x64 memory array is 1 minute 28 seconds. The reason for this 

behavior is that each time a path is extended by one gate during the path search 

algorithm, direct implication is performed to screen out false paths. The structure of the 

address decoder causes direct implications to propagate throughout the memory circuit. 

Essentially, a 1 on one decoder output implies a 0 on every other output. Most of these 

implications are not useful for screening false paths, significantly increasing CPU time. 

 

3.4.2 Memory Array with Combinational Logic Inputs 

 

We next test a memory array with its inputs fed through a combinational logic 

circuit, as shown in Figure 24. The combinational circuit used is a full adder. The 

outputs of the adder are connected to the address lines only, with the data and enable 

lines taken directly from the PIs. 
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Figure 25. Memory fed through combinational logic 
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The results obtained from PKLPG are shown in Table 2. Fewer paths are 

generated due to the input constraints. Depending on the memory, the number of patterns 

and CPU time may go up or down. 

 

Table 2. Results of memory PFT KLPG with adder in front 

Memory Size Paths Patterns Time  Gate count 

4x3 50 17 0:00:01 112 

4x8 182 17 0:00:01 326 

8x4 195 39 0:00:01 310 

16x8 831 76 0:00:10 1323 

8x16 810 43 0:00:11 1323 

64x8 3355 320 0:02:00 5230 

8x64 3163 43 0:01:32 5163 

128x8 6782 595 0:09:47 10475 

8x128 6298 44 0:06:58 10283 

256x8 12528 996 0:48:29 20806 

8x256 12566 39 0:30:46 20523 

 

3.4.3 Memory Array in Industrial Design  

 

To test our method on an industrial design, we consider a streaming audio 

controller chip (Chip1). This controller has 4 memory arrays modeled as black boxes in 

the original test model, whose sizes are 256x8, 2048x8, 8192x8, and 4096x8. The total 

gate count of the chip is 41,263, excluding the memory arrays. We wrote the behavioral 

model for the 256x8 memory and synthesized it to get the structural model. Then we 

replaced its black box model with the structural model. The gate count of the chip with 

the structural model increases to 56,206.  We configure the KLPG algorithm to apply 2 

preamble cycles, 2 at-speed launch and capture cycles, followed by 1 coda cycle. We 
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also chose the robust test and enabled dynamic compaction. The results are shown in 

Table 3. 

The results show a 60% increase in tested paths once the shadows around the 

256x8 memory are removed. The longest testable path shrinks slightly. This will be 

explained below. The average path length increases by 6% due to paths entering and 

exiting the memory. The pattern count increases faster than the path count, due to longer 

paths with more necessary assignments. The CPU time falls significantly. The reason is 

that the ATPG no longer has to attempt to work its way around the memory shadows to 

test a path.   

 

Table 3. Results of PFT KLPG with controller  

Circuit Name # Paths Longest Testable Path Length Average Path Length # Patterns CPU Time 

Original 5145 42 9.245 474 03:29:56 

Chip1 with 256x8 8161 41 9.797 878 01:44:52 

 
 

However, when testing Chip1 with the 2048x8 memory replaced with a structural 

model, the ATPG ran for more than 6 CPU days, with the poor results shown in Table 4. 

The path count, longest testable path, and average path length all fell considerably, 

despite the high CPU time. 

 

Table 4. Results of controller with 2048x8 memory as white box 

Circuit Name # Paths Longest Testable Path Length Average Path Length 

Chip1 with 2048x8 3882 35 7.17435 
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The reason for the poor results in Table 4 and the reduction in the longest path in 

Table 3 lies in the use of the PODEM algorithm for justification and compaction. The 

details will be discussed in Section 4. 
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4. TECHNIQUES TO IMPROVE SAT EFFICIENCY 

 

Since the PODEM-based justification method failed to test circuits with larger 

structural memory models, we will discuss the reason and solution in this section. 

 

4.1 Limitation of PODEM Justification Method 

 

In KLPG, for a particular target fault site, we use three main bounds to limit the 

CPU time: 

 Partial Path Store Size 

 Number of Max Try 

 FAN_limit: Number of FANs  

These bounds are set based on experience with prior designs, so that true paths 

are identified, but CPU time is not wasted on false paths. 

One of the most important features of Chip1 with the 2048x8 memory model is 

that some gates in the memory model have very high fan-outs, up to 10,000memory. In 

CodGen, each time we want to extend the path, we duplicate the original path for each 

fan-out and store these copies in the partial path store. These paths are then available if 

the search process must consider another fan-out branch from that gate. Storing these 

paths may lead to loss of sensitizable paths, for the reasons listed: 

1. The new added paths have Esperance that is greater than other paths in the 

partial path store, so they are stored at the top of the sorted store. If storing these fan-out 
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paths causes the partial path store to exceed its size, paths of lower Esperance are 

discarded, even though they may be sensitizable. 

2. Each successful path extension will add one to the counter of number of tries, 

thus the high fan-out would consume many of the total tries for the fault site. It is very 

likely that the path will exhaust its maximum number of tries, even though the path can 

continue to be extended. 

3. If those high fan-out paths are not able to pass final justification, they will 

take large fraction of the allowable FAN searches. The remaining FAN attempts may not 

be sufficient to identify the sensitizable paths. 

The original CodGencode uses PODEM as its justification algorithm. The built-

in backtrack limit in PODEM may cause the algorithm to give up some delay tests even 

though they could be justified using a more efficient method. Combined with the three 

limits above, this problem reduces the fault coverage of the delay tests when high fan-

out nodes are present. 

 

4.2 Using SAT as Justification Method 

 

Recently the performance of Boolean Satisfiability (SAT) solvers has 

significantly improved [42][43] and SAT-based ATPG has been successfully 

implemented to generate test patterns for stuck-at faults, transition delay faults and path 

delay faults [44][45]. Therefore, it is natural for us to replace the PODEM-based 
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approach with a SAT-based approach, in order to improve both the efficiency of path 

delay test generation and the fault coverage of the delay tests. 

Experiments were conducted to test the performance of CodGen with the 

MiniSatSAT solver, and the results compared with those of the original CodGen using 

PODEM. All experiments were performed for K=1 where K is the number of rising and 

falling paths to be tested through each line in the circuit. Robust path constraints and 

Launch-On-Capture (LOC) tests were applied. Two preamble cycles, two at-speed 

cycles and one coda cycle were used in the experiments. 

The results of CodGen with PODEM and SAT are compared in Tables 5 and 6. 

In Table 5, we can see that for the smaller memory benchmarks, PODEM and SAT have 

the same results, but SAT usually takes more CPU time. For the larger circuits, SAT 

finds more paths and compacts them into fewer patterns, using similar or less CPU time.  

In Table 5, SAT finds many more paths of longer length, using about 3x less CPU time 

in the largest case. The average path length is lower in SAT with the structural models, 

due to the large numbers of short paths that are found, which were previously not found. 
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Table 5. Comparison of PODEM and SAT with small circuit 

Circuit 

Name 

# Paths #Patterns #Gate CPU Time (h:m:s) 

PODEM SAT PODEM SAT PODEM SAT PODEM SAT 

8x16 810 810 43 43 1323 1323 0:00:20 0:00:09 

8x64 3163 3163 43 43 5163 5163 0:00:58 0:01:07 

8x128 6298 6298 44 44 10283 10283 0:02:31 0:04:35 

8x256 12566 12566 39 39 20523 20523 0:09:55 0:15:14 

16x8 839 839 77 77 1323 1323 0:00:22 0:00:09 

64x8 3387 3387 309 302 5230 5230 0:01:31 0:01:33 

128x8 6831 6847 597 549 10475 10475 0:04:57 0:07:08 

256x8 12688 13528 1081 1053 20806 20806 0:24:27 0:18:12 

 

Table 6. Comparison of PODEM and SAT with industrial circuit 

Circuit Name # Paths Length of Longest Testable 
Path 

Average Path 
Length 

CPU Time (d:h:m:s) 

PODEM SAT PODEM SAT PODEM SAT PODEM SAT 

Original 5145 14788 42 48 9.245 12.385 03:29:56 06:42:53 

Chip1with 256x8 8161 13623 41 48 9.797 10.844 01:44:52 05:26:22 

Chip1with 

2048x8 

3882 25206 35 48 7.174 28.138 >6:00:00:00 2:07:16:18 

 

4.3 Further improvements in SAT Solver 

 

When doing dynamic compaction, the SAT solver uses a C++ STL map to 

maintain the gate index and corresponding assignment information. The map in C++ 

STL is realized by a red-black tree. Each insertion and retrieval takes O(logN) time. The 

STL destruction method is not called properly. In order to improve efficiency and reduce 

memory consumption, we replace the STL map with an array used as a static hash table. 

Its store and retrieval time complexity is O(1). It also has a simple access mechanism.  
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Table 7. Result of SAT with different implemented map on small circuit 

Circuit Name CPU Time (h:m:s) 

SAT with STL Map SAT with Static Hash 

8x16 0:00:09 0:00:08 

8x64 0:01:07 0:00:55 

8x128 0:04:35 0:04:05 

8x256 0:15:14 0:15:18 

16x8 0:00:09 0:00:08 

64x8 0:01:33 0:01:24 

128x8 0:07:08 0:06:19 

256x8 0:18:12 0:30:32 

 

Table 8. Result of SAT with different implemented map on industrial circuit  

Circuit Name CPU Time (d:h:m:s) 

SAT with STL Map SAT with Static Hash 

Original 0:06:42:53 0:06:39:53 

Chip1with 256x8 0:05:26:22 0:01:40:00 

Chip1with 2048x8 2:07:16:18 0:16:53:14 

 

The experimental results comparing STL Map and Static Hash are shown in 

Tables 7 and 8. When running SAT with STL MAP on Chip1with the 2048x8 structural 

memory, it would consume >60GB memory. Using Static Hash, the memory 

consumption is<3GB. In the benchmark memories, the CPU time is reduced for most 

circuits. In Chip1, the CPU time is reduced by a factor of 3 when the structural memory 

models are used, while achieving the same test results. 
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5. CONCLUSIONS AND FUTURE WORK 

 

This thesis focuses on performing pseudo function path delay test through 

embedded memory arrays. The experimental results with different benchmarks 

demonstrate the practicality of the proposed test flow. A series of techniques to improve 

the accuracy and efficiency of test generation are investigated. By replacing the original 

PODEM justification algorithm with Boolean Satisfiability (SAT), we significantly 

reduced the runtime of test generation while covering more paths on the industrial 

circuit. 

Future work includes increasing the performance of the ATPG on large memory 

arrays, and demonstrating cases where the memory is deeply embedded in the logic. We 

will limit the direct implication search space to the parts of the circuit where they are 

useful. We will also consider models where the delays match those of the supplied 

behavioral model. Eventually we would like to consider logic models that have 

switching activity closer to that of the memory array and improve the memory delay 

model according to the vendor’s memory structure. 
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