Skip to main content
Log in

A Built-in Single Event Upsets Detector for Sequential Cells

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

A built-in single event upsets (SEUs) detector is presented in this paper. This detector utilizes charge sharing to detect an SEU in a sequential cell, and the detection process is analyzed through Accuro simulations in a 65 nm technology. The normal operation of this detector would not induce obvious performance degradation of the target circuit. Through using this detector, error correction can be achieved based on dual modular redundancy (DMR) while the related power is about 20.4 % lower than that induced by triple modular redundancy (TMR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amusan OA, Massengill LW, Baze MP, Bhuva BL, Witulski AF, DasGupta S, Sternberg AL, Fleming PR, Heath CC, Alles ML (2007) Directional sensitivity of single event upsets in 90 nm CMOS due to charge sharing. IEEE Trans Nucl Sci 54(6):2584–2589

    Article  Google Scholar 

  2. Atkinson NM, Ahlbin JR, Witulski AF, Gaspard NJ, Timothy Holman W, Bhuva BL, Zhang EX, Chen L, Massengill LW (2011) Effect of transistor density and charge sharing on single-event transients in 90-nm bulk CMOS. IEEE Trans Nucl Sci 58(6):2578–2584

    Article  Google Scholar 

  3. Black JD, Ball DR II, Robinson WH, Fleetwood DM, Schrimpf RD, Reed RA, Black DA, Warren KM, Tipton AD, Dodd PE, Haddad NF, Xapsos MA, Kim HS, Friendlich M (2008) Characterizing SRAM single event upset in terms of single and multiple node charge collection. IEEE Trans Nucl Sci 55(6):2943–2947

    Article  Google Scholar 

  4. Calin T, Nicolaidis M, Velazco R (1996) Upset hardened memory design for submicron CMOS technology. IEEE Trans Nucl Sci 43(6):2874–2878

    Article  Google Scholar 

  5. Chen J, Chen S, He Y, Qin J, Liang B, Liu B, Huang P (2013) Novel layout technique for single-event transient mitigation using dummy transistor. IEEE Trans Device Mater Reliab 13(1):177–184

    Article  Google Scholar 

  6. Costenaro E, Alexandrescu D, Belhaddad K, Nicolaidis M (2013) A practical approach to single event transient analysis for highly complex design. J Electron Test 29(3):301–315

    Article  Google Scholar 

  7. Das S, Bull DM, Whatmough PN (2015) Error-resilient design techniques for reliable and dependable computing. IEEE Trans Device Mater Reliab 15(1):24–34

    Article  Google Scholar 

  8. Dixit A, Wood A (2011) The impact of new technology on soft error rates. Proceedings of IEEE Int Reliab Phys Symp (IRPS), pp. 5B.4.1- 5B.4.7

  9. Gadlage MJ, Ahlbin JR, Narasimham B, Bhuva BL, Massengill LW, Reed RA, Schrimpf RD, Vizkelethy G (2010) Scaling trends in SET pulse widths in sub-100 nm bulk CMOS processes. IEEE Trans Nucl Sci 57(6):3336–3341

    Google Scholar 

  10. Gadlage MJ, Eaton PH, Benedetto JM, Turflinger TL (2005) Comparison of heavy ion and proton induced combinatorial and sequential logic error rates in a deep submicron process. IEEE Trans Nucl Sci 52(6):2120–2124

    Article  Google Scholar 

  11. iROC Technologies (2014) TFIT reference manual, software version 4.0

  12. Jahinuzzaman SM, Rennie DJ, Sachdev M (2009) A soft error tolerant 10T SRAM bit-cell with differential read capability. IEEE Trans Nucl Sci 56(6):3768–3773

    Article  Google Scholar 

  13. Knudsen JE, Clark LT (2006) An area and power efficient radiation hardened by design flip-flop. IEEE Trans Nucl Sci 53(6):3392–3399

    Article  Google Scholar 

  14. Lacoe RC (2008) Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Trans Nucl Sci 55(4):1903–1925

    Article  Google Scholar 

  15. Lee H-HK, Lilja K, Bounasser M, Linscott I, Inan U (2011) Design framework for soft-error-resilient sequential cells. IEEE Trans Nucl Sci 58(6):3026–3032

    Article  Google Scholar 

  16. Lilja K, Bounasser M, Wen S-J, Wong R, Holst J, Gaspard N, Jagannathan S, Loveless D, Bhuva B (2013) Single-event performance and layout optimization of flip-flops in a 28-nm bulk technology. IEEE Trans Nucl Sci 60(4):2782–2788

    Article  Google Scholar 

  17. Mavis DG, Eaton PH (2007) SEU and SET modeling and mitigation in deep submicron technologies. Proceedings of IEEE Int Reliab Phys Symp. (IRPS), pp. 293–305

  18. Morgan KS, McMurtrey DL, Pratt BH, Wirthlin MJ (2007) A comparison of TMR with alternative fault-tolerant design techniques for FPGAs. IEEE Trans Nucl Sci 54(6):2065–2072

    Article  Google Scholar 

  19. Narasimham B, Gambles JW, Shuler RL, Bhuva BL, Massengill LW (2008) Quantifying the effect of guard rings and guard drains in mitigating charge collection and charge spread. IEEE Trans Nucl Sci 55(6):3456–3460

    Article  Google Scholar 

  20. Noh J, Correas V, Lee S, Jeon J, Nofal I, Cerba J, Belhaddad H, Alexandrescu D, Lee YK, Kwon S (2015) Study of neutron soft error rate (SER) sensitivity: investigation of upset mechanisms by comparative simulation of FinFET and planar MOSFET SRAMs. IEEE Trans Nucl Sci 62(4):1642–1649

    Article  Google Scholar 

  21. Robust Chip Inc. Accuro user’s manual version 8.5

  22. Weste NHE, Harris DM (2011) CMOS VLSI design- a circuits and systems perspective, 4th edn. Addison-Wesley, Boston, p 409–411

Download references

Acknowledgments

The authors appreciate the support from Natural Sciences and Engineering Research Council of Canada (NSERC), CMC Microsystems, Robust Chip Inc, and iROC Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Li.

Additional information

Responsible Editor: R. A. Parekhji

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, H., Li, L. et al. A Built-in Single Event Upsets Detector for Sequential Cells. J Electron Test 32, 11–20 (2016). https://doi.org/10.1007/s10836-015-5560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-015-5560-2

Keywords

Navigation