Skip to main content
Log in

Exploration of Noise Impact on Integrated Bulk Current Sensors

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Current CMOS (Complementary Metal Oxide Semiconductor) technologies show an increasing susceptibility to a rising amount of failure sources. This includes also radiation induced soft errors, which requires countermeasures on several design levels. Hereby, BBICS (Bulk Built-In Current Sensors) represent a promising approach on circuit level. However, it is expected that these circuits, like similar sensors measuring substrate effects, are strongly susceptible to substrate noise. The intention of this work is an in-depth noise analysis of representative bulk sensors based on extracted layout data. Thereby, several aspects are considered, like sensor activation thresholds, impact of the distance to the noise source, and noise generation by test circuits. Results indicate that already noise RMS level of 5 to 9 % of the supply voltage can lead to false detections, which are values in the same order of magnitude of noise generated by test circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arnaud A, Galup-Montoro C (2004) Consistent noise models for analysis and design of CMOS circuits. IEEE Trans Circuits Syst I Reg Papers 51(10):1909–1915. doi:10.1109/TCSI.2004.835028

    Article  Google Scholar 

  2. Bastos RP, Di Natale G, Flottes ML, Rouzeyre B (2011) How to sample results of concurrent error detection schemes in transient fault scenarios? In: Proc. 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 19–23 Sept. 2011. pp 635–642. doi:10.1109/radecs.2011.6131361

  3. Bastos RP, Torres FS, Dutertre JM, Flottes ML, Di Natale G, Rouzeyre B (2013) A Single Built-in Sensor to Check Pull-up and Pull-down CMOS Networks against Transient Faults. In: Proc. 23rd International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)

  4. Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab 5(3):305–316. doi:10.1109/Tdmr.2005.853449

    Article  MathSciNet  Google Scholar 

  5. Briaire J, Krisch KS (2000) Principles of substrate crosstalk generation in CMOS circuits. IEEE Trans Comput-Aided Design 19(6):645–653. doi:10.1109/43.848086

    Article  Google Scholar 

  6. Bronckers S, Van der Plas G, Vandersteen G, Rolain Y (2010) Substrate noise coupling mechanisms in lightly doped CMOS transistors. IEEE Trans Instrum Meas 59(6):1727–1733. doi:10.1109/Tim.2009.2024370

    Article  Google Scholar 

  7. Checka N (2005) Substrate noise analysis and techniques for mitigation in Mixed-Signal RF Systems. Massachusetts Institute of Technology, USA

    Google Scholar 

  8. Checka N, Chandrakasan A, Reif R (2005) Substrate noise analysis and experimental verification for the efficient noise prediction of a digital PLL. IEEE Trans Cust Integr Cir:473–476

  9. Cui Y, Niu GF, Rezvani A, Taylor SS (2008) Measurement and modeling of drain current thermal noise to shot noise ratio in 90 nm CMOS. 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers:118–121

  10. Garg R, Jayakumar N, Khatri SP, Choi GS (2009) Circuit-Level Design approaches for radiation-hard digital electronics. IEEE Trans VLSI Syst 17(6):781–792. doi:10.1109/Tvlsi.2008.2006795

    Article  Google Scholar 

  11. Karnik T, Hazucha P (2004) Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Trans Dependable Secure Comput 1(2):128–143. doi:10.1109/TDSC.2004.14

    Article  Google Scholar 

  12. Katsikadelis J (2002) Boundary elements theory and applications. Elsevier

  13. Le J, Hanken C, Held M, Hagedorn MS, Mayaram K, Fiez TS (2012) Experimental characterization and analysis of an asynchronous approach for reduction of substrate noise in digital circuitry. IEEE Trans. VLSI Syst 20(2):344–356. doi:10.1109/Tvlsi.2010.2100835

    Article  Google Scholar 

  14. Leach WM (1994) Fundamentals of Low-Noise Analog Circuit-Design. IEEE P 82(10):1515–1538. doi:10.1109/5.326411

    Article  Google Scholar 

  15. Leite F, Balen T, Herve M, Lubaszewski M, Wirth G (2009) Using bulk built-In current sensors and recomputing techniques to mitigate transient faults in microprocessors. In: Proc. Latin Amer Test Work, pp 147-152

  16. Lyons RE, Vanderkulk W (1962) The use of triple-modular redundancy to Improve Computer reliability. IBM J Res Dev 6(2):200–209

    Article  MATH  Google Scholar 

  17. Mahmutoglu AG, Demir A, Roychowdhury J (2013) Modeling and Analysis of (Nonstationary) Low Frequency Noise in Nano Devices: A Synergistic Approach based on Stochastic Chemical Kinetics. 2013 Ieee/Acm. In: Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 500–507

  18. Manghisoni M, Ratti L, Re V, Speziali V, Traversi G (2006) Noise Characterization of 130 and 90 nm CMOS Technologies for Analog Front-end Electronics. In: Proc. IEEE Nucl Sci Conf pp 214–218. doi:10.1109/Nssmic.2006.356142

  19. Melo JGM, Sill Torres F, Bastos RP (2015) Exploration of Noise Robustness and Sensitivity of Bulk Current Sensors for Soft Error Detection. In: Proc. 6th International Workshop on, Salvador, Brazil

  20. Miyoshi T, Arai Y, Ahmed M, Kapusta P, Ichimiya R, Ikemoto Y, Fujita Y, Tauchi K, Takeda A (2012) High-Resolution Monolithic Pixel Detectors in SOI Technology. In: Proc. 6th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

  21. Narsale A, Huang MC (2009) Variation-tolerant hierarchical voltage monitoring circuit for soft error detection. In: Proc. Int Symp Quality Electronic Design, 16–18 March 2009. pp 799–805. doi:10.1109/isqed.2009.4810395

  22. Nassar M, Dabak A, Il Han K, Pande T, Evans BL (2012) Cyclostationary noise modeling in narrowband powerline communication for Smart Grid applications. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 25–30 March 2012. pp 3089–3092. doi:10.1109/ICASSP.2012.6288568

  23. Neto EH, Ribeiro I, Vieira M, Wirth G, Kastensmidt FL (2006) Using bulk built-in current sensors to detect soft errors. IEEE Micro 26(5):10–18

    Article  Google Scholar 

  24. Neto EH, Kastensmidt FL, Wirth G (2008) Tbulk-BICS: A built-In current sensor robust to process and temperature variations for soft error detection. IEEE Trans Nucl Sci 55(4):2281–2288. doi:10.1109/Tns.2008.920426

  25. Oh Y, Jeon S, Rieh JS (2010) Variation in RF performance of MOSFETs due to substrate digital noise coupling. IEEE Microw Wirel Co 20(7):384–386. doi:10.1109/Lmwc.2010.2049431

    Article  Google Scholar 

  26. Ong SN, Yeo KS, Chew KWJ, Chan LHK (2014) Substrate-induced noise model and parameter extraction for high-frequency noise modeling of sub-Micron MOSFETs. IEEE Trans Microw Theory 62(9):1973–1985. doi:10.1109/Tmtt.2014.2340375

    Article  Google Scholar 

  27. QRC Substrate Technology Characterization Manual Product Version 11.1.2 (2012) Cadence Design Systems, Inc

  28. Reference Manual for Generic 90 nm Salicide 1.2 V/2.5 V 1P 9 M Process Design Kit (PDK) Revision 4.3. (2008) Cadence Design Systems, Inc

  29. Salman E (2009) Switching noise and timing characteristics in nanoscale integrated circuits. University of Rochester, New York

    Google Scholar 

  30. Shoji M (2014) Theory of CMOS digital circuits and circuit failures. Princeton University Press

  31. Shomalnasab G, Zhang LH (2015) New analytic model of coupling and substrate capacitance in Nanometer Technologies. IEEE Trans Vlsi Syst 23(7):1268–1280. doi:10.1109/Tvlsi.2014.2334492

    Article  Google Scholar 

  32. Sill Torres F, Possamai Bastos R (2013) Detection of transient faults in Nanometer Technologies by using modular built-In current sensors. Integrated Circuits Syst J 8(5):89–97

    Google Scholar 

  33. Srinivasan J, Adve SV, Bose P, Rivers JA (2004) The impact of technology scaling on lifetime reliability. In: Proc. International Conference on Dependable Systems and Networks, pp 177–186. doi:10.1109/dsn.2004.1311888

  34. Stanisic BR, Verghese NK, Rutenbar RA, Carley LR, Allstot DJ (1994) Addressing substrate coupling in Mixed-mode ics - simulation and power distribution synthesis. IEEE J Solid-St Circ 29(3):226–238. doi:10.1109/4.278344

    Article  Google Scholar 

  35. Uemura S, Hiraoka Y, Kai T, Dosho S (2012) Isolation techniques against substrate noise coupling utilizing through silicon via (TSV) process for RF/Mixed-signal SoCs. IEEE J Solid-State Circuits 47(4):810–816. doi:10.1109/JSSC.2012.2185169

    Article  Google Scholar 

  36. Vargas F, (1994) Nicolaidis M SEU-tolerant SRAM design based on current monitoring. In: 24th Fault-Tolerant Computing Symp. FTCS-24. Digest of Papers., 15–17 Jun 1994. pp 106–115. doi:10.1109/ftcs.1994.315652

  37. Velthuis JJ, Drasal Z, Hanninger G, Kohrs R, Mathes M, Reuen L, Scheirich D, Andricek L, Pascual IC, Chen X, Dolezal Z, Fischer P, Frey A, Fuster JA, Koch M, Kodys P, Kvasnicka P, Kruger H, Llacer CL, Lodomez P, Moser HG, Peric I, Raspereza A, Richter R, Rummel S, von Torne E, Wermes N (2008) A DEPFET based beam telescope with submicron precision capability. IEEE Trans Nucl Sci 55(1):662–666. doi:10.1109/TNS.2007.914031

    Article  Google Scholar 

  38. Wolfel S, Herrmann S, Lechner P, Lutz G, Porro M, Richter RH, Struder L, Treis J (2007) A novel way of single optical photon detection: beating the 1/f noise limit with Ultra high resolution DEPFET-RNDR devices. IEEE Trans Nucl Sci 54(4):1311–1318. doi:10.1109/Tns.2007.901225

    Article  Google Scholar 

  39. Zhichao Z, Tao W, Li C, Jinsheng Y A (2010) new Bulk Built-In Current Sensing circuit for single-event transient detection. In: Proc. 23rd Canadian Conference on Electrical and Computer Engineering (CCECE), 2–5 May 2010. pp 1–4. doi:10.1109/ccece.2010.5575124

Download references

Acknowledgments

This work has been supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sill Torres.

Additional information

Responsible Editor: L. M. Bolzani Pöhls

Electronic Supplementary Material

ESM 1

(PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, J.G.M., Sill Torres, F. Exploration of Noise Impact on Integrated Bulk Current Sensors. J Electron Test 32, 163–173 (2016). https://doi.org/10.1007/s10836-016-5579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5579-z

Keywords

Navigation