Skip to main content
Log in

An SEU-Resilient SRAM Bitcell in 65-nm CMOS Technology

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents an SEU-resilient 12 T SRAM bitcell. Simulation results demonstrate that it has higher critical charge than the traditional 6 T cell. Alpha and proton testing results validate that it has a lower soft error rate compared to the reference designs for all data patterns and supply voltage levels. The improvement in SEU tolerance is achieved at the expense of 2X area penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amusan OA, Witulski AF, Massengill LW, Bhuva BL, Fleming PR, Alles ML, Sternberg AL, Black JD, Schrimpf RD (2006) Charge collection and charge sharing in a 130 nm CMOS technology. IEEE Trans Nucl Sci 53(6):3253–3258

    Article  Google Scholar 

  2. Amusan OA, Massengill LW, Baze MP, Bhuva BL, Witulski AF, DasGupta S, Sternberg AL, Fleming PR, Heath CC, Alles ML (2007) Directional sensitivity of single event upsets in 90 nm CMOS due to charge sharing. IEEE Trans Nucl Sci 6(54):2584–2589

    Article  Google Scholar 

  3. Amusan OA, Massengill LW, Baze MP, Bhuva BL, Witulski AF, Black JD, Balasubramanian A, Casey MC, Black DA, Ahlbin JR, Reed RA, McCurdy MW (2009) Mitigation techniques for single-event-induced charge sharing in a 90-nm bulk CMOS process. IEEE Trans Device Mater Rel 9(2):311–317

    Article  Google Scholar 

  4. Argyrides C, Chipana R, Vargas F, Pradhan DK (2011) Reliability analysis of H-tree random access memories implemented with built in current sensors and parity codes for multiple bit upset correction. IEEE Trans Reliab 60(3):528–537

    Article  Google Scholar 

  5. Baeg S, Wen S, Wong R (2009) SRAM interleaving distance selection with a soft error failure model. IEEE Trans Nucl Sci 56(4):2111–2118

    Article  Google Scholar 

  6. Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Rel 5(3):305–316

    Article  MathSciNet  Google Scholar 

  7. Black JD, Sternberg AL, Alles ML, Witulski AF, Bhuva BL, Massengill LW, Benedetto JM, Baze MP, Wert JL, Hubert MG (2005) HBD layout isolation techniques for multiple node charge collection mitigation. IEEE Trans Nucl Sci 52(6):2536–2541

    Article  Google Scholar 

  8. Blum DR, Delgado-Frias JG (2009) Delay and energy analysis of SEU and SET-tolerant pipeline latches and flip-flops. IEEE Trans Nucl Sci 56(3):1618–1628

    Article  Google Scholar 

  9. Calin T, Nicolaidis M, Velazco R (1996) Upset hardened memory design for submicron CMOS technology. IEEE Trans Nucl Sci 43(6):2874–2878

    Article  Google Scholar 

  10. Chen Q, Wu L, Li L, Ma X, Wang X-A (2015) Method for improving data security in register files based on multiple pipeline restart. Intern J Inform Technol Web Eng (IJITWE) 10(3):17–32

    Article  Google Scholar 

  11. Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602

    Article  Google Scholar 

  12. Dodd PE, Shaneyfelt MR, Felix JA, Schwank JR (2004) Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Trans Nucl Sci 51(6):3278–3284

    Article  Google Scholar 

  13. Giot D, Roche P, Gasiot G, Autran JL, Harboe-Sorensen R (2008) Heavy ion testing and 3-D simulations of multiple cell upset in 65 nm standard SRAMs. IEEE Trans Nucl Sci 55(4):2048

    Article  Google Scholar 

  14. Jahinuzzaman SM, Rennie DJ, Sachdev M (2009) A soft error tolerant 10 T SRAM bit-cell with differential read capability. IEEE Trans Nucl Sci 56(6):3768–3773

    Article  Google Scholar 

  15. Li Y, Nelson B, Wirthlin M (2013) Reliability models for SEC/DED memory with scrubbing in FPGA-based designs. IEEE Trans Nucl Sci 60(4):2720–2727

    Article  Google Scholar 

  16. Li L, Li Y, Wang H, Liu R, Wu Q, Newton M, Ma Y, Chen L (2015) Simulation and experimental evaluation of a soft error tolerant layout for SRAM 6 T bitcell in 65 nm technology. J Electron Test 31(5–6):561–568

    Article  Google Scholar 

  17. Mavis DG, Eaton PH, Sibley MD, Lacoe RC, Smith EJ, Avery KA (2008) Multiple bit upsets and error mitigation in ultra-deep submicron SRAMs. IEEE Trans Nucl Sci 55(6):3288–3294

    Article  Google Scholar 

  18. Ming Z, Yi X-L, Chang L, Wei Z-J (2011) Reliability of memories protected by multibit error correction codes against MBUs. IEEE Trans Nucl Sci 58(1):289–295

    Article  Google Scholar 

  19. Nicolaidis M (2005) Design for soft error mitigation. IEEE Trans Device Mater Rel 5(3):405–418

    Article  Google Scholar 

  20. Pontes J, Calazans N, Vivet P (2012) Adding temporal redundancy to delay insensitive codes to mitigate single event effects. In: Proceedings of 18th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). IEEE, pp 142–149

  21. Rajsuman R (2001) Design and test of large embedded memories: an overview. IEEE Des Test Comput 18(3):16–27

    Article  Google Scholar 

  22. Reviriego P, Maestro JA, Cervantes C (2007) Reliability analysis of memories suffering multiple bit upsets. IEEE Trans Device Mater Rel 7(4):592–601

    Article  Google Scholar 

  23. Saleh AM, Serrano JJ, Patel JH (1990) Reliability of scrubbing recovery-techniques for memory systems. IEEE Trans Reliab 39(1):114–122

    Article  MATH  Google Scholar 

  24. Wang H-B, Li M-L, Chen L, Liu R, Baeg S, Wen S-J, Wong R, Fung R, Bi J-S (2014) Single event resilient dynamic logic designs. J Electron Test 30(6):751–761

    Article  Google Scholar 

  25. Wu Q, Li Y, Chen L, He A, Guo G, Baeg SH, Wong R (2015) Supply voltage dependence of heavy ion induced SEEs on 65 nm CMOS bulk SRAMs. IEEE Trans Nucl Sci 62(4):1898–1904

    Article  Google Scholar 

Download references

Acknowledgments

The University of Saskatchewan appreciates the support from Natural Science and Engineering Research Council of Canada, and CMC Microsystems. This project is in part supported by NSFC under contract No. 61504038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Chen.

Additional information

Responsible Editor: V. D. Agrawal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, H., Chen, L. et al. An SEU-Resilient SRAM Bitcell in 65-nm CMOS Technology. J Electron Test 32, 385–391 (2016). https://doi.org/10.1007/s10836-016-5586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5586-0

Keywords

Navigation