Skip to main content
Log in

A New Approach for Modeling Inconsistencies in Digital-Assisted Analog Design

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Safety critical circuits and systems require a specified function and real world structure to match each other. At the same time the functionality and the structure become more and more complex. This results in a high effort for design verification and test such that specification-oriented testing is getting more and more under pressure. In this paper we offer an approach to warrant the match between a specification and its structure by invertibly composing the corresponding “fingerprint” model. Conversely, the fingerprint warrants the match between specification and structure. We present a theoretical framework for creating the fingerprint from the specification and the structure, respectively, and demonstrate the parallel composition of fingerprints to an overall asynchronous feedback circuit system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Unified Modeling Language [15].

  2. Positive logic is suitable for explicit and independent formulation of the high-potential P and the low-potential \(\bar {P}\) on a pin P.

  3. Our proposition is to develop and realize an invertible non-commutative parallel composition + of entities \(\left (\sigma _{i},\sigma _{j}\right )\), \(+\left (\sigma _{i},\sigma _{j}\right )=\sigma _{\mid \mid }\), such that the homomorphism holds: \(+\left (\left (\sigma _{i}\cdot {~}^{\prime }\sigma _{i}\right ),\left (\sigma _{j}\cdot {~}^{\prime }\sigma _{j}\right )\right )=+\left (\left (\sigma _{i},\sigma _{j}\right ) \cdot \left ({~}^{\prime }\sigma_{i}, {~}^{\prime }\sigma_{j}\right )\right )=\left (+\left (\sigma _{i}, \sigma _{j}\right )\right )\cdot \left (+\left ({~}^{\prime } \!\sigma _{i}, {~}^{\prime }\sigma_{j}\right )\right )=\sigma _{\mid \mid }\cdot \,^{\prime }\sigma _{\mid \mid }\).

  4. Notice: we read the (serial) composition of morphisms from left to right, i. e., π A i A says first π A then i A .

    Fig. 10
    figure 10

    Limits and universal constructions in category theory

References

  1. Automotive IC Market to Display Strongest Growth Through 2018, IC INSIGHTS (November 18, 2014). [Online]. Available: http://www.icinsights.com/data/articles/documents/736.pdf

  2. Adámek J, Herrlich H, Strecker GE (2006) Abstract and concrete categories: the joy of cats. Repr Theory Appl Categ 17:1–507. reprint of the 1990 original [Wiley, New York]

    MathSciNet  MATH  Google Scholar 

  3. Berkel C. H. K. v., Josephs MB, Nowick SM (1999) Scanning the technology: Applications of asynchronous circuits. IEEE Proc 87(2):223–233

    Article  Google Scholar 

  4. Foty D, The future of Moore’s Law - Does it have one? (2015). In: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD) 2015

  5. Foley C (1996) Characterizing metastability. In: Second International Symposium on Advanced Research in Asynchronous Circuits and Systems, 1996. Proceedings, pp 175–184

  6. Gurkaynak F, Villiger T, Oetiker S, Felber N, Kaeslin H, Fichtner W (2002) A functional test methodology for globally-asynchronous locally-synchronous systems. In: Proceedings. Eighth International Symposium on Asynchronous Circuits and Systems, 2002, pp 181–189

  7. Ginosar R (2011) Metastability and synchronizers: a tutorial. IEEE Des Test Comput 28(5):23–35

    Article  Google Scholar 

  8. Haydt M, Mourad S, Terry W, Terry J (2002) A new model for metastability. In: 9th International Conference on Electronics, Circuits and Systems, 2002, vol 1, pp 413–416

  9. Hulgaard H, Burns SM, Borriello G (1995) Testing asynchronous circuits: a survey. Integr VLSI J 19 (3):111–131

    Article  MATH  Google Scholar 

  10. International Technology Roadmap for Semiconductors, Design. (2005). [Online]. Available: www.itrs.net/Links/2005ITRS/Design2005.pdf

  11. Khomenko V, Schaefer M, Vogler W, Wollowski R (2009) STG decomposition strategies in combination with unfolding. Acta Inform 46:433–474. [Online]. Available: http://dl.acm.org/citation.cfm?id=1669896.1669898

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurshan RP, McMillan KL (1991) Analysis of digital circuits through symbolic reduction. IEEE Trans CAD Integr Circ Syst 10(11):1356–1371. [Online]. Available: http://dblp.uni-trier.de/db/journals/tcad/tcad10.html#KurshanM91

    Article  Google Scholar 

  13. Li D, Chuang P, Sachdev M (2010) Comparative analysis and study of metastability on high-performance flip-flops. In: 2010 11th International Symposium on Quality Electronic Design (ISQED), pp 853–860

  14. Nowick S, Dill D (1995) Exact two-level minimization of hazard-free logic with multiple-input changes. IEEE Trans Comput-Aided Des Integr Circ Syst 14(8):986–997

    Article  Google Scholar 

  15. OMG, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1, Object Management Group Std., Review 2.4.1, August 2011. [Online]. Available: http://www.omg.org/spec/UML/2.4.1

  16. Shirvani P, Mitra S, Ebergen J, Roncken M (2000) DUDES: a fault abstraction and collapsing framework for asynchronous circuits. In: Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems, 2000. (ASYNC 2000) Proceedings, pp 73–82

  17. Schaefer M Advanced STG Decomposition Books on Demand GmbH, 2008. [Online]. Available: http://books.google.de/books?id=GQMBvIqhyfkC

  18. Shang DE University of Newcastle upon Tyne. School of Electrical, and C. Engineering, Asynchronous Communication Circuits: Design, Test and Synthesis. University of Newcastle upon Tyne, 2003. [Online]. Available: http://books.google.de/books?id=RZEEMwEACAAJ

  19. Tang T (1991) Experimental studies of metastability behaviors of sub-micron CMOS ASIC flip flops. In: ASIC Conference and Exhibit, 1991. Proceedings., Fourth Annual IEEE International, pp P7–4/1–4

  20. Uygur G, Sattler S (2015) Structure preserving modeling for safety critical systems. In: 2015 20th International Mixed-Signal Testing Workshop (IMSTW), pp 1–6

  21. Xu Y (2011) Algorithms for automatic generation of relative timing constraints. Ph.D. Dissertation, UT, USA

    Google Scholar 

  22. Yoneda T, Kitai T, Myers CJ (2002) Automatic derivation of timing constraints by failure analysis. In: Brinksma E, Larsen KG (eds) CAV, Ser Lect Notes Comput Sci. [Online]. Available: http://dblp.uni-trier.de/db/conf/cav/cav2002.html#YonedaKM02, vol 2404. Springer, pp 195–208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürkan Uygur.

Additional information

Responsible Editors: G. Léger and C. Wegener

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uygur, G., Sattler, S.M. A New Approach for Modeling Inconsistencies in Digital-Assisted Analog Design. J Electron Test 32, 491–503 (2016). https://doi.org/10.1007/s10836-016-5600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5600-6

Keywords

Navigation