Skip to main content
Log in

Optimal Selective Count Compatible Runlength Encoding for SOC Test Data Compression

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Test data volume amount is increased multi-fold due to the need of quality assurance of various parts of the circuit design at deep submicron level. Huge memory is required to store this enormous test data which not only increases the cost of the ATE but also the test application time. This paper presents an optimal selective count compatible run length (OSCCPRL) encoding scheme for achieving maximum compression for reduction of the test cost. OSCCPRL is a hybrid technique that amalgamates the benefits of other two techniques: 10 Coded run length (10 C) and Selective CCPRL (SCCPRL) proposed here. These techniques work on improvement of the 9 C and CCPRL techniques. In OSCCPRL, entire data is segmented in blocks and further compressed using inter block and intra block level merging techniques. SCCPRL technique is used for encoding the compatible blocks while the 10C is used to do encoding at sub block (half block length) level. In case, if no compatibility is found at block/sub block level then the unique pattern is held as such in the encoded data along with the necessary categorization bits. The decompression architecture is described and it is shown how by just the addition of few states of FSM, better test data compression can be achieved as compared to previous schemes. The simulation results performed for various ISCAS benchmarks circuits prove that the proposed OSCCPRL technique provides an average compression efficiency of around 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bayraktaroglu I, Orailoglu A. (2003) Decompression hardware determination for test volume and time reduction through unified test pattern compaction and compression. In: Proceedings IEEE VLSI test symposium (VTS), pp 113–118.

  2. Chandra A, Chakrabarty K (2001) System-on-a-chip data compression and decompression architecture based on Golomb codes. IEEE Trans Comput Aided Des Integr Circuits Syst 20(3):355–368

    Article  Google Scholar 

  3. Chandra A, Chakrabarty K (2003) Test data compression and test resource partitioning for system-on-a-chip using frequency-directed run-length (FDR) codes. IEEE Trans Commun 52(8):1076–1088

    Google Scholar 

  4. Chandra A, Chakrabarty K (2003) A unified approach to reduce SoC test data volume, scan power and testing time. IEEE Trans Comput Aided Des Integr Circuits Syst 22(3):352–363

    Article  Google Scholar 

  5. Chang CH, Lee LJ, Tseng WD, Lin RB (2012) 2n pattern run-length for test data compression. IEEE Trans Comput Aided Des Integr Circuits Syst 31(4):644–648

    Article  Google Scholar 

  6. El-Maleh AH (2008) Efficient test compression technique based on block merging. IET Comput Digit Tech 2(5):327–335

    Article  Google Scholar 

  7. El-Maleh AH (2008) Test data compression for system-on-a-chip using extended frequency-directed run-length code. IET Comput Digit Tech 2(3):155–163

    Article  Google Scholar 

  8. Gonciari P.T., Al-Hashimi B.M., Nicolici N.(2002) Improving compression ratio, area overhead, and test application time for system on-a-chip test data compression/decompression. In: Proceedings IEEE design automation and test in Europe conference and exhibition (DATE), pp 604–611

  9. Gonciari PT, Hashimi BA, Nicolici N (2003) Variable-length input huffman coding for system-on-a-chip test. IEEE Trans Computer-Aided Design 22:783–796

    Article  Google Scholar 

  10. Haiying Y, Kun G, Xun S, Zijian J (2016) Power Efficient test data compression method for SoC using alternating statistical Run-length coding. J Electron Test 32:59–68

    Article  Google Scholar 

  11. Jas A, Ghosh DJ, Ng M-E, Touba NA (2003) An efficient test vector compression scheme using selective Huffman coding. IEEE Trans Comput Aided Des 22:797–806

    Article  Google Scholar 

  12. Krishna C, Touba N.A. (2002) Reducing test data volume using LFSR reseeding with seed compression. In: Proceedings IEEE international test conference (ITC), pp 321–330.

  13. Lee H-H S, Chakrabarty K (2009) Test challenges for 3D integrated circuits. IEEE Des Test Comput 26(5):26–35

    Article  Google Scholar 

  14. Lee L-J, Tseng W-D, Lin R-B (2011) An internal pattern run-length methodology for slice encoding. ETRI J 33(3):374–381

    Article  Google Scholar 

  15. Li L, Chakrabarty K (2003) Test data compression using dictionaries with selective entries and fixed-length indices. ACM Trans Des Autom Electron Syst 8(4):470–490

    Article  Google Scholar 

  16. Mehta US, Dasgupta KS, Devashrayee NM (2010) Modified selective Huffman coding for optimization of test data compression, test application time and area overhead. J Electron Test 26(6):679–688

    Article  Google Scholar 

  17. Mehta US, Dasgupta KS, Devashrayee N (2010).Hamming Distance Based Reordering and Columnwise Bit Stuffing with Difference Vector: A Better Scheme for Test Data Compression with Run Length Based Codes. In proceeding 23rd International Conference on VLSI Design, pp: 33–38

  18. Miyase K, Kajihara S, Reddy SM (2004) Multiple scan tree design with test vector modification. In Proceedings IEEE Asian test symposium (ATS), pp 76–81

  19. Mrugalski G, Rajski J, Tyszer J (2004) Ring generators–new devices for embedded test applications. IEEE Trans Comput Aided Des Integr Circuits Syst 23(9):1306–1320

    Article  Google Scholar 

  20. Rajski J, Tyszer J, Kassab M, Mukherjee N (2004) Embedded deterministic test. IEEE Trans Comput Aided Des Integr Circuits Syst 23(5):776–792

    Article  Google Scholar 

  21. Ramm P, Armin K, Josef W, Maaike M, Taklo V (2010) 3D system-on-chip technologies for more than moore systems. Microsyst Technol 6:1051–1055

    Article  Google Scholar 

  22. Ruan X, Katti R.(2006) An efficient data-independent technique for compressing test vectors in systems-on-a-chip. In: Proceedings IEEE Computer Society Annual Symposium on Emerging VLSI technologies and architectures (ISVLSI), pp 153–158

  23. Sivanantham S, Padmavathy M, Gopakumar G, Mallick PS, Perinbam JRP (2014) Enhancement of test data compression with multistage encoding. J Integ VLSI J 47:499–509

    Article  Google Scholar 

  24. Tehranipoor M, Nourani M, Chakrabarty K (2005) Nine-coded compression technique for testing embedded cores in SoCs. IEEE Trans Very Large Scale Integ (Vlsi) Syst 13(6):719–731

    Article  Google Scholar 

  25. Tenentes V, Kavousianos X, Kalligeros E (2010) Single and variable-state-skip LFSRs: bridging the gap between test data compression and test set embedding for IP cores. IEEE Trans Comput Aided Des Integr Circuits Syst 29(2):1640–1644

    Article  Google Scholar 

  26. Touba NA (2006) Survey of test vector compression techniques. IEEE Des Test Comput 23(4):294–303

    Article  Google Scholar 

  27. Tseng W-D, Lee L-J (2010) Test data compression using multi-dimensional pattern run-length codes. J Electron Test 226:393–400

    Article  Google Scholar 

  28. Wang L., Wen X, Furukawa H., Hsu F. Lin S.,Tsai S.,Abdel-hafez K.S, Wu S. (2004). Virtual Scan: A new compressed scan technology for test cost reduction. In Proceedings IEEE international test conference (ITC), pp 916–925

  29. Wu T, Liu H, Liu PJ (2013) Efficient Test compression technique for SoC based on block merging and eight coding. J Electron Test 29:849–859. doi:10.1007/s10836-013-5415-7

    Article  Google Scholar 

  30. Yang JS, Lee J, Touba NA (2014) Utilizing ATE Vector repeat with linear decompressor for test vector compression. IEEE Trans Comput-Aided Des Integ Circuits Syst 33(8):1219–1230

    Article  Google Scholar 

  31. Yi M, Liang H, Zhang L, Zhan W (2010) A novel x-ploiting strategy for improving performance of test data compression. IEEE Trans VLSI Syst 18(2):324–329

    Article  Google Scholar 

  32. Yuan H, Mei J, Song H, Guo K (2014) Test data compression for system-on-a-chip using count compatible pattern Run-length coding. J Electron Test 30:237–242

    Article  Google Scholar 

  33. Zhou B, Y-Zheng Y, Li Z, Zhang J, Wu X, Ke R (2010) A test set embedding approach based on twisted-ring counter with few seeds. Integr VLSI J 43:81–100

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Nur A Touba of University of Texas at Austin, Texas, USA for providing the test vectors for various benchmark circuits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Vohra.

Additional information

Responsible Editor: N. A. Touba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, H., Singh, A. Optimal Selective Count Compatible Runlength Encoding for SOC Test Data Compression. J Electron Test 32, 735–747 (2016). https://doi.org/10.1007/s10836-016-5617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5617-x

Keywords

Navigation