Skip to main content
Log in

Detectability Challenges of Bridge Defects in FinFET Based Logic Cells

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Since 22nm technology node, FinFET technology is an attractive candidate for high-performance and power-efficient applications. This is achieved due to better channel control in FinFET devices obtained by wrapping a metal gate around a thin fin. In this paper, we investigate the detectability of bridge defects in FinFET based logic cells that make use of Middle-Of-Line (MOL) interconnections and multi-fin and multi-finger design strategies. The use of MOL to build the logic cells impacts the possible bridge defect locations and the likelihood of occurrence of the defect. Some defect locations unlikely to appear in planar CMOS now become more likely to occur due to the use of MOL. It is shown that these defects are difficult to be detected. The detectability of bridge defects has been analyzed for gates with different drive strengths and fan-in, and also extended to the different type of gates. A metric called Bridge Defect Criticality (BDC) is used to identify the most harmful bridge defects. This metric depends on the degree of detectability and likelihood of occurrence of a bridge defect. More design and/or test effort may be dedicated to those defects with higher a value of the BDC metric to improve product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abercrombie D, Ferguson J (2010) The (desing) house always wins-how dfm improves the odds of tapeout success. http://chipdesignmag.com/display.php?articleId=4616. Online; Accessed 20 Jan 2018

  2. Alioto M (2011) Comparative evaluation of layout density in 3t, 4t, and mt finfet standard cells. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(5):751–762. https://doi.org/10.1109/TVLSI.2010.2040094

    Article  Google Scholar 

  3. Predictive technology model. ptm.asu.edu. Online; Accessed 20 Jan 2018

  4. Baars P, Geiss EP (2012) Integrated circuits including copper local interconnects and methods for the manufacture thereof. US Patent App. 13/361,644

  5. Bahukudumbi S, Chakrabarty K (2010) Wafer-level testing and test during burn-in for integrated circuits. Artech House, Norwood

    Google Scholar 

  6. Bhoj A, Simsir MO, Jha NK (2012) Fault models for logic circuits in the multigate era. IEEE Trans Nanotechnol 11(1):182–193

    Article  Google Scholar 

  7. Bsim-cmg model. http://bsim.berkeley.edu/models/bsimcmg. Online; Accessed 20 Jan 2018

  8. Chiang KY, Ho YH, Chen YW, Pan CS, Li JCM (2015) Fault simulation and test pattern generation for cross-gate defects in finfet circuits. In: Proceedings of the 2015 IEEE 24th asian test symposium (ATS). IEEE, pp 181–186

  9. Cui T, Xie Q, Wang Y, Nazarian S, Pedram M (2014) 7nm finfet standard cell layout characterization and power density prediction in near- and super-threshold voltage regimes. In: Proceedings of the international green computing conference, pp 1–7. https://doi.org/10.1109/IGCC.2014.7039170

  10. Du L, Zhao H, Yang W, Yang R, Chen L, Yu S, Mao G, Wang Q, Lin Y, Ding S, Chen Z (2015) Optimization of sti oxide recess uniformity for finfet beyond 20nm. In: Proceedings of the 2015 China semiconductor technology international conference, pp 1–4. https://doi.org/10.1109/CSTIC.2015.7153433

  11. Duarte JP, Khandelwal S, Medury A, Hu C, Kushwaha P, Agarwal H, Dasgupta A, Chauhan YS (2015) Bsim-cmg: standard finfet compact model for advanced circuit design. In: Proceedings of the ESSCIRC conference 2015 - 41st European solid-state circuits conference (ESSCIRC), pp 196–201. https://doi.org/10.1109/ESSCIRC.2015.7313862

  12. Engelke P, Polian I, Renovell M, Kundu S, Seshadri B, Becker B (2008) On detection of resistive bridging defects by low-temperature and low-voltage testing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(2):327–338. https://doi.org/10.1109/TCAD.2007.913382

    Article  Google Scholar 

  13. Ferguson FJ, Shen JP (1988) Extraction and simulation of realistic cmos faults using inductive fault analysis. In: Proc. test conference, 1988. Proceedings. New frontiers in testing international. IEEE, pp 475–484

  14. Forero F, Galliere JM, Renovell M, Champac V (2017) Analysis of short defects in finfet based logic cells. In: Proceedings of the 2017 18th IEEE Latin American test symposium (LATS), pp 1–6. https://doi.org/10.1109/LATW.2017.7906755

  15. Harutyunyan G, Shoukourian S, Vardanian V, Zorian Y (2014) Extending fault periodicity table for testing faults in memories under 20nm. In: Proceedings of design & test symposium (EWDTS), 2014 East-West. IEEE, pp 1–4

  16. Harutyunyan G, Tshagharyan G, Vardanian V, Zorian Y (2014) Fault modeling and test algorithm creation strategy for finfet-based memories. In: Proceedings of the 2014 IEEE 32nd VLSI test symposium (VTS). IEEE, pp 1–6

  17. Itrs 2012 executive summary. http://www.itrs2.net. Online; Accessed 20 Jan 2018

  18. Joseph J, Patrikar R (2013) Impact of fin width and graded channel doping on the performance of 22nm SOI FinFET. In: VLSI design and test. Communications in computer and information science. Springer, Berlin, pp 153–159. https://doi.org/10.1007/978-3-642-42024-5_19

  19. Karel A, Comte M, Galliere JM, Azais F, Renovell M (2016) Comparative study of bulk, fdsoi and finfet technologies in presence of a resistive short defect. In: Proceedings of the 2016 17th Latin-American test symposium (LATS), pp 129–134. https://doi.org/10.1109/LATW.2016.7483352

  20. Karel A, Comte M, Galliere JM, Azais F, Renovell M (2017) Resistive bridging defect detection in bulk, fdsoi and finfet technologies. J Electron Test 33(4):515–527. https://doi.org/10.1007/s10836-017-5674-9

    Article  Google Scholar 

  21. Katoch A, Adham SM, O’connell CM (2014) Fault injection of finfet devices. US Patent App. 13 (864):725

    Google Scholar 

  22. Kauerauf T, Branka A, Sorrentino G, Roussel P, Demuynck S, Croes K, Mercha K, Bömmels J, Tőkei Z, Groeseneken G (2013) Reliability of mol local interconnects. In: Proceedings of the 2013 IEEE international reliability physics symposium (IRPS), pp 2F.5.1–2F.5.5. https://doi.org/10.1109/IRPS.2013.6531970

  23. Kedzierski J, Fried DM, Nowak EJ, Kanarsky T, Rankin JH, Hanafi H, Natzle W, Boyd D, Zhang Y, Roy RA et al (2001) High-performance symmetric-gate and cmos-compatible v/sub t/ asymmetric-gate finfet devices. In: Proceedings of the international electron devices meeting. Technical digest (Cat. No.01CH37224), pp 19.5.1–19.5.4. https://doi.org/10.1109/IEDM.2001.979530

  24. Kleeberger VB, Graeb H, Schlichtmann U (2013) Predicting future product performance: modeling and evaluation of standard cells in finfet technologies. In: Proceedings of the 2013 50th ACM/EDAC/IEEE design automation conference (DAC), pp 1–6. https://doi.org/10.1145/2463209.2488775

  25. Liu Y, Xu Q (2012) On modeling faults in finfet logic circuits. In: 2012 IEEE international test conference. IEEE, pp 1–9

  26. Lu DD, Dunga MV, Lin CH, Niknejad AM, Hu C (2007) A multi-gate mosfet compact model featuring independent-gate operation. In: Proceedings of the 2007 IEEE international electron devices meeting, pp 565–568. https://doi.org/10.1109/IEDM.2007.4419001

  27. Mandava S, Chakravarty S, Kundu S (1999) On detecting bridges causing timing failures. In: Proceedings 1999 IEEE international conference on computer design: VLSI in computers and processors (Cat. No.99CB37040), pp 400–406. https://doi.org/10.1109/ICCD.1999.808573

  28. Marella SK, Trivedi AR, Mukhopadhyay S, Sapatnekar SS (2015) Optimization of finfet-based circuits using a dual gate pitch technique. In: Proceedings of the 2015 IEEE/ACM international conference on computer-aided design (ICCAD), pp 758–763. https://doi.org/10.1109/ICCAD.2015.7372646

  29. Maxwell PC, Aitken RC, Huisman LM (1994) The effect on quality of non-uniform fault coverage and fault probability. In: Proceedings., international test conference, pp 739–746. https://doi.org/10.1109/TEST.1994.528020

  30. Natarajan S, Agostinelli M, Akbar S, Bost M, Bowonder A, Chikarmane V, Chouksey S, Dasgupta A, Fischer K, Fu Q et al (2014) A 14nm logic technology featuring 2nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a 0.0588 μ m2 sram cell size. In: Proceedings of the 2014 IEEE international electron devices meeting, pp 3.7.1–3.7.3. https://doi.org/10.1109/IEDM.2014.7046976

  31. Nigh P, Gattiker A (2000) Test method evaluation experiments and data. In: Proceedings international test conference 2000 (IEEE Cat. No.00CH37159), pp 454–463. https://doi.org/10.1109/TEST.2000.894237

  32. Patel K, Liu TJK, Spanos CJ (2009) Gate line edge roughness model for estimation of finfet performance variability. IEEE Transactions on Electron Devices 56(12):3055–3063. https://doi.org/10.1109/TED.2009.2032605

    Article  Google Scholar 

  33. Peng WP, Chi MH, Derderian G, Das K, Zhang Y, Laloe JB, Deniz D, Patil S, Yan J, Singh S et al (2016) Elimination of tungsten-voids in middle-of-line contacts for advanced planar cmos and finfet technology. In: Proceedings of the 2016 China semiconductor technology international conference (CSTIC). IEEE, pp 1–4

  34. Polian I, Engelke P, Becker B, Kundu S, Galliere JM, Renovell M (2005) Resistive bridge fault model evolution from conventional to ultra deep submicron. In: Proceedings of the 23rd IEEE VLSI test symposium (VTS’05), pp 343–348. https://doi.org/10.1109/VTS.2005.72

  35. Rashed M, Jain N, Kim J, Tarabbia M, Rahim I, Ahmed S, Kim J, Lin I, Chan S, Yoshida H, Beasor S, Yuan L, Kye J, Chee J, Mittal A, Doman D, Johnson S, Schroeder U, Cave N, Tang T, Stephen J, Augur R, Kengeri S, Venkatesan S (2013) Innovations in special constructs for standard cell libraries in sub 28nm technologies. In: Proceedings of the 2013 IEEE international electron devices meeting, pp 9.7.1–9.7.4. https://doi.org/10.1109/IEDM.2013.6724597

  36. Rasouli SH, Endo K, Chen JF, Singh N, Banerjee K (2011) Grain-orientation induced quantum confinement variation in finfets and multi-gate ultra-thin body cmos devices and implications for digital design. IEEE Transactions on Electron Devices 58(8):2282–2292. https://doi.org/10.1109/TED.2011.2151196

    Article  Google Scholar 

  37. Schuddinck P et al (2012) Standard cell level parasitics assessment in 20nm bpl and 14nm bff. In: Proceedings of the 2012 international electron devices meeting, pp 25.3.1–25.3.4. https://doi.org/10.1109/IEDM.2012.6479101

  38. Shin C (2016) Variation-aware Advanced CMOS Devices and SRAM, vol 56. Springer, Berlin

    Google Scholar 

  39. Simsir MO, Bhoj A, Jha NK (2010) Fault modeling for finfet circuits. In: Proceedings of the 2010 IEEE/ACM international symposium on nanoscale architectures. IEEE Press, pp 41–46

  40. Stroud CE, Emmert JM, Bailey JR, Chhor KS, Nikolic D (2000) Bridging fault extraction from physical design data for manufacturing test development. In: Proceedings international test conference 2000 (IEEE Cat. No.00CH37159), pp 760–769. https://doi.org/10.1109/TEST.2000.894272

  41. Tshagharyan G, Harutyunyan G, Shoukourian S, Zorian Y (2015) Overview study on fault modeling and test methodology development for finfet-based memories. In: Proceedings of the 2015 IEEE east-west design & test symposium (EWDTS). IEEE, pp 1–4

  42. Wei X, Zhu H, Zhang Y, Zhao C (2016) Bulk finfets with body spacers for improving fin height variation. Solid State Electron 122:45–51. https://doi.org/10.1016/j.sse.2016.04.009. http://www.sciencedirect.com/science/article/pii/S0038110116300181

    Article  Google Scholar 

  43. Weng CJ (2009) Defects reduction of nano-semiconductor dual damascene process development

  44. Wunderlich HJ (2009) Models in hardware testing: lecture notes of the forum in honor of Christian Landrault, vol 43. Springer Science & Business Media, Berlin

    Google Scholar 

  45. Zhu J-J, Luo X-H, Chen L-S, Ye Y, Yan X-L (2012) Scratch-concerned yield modeling for ic manufacturing involved with a chemical mechanical polishing process. Journal of Zhejiang University SCIENCE C 13(5):376–384. https://doi.org/10.1631/jzus.C1100242

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT (Mexico) through the PhD scholarship number 434673/294398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Forero.

Additional information

Responsible Editor: L. M. Bolzani Pöhls

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forero, F., Galliere, JM., Renovell, M. et al. Detectability Challenges of Bridge Defects in FinFET Based Logic Cells. J Electron Test 34, 123–134 (2018). https://doi.org/10.1007/s10836-018-5714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-018-5714-0

Keywords

Navigation