
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-021-05942-4

Tolerating Soft Errors with Horizontal‑Vertical‑Diagonal‑N‑Queen
(HVDNQ) Parity

Muhammad Sheikh Sadi1 · Sumaiya Sumaiya1 · Mouly Dewan1 · Atikur Rahman1

Received: 15 November 2020 / Accepted: 25 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A new error detection and correction methodology, defined as Horizontal-Vertical-Diagonal-N-Queen-Parity (HVDNQ),
is proposed in this paper. This approach relies on five different types of parities: horizontal parity, vertical parity, forward
diagonal parity, backward diagonal parity, and queen parity. This method works on an N X N cell area and can correct multi-
bit upsets. The experimental analysis validates the effectiveness of the proposed methodology by comparing its efficiency
with existing methodologies. In different varieties of error patterns such as equilateral triangle, pentagon, hexagon etc., the
capability of error detection and correction of HVDNQ is much better than existing methods.

Keywords Horizontal Parity · Vertical Parity · Diagonal Parity · N-queen Parity · Soft Error Tolerance

1 Introduction

Systems complexity is increasing day by day with the advance-
ment of modern circuitry. As a result, systems have become
more prone to soft errors [1]. Embedded systems, having high
complexity, face casualty in this matter. Data are becoming
more susceptible to soft errors (i.e., single-event transients -
SET) while they are being transferred from sender to receiver.
Similarly, data are also becoming more susceptible to soft
errors (single-event upsets - SEU) while being stored in mem-
ory elements. With progressive innovation, the scaling of com-
plex systems based on circuitry is expanding exponentially.
The structure of a transistor on a chip in current dimensions
has elements only a few hundred atoms wide. Hence, very
little energy is needed to change the state of the transistor and

thus causing transient faults in the embedded systems’ circuits
[2]. Transient errors are highly responsible for bitflips in sys-
tems, which is a major reliability issue in real-time systems [3].
In practical applications, such as avionic systems or nuclear
power plants, a single bit error can cause disastrous changes
[4]. Nonstop downscaling of CMOS innovations has come
about in clock frequencies coming to different GHz; supply
voltage decreasing below one-volt level, and load capacitances
of circuit nodes dropping to femtofarads [5] are expanding the
dangers in embedded systems [6]. The risks of soft errors will
become more of an issue as the line widths are needed to be
reduced more since in that situation a little disturbance in the
compact circuit may create a voltage glitch.

Manufacturing companies are adding more complex fea-
tures to upcoming processors. To reach this goal, circuits are
becoming more compact. Additionally, supply voltage is being
reduced to minimize power. As a result, the natural resilience
of chips to soft errors is continuously decreasing [7].

The exceptionally high level of complexity and the fact
that the software and hardware are so intricately linked in
an embedded system means is creating the situation where
unexpected voltage fluctuation in internal structure can
change the system’s state at any time [8]. Specifically, sys-
tems like pacemaker; unmanned aerial vehicles, electronic
hostile environments where a system cannot afford a mal-
function; nuclear power plants where a single failure may
cause severe destruction are very much concerned about the
risks of soft error [5].

Responsible Editor: F. L. Vargas

 * Muhammad Sheikh Sadi
 sadi@cse.kuet.ac.bd

 Sumaiya Sumaiya
 sumaiya0069@gmail.com

 Mouly Dewan
 mouly.dewan@gmail.com

 Atikur Rahman
 Rahman1907511@stud.kuet.ac.bd

1 Khulna University of Engineering & Technology, Khulna,
Bangladesh

/ Published online: 3 May 2021

Journal of Electronic Testing (2021) 37:243–254

http://orcid.org/0000-0003-3390-6450
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-021-05942-4&domain=pdf

1 3

Some approaches tried to tolerate soft errors at their best.
However, in most of the cases (as far we have reviewed), the
system is still at risk in key areas [9]. Further, in the case of
hardware and software dual redundancy-based approaches, these
methods incur overheads for synchronizing identical threads
and performance degradation for redundant components [10].
Hardware-based strategies based on duplication regularly endure
from a high area, time, and power overheads [11].

Several error correction coding techniques already exist.
Among them, parity codes, N-Dimensional parity code [12],
BCH code [13], Golay code [14] are notable. The error correc-
tion coverage, information overhead, and complexity of these
methods vary from adopting various techniques. Most of the
techniques have large information overhead, and/or circuit com-
plexity. Besides these, the error correction capability of those
techniques still require more advancements.

Hence, this paper proposes an enhancement of our previ-
ous HVDQ [15] and HVD7Q [16], to advance the soft error
tolerance strategies. In the present approach, we have used
horizontal, vertical, diagonal, and n (here we used a vari-
able rather than a fixed value) queen parity. The NQueen is
a problem where N queens on an N × N chessboard are to be
placed so that no two queens attack each other. Then gener-
ate all possible configurations of queens on board and print
a configuration that satisfies the given constraints. So, for a
given N, we have generated all possible solutions and each
parity for these solutions individually. These parity bits are
used with other parity bits (horizontal, vertical and diagonal
parity) to detect and correct errors. HVDNQ removes the
limitations of the HVDQ method by adding the variation
of the queen parity. Here, a high-level detection and correc-
tion method has been applied for all solutions of the queen
parity. In the queen parity scheme, we have experimented
with 7 to 20 queen parities. HVDNQ has covered 5-bit error
detection and 14-bit error detection by using 7 queens to 20
queens with horizontal, vertical, and diagonal parity.

The remaining part of the paper is organized as follows.
Section 2 discusses related work in brief. The proposed
methodology is discussed in Sect. 3, while Sect. 4 depicts a
case study to illustrate the proposed methodology. Experi-
mental analysis is shown in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Related Work

There are several existing approaches to tolerate soft errors.
Few remarkable approaches among them are outlined shortly
as follows.

Sakib et al. [15] depicted a modified approach of HVD [21].
They defined their approach as HVDQ which functions in 5
dimensions. A new dimension named as Queen is included with
the other 4 dimensions: H, V, FD, and BD. The key idea of their

paper was to use 8 queen solutions for error detection and correc-
tion. Our previous paper HVD7Q [16] also added five different
types of parities. It added seven queen parity with H, V, FD, and
BD. However, it could detect and correct up to 4-bit errors only.

Pflanz et al. [17] proposed a 5-bit error correction coding
technique. It used parity bits in three directions. All combi-
nations of 5-bit errors are not tolerable by using this method.
It also ignored the probability of error in the parity bits.

Horizontal, vertical, and diagonal parity-based approach
for soft error tolerance was shown by Shanna and Vijaya-
kumar [18]. However, the proposed system can detect and
correct maximum 5-bit errors.

Anne et al. [19] proposed a methodology where informa-
tion bits are structured to achieve a cube of different layers.
The external surfaces are composed of pieces of equality.
This method provides a design in a three-dimension struc-
ture and by this method, errors of maximum 7 bits can be
detected and errors of maximum 2 bits can be corrected.

Aflakian et al. [20] proposed two soft error tolerant
approaches. For the first approach, the system can detect
maximum 7-bit errors and can correct up to 4-bit errors. This
system utilized 4 dimensions such as horizontal, vertical,
forward diagonal, and backward diagonal (H, V, FD, and
BD). For the second approach, the system created cuboids
of data bits and this system is able to detect a maximum of
15 erroneous bits and to correct a maximum of 4 bits.

Kishani et al. [21], in their paper, illustrated an approach that
utilized 4 dimensions such as H, V, FD, and BD. This approach
can correct maximum 3-bit errors. However, it neglected several
error patterns for which it could not detect and correct errors.

Matrix Code is another popular error-tolerant method that
is mostly memory protection oriented [22]. In this method, at
first total data bits are divided into a matrix form followed by
the application of hamming code for the generation of check
bits. Through matrix codes, single and double bit errors can
be detected and corrected. However, for double bit errors in
the same column, the method cannot detect and correct errors.

Silva et al. [23] proposed an extended matrix region
selection code (EMRSC) which increased correction capa-
bility and reduces the number of generated redundant bits
by using data matrix regions. This method also generates a
tradeoff between area and power overheads and reliability
degree. However, this method could correct around 60%
errors considered in all scenarios.

3 The Proposed HVDNQ Methodology

Our proposed methodology is defined as HVDNQ where N
is varying from 7 to 20. In the N Queen problem, “N” is the
number of chess queens on an N×N chessboard as described
in Sect. 1. The number of queen i.e. N is an integer number
among 7 to 20 to detect and correct the erroneous bits.

244 Journal of Electronic Testing (2021) 37:243–254

1 3

It is comprised of several steps such as Calculate Hori-
zontal and Vertical Parity, Calculate Forward and Back-
ward Diagonal Parity, Calculate Queen Parity, Finding
Mismatched Parity Bits, Mark Candidate Bits, Refine
Candidate Bits, and Flag the Errors and Error Correction.
The flow diagram of the proposed HVDNQ methodology
is illustrated in Fig. 1, where the necessary steps are visu-
alized. In here, we have chosen a typical virtual example
of information which might be erroneous while Sender is
sending data to Receiver and how these errorrs are being
detected and corrected using the proposed method.

The proposed methodology works in H, V, FD, BD,
and N Queen parities. It calculates parity in all 5 different
types of parities and compares sent parity with received
parity to find mismatched parity (regenerate parity bits).
The candidate bits are generated from these parity bits and
finally these are refined to flag errors. The details of these
steps are outlined shortly as follows.

The horizontal and vertical parity can be calculated by
choosing any method from the Even/Odd Parity generation
shown in Fig. 2. The detailed process to generate these
parity bits is shown by using pseudocode as illustrated
in Fig. 3.

3.1 Forward and Backward Parity Calculation

Diagonal parity bits are calculated from one corner of a
matrix to another corner and we calculated the number of
inclining parity bits. There are two sorts of diagonal parity
calculations to be carried out. One is forward parity calcula-
tion, and another one is backward parity calculation.

The forward diagonals take the direction from the top right
to bottom left and the backward diagonals are from top left to
bottom right. For forward diagonal parity, as shown in Fig. 2,
the 1st forward diagonal has only one cell as [0], [0], the 2nd
diagonal has a two cells as [0], [1] and [1], [0]. The Nth forward
diagonal has a starting position of [0], [N-1] and in such way
the next bit will be [row + 1], [column-1] i.e. [1], [N-2]. This
process will be continued until column < 0 or row + 1 > row_
size. For backward parity calculation, the 1st diagonal has a
starting position of [0], [N-1] i.e. [0], [col_position-1]. Starting
bit for Nth diagonal is [0], [0]. The next bit will be [row + 1],
[col + 1]. The process will continue until row + 1 > row_size or
col + 1 > col_size. In Fig. 2, the forward diagonal parity bits are
denoted by D1, D2, D3… D9 and the backward diagonal parity
bits are represented by D’1, D’2, D’3… D’9.

Fig. 1 The flow diagram of the
proposed methodology

245Journal of Electronic Testing (2021) 37:243–254

1 3

3.2 Queen Parity Calculation

The Queen parity has been used here adapting the N Queen
problem. In the classical N Queen problem, no two queens
can share the same row, column, or diagonal which gives us a
set of unique solutions. These generated unique solutions play
an important role in our methodology. The N Queen problem
uses a N X N matrix, where N is the number of Queens to
be placed in the matrix. The Queen matrix matches with our
dataset, which is another reason to use this problem.

During the conventional parity calculation of even/odd Parity,
it is often seen that the parity fails to give the actual result in both
the sender and receiver. For example, in case of Hamming code,
if errors occur in two parity bits of the sender’s message, then the
system cannot detect error at the receiver end. There are similar
types of problems arise in several existing techniques as well.

To increase the error correction coverage, the 5th parity
called the Queen parity has been added. When we calcu-
late even parity in vertical and horizontal lines, we see

Step 1: Initialize Row, Column, and Count to 0.
Step 2: Repeat
Step 3: Add value to count
Step 4: Increment row and column
Step 5: If (n modulus 2 ==1)

Set parity bit to 1
Step 6: Else

Set parity bit to 0
Step 7: Until row <=row_size and column <=
column_size
Step 7: Endif
Step 8: End.

Fig. 3 Pseudocode for Parity Calculation

Fig. 2 An architecture of the
proposed HVDNQ method
(Here, N = 9)

246 Journal of Electronic Testing (2021) 37:243–254

1 3

that if two bits are changed within the same dimension,
the parity is not changed. For illustration, let us take a
data word in a row (horizontal dimension) 10,100,110 and
the calculated parity, in this case, is 0. Due to changes in
two bits, we may get the data word at the receiver side as
10,100,000. Here, we see that with the change of two bits
the parity is unaltered. It is possible to flip two or more
bits but at the same time parity is not changed; at that
point, we cannot identify the erroneous data bits.

For the calculation of queen parity bits, every unique solu-
tion for N queen will take place. Unique solutions are required
for the calculation of Queen Parity. From the unique Queen
solutions, we may find distinct solutions. For example, Let N
Queen’s problem has M distinct solutions. Among the distinct
solutions, we can select P unique solutions which are based
on the asymmetric rotation of 90 degrees, 180 degrees, or
270 degrees in their respective matrices. Thus, we can obtain
unique solutions. Here, Q (1, 2, 3, 4, 5, 6, 7…………0.26) are
the 26 unique solutions of the 9 Queen problem. Similarly, if
we consider the 7 Queen problem, among the 40 distinct solu-
tions then we shall have 7 unique solutions. For the 9 queen
problem, the unique solutions are shown in Fig. 4.

3.3 Finding Mismatched Parity Bits

As data is generated from sender to receiver, the main parity
bits of the sender and receiver should be checked. Before
sending a data block, the parity is calculated on the send-
er’s side. After receiving the data block from the receiver’s
side, the same parity calculation is carried out. If there is a
dissimilarity between received parity and sent parity, then
the mismatched parity bits are detected. Figure 5 shows the
pseudocode of detecting mismatched parity bits.

3.4 Candidate Bits’ Refining, Error Detection
and Correction

Till this point, we have calculated H, V, FD, BD, and queen
parity from the given dataword. Then syndrome parity bits
are determined by using mismatched parity bits among sent
and received parity. Then the candidate bits are calculated.
We have chosen the crossing points of three lines to form
candidate bits. So, when we take a crossing point of three
lines, we mark this bit as candidate bit.

Once the erroneous bits are recognized, these can be cor-
rected by flipping the values of the bits. The detail idea about
how the proposed method works can be obtained from the
following case study.

4 A Case Study with HVD9Q

To illustrate the proposed methodology, an example of
HVD9Q has been shown in this section. HVDNQ is capa-
ble to detect and correct multi-bit errors. The number of
errors it can correct depends on the number of Queen
used in HVDNQ. HVD7Q and HVD8Q can detect and
correct up to 5 bits; HVD9Q can detect and correct up to
7 bits of error; HVD10Q, HVD11Q, HVD12Q can detect
and correct up to 8 bits of errors; HVD13Q, HVD14Q

Q1:(1,2),(2,4),(3,7),(4,3),(5,8),(6,6),(7,1),(8,5),(9,9)

Q2:(1,2),(2,4),(3,9),(4,7),(5,5),(6,3),(7,1),(8,6),(9,8)

Q3:(1,2),(2,5),(3,7),(4,4),(5,1),(6,3),(7,9),(8,6),(9,8)

Q4:(1,3),(2,5),(3,2),(4,9),(5,1),(6,4),(7,7),(8,8),(9,6)

Q5:(1,4),(2,1),(3,3),(4,6),(5,9),(6,2),(7,8),(8,5),(9,7)

Q6:(1,5),(2,1),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4),(9,9)

Q7:(1,5),(2,2),(3,4),(4,9),(5,7),(6,3),(7,1),(8,6),(9,8)

Q8:(1,6),(2,1),(3,5),(4,2),(5,9),(6,7),(7,4),(8,8),(9,3)

Q9:(1,6),(2,1),(3,5),(4,7),(5,9),(6,3),(7,8),(8,2),(9,4)

Q10:(1,6),(2,2),(3,5),(4,7),(5,9),(6,3),(7,8),(8,4),(9,1)

Q11:(1,6),(2,2),(3,5),(4,7),(5,9),(6,4),(7,8),(8,1),(9,3)

Q12:(1,7),(2,1),(3,6),(4,2),(5,5),(6,8),(7,4),(8,9),(9,3)

Q13:(1,7),(2,1),(3,6),(4,9),(5,2),(6,4),(7,8),(8,3),(9,5)

Q14:(1,8),(2,1),(3,4),(4,6),(5,3),(6,9),(7,7),(8,5),(9,2)

Q15:(1,8),(2,2),(3,5),(4,7),(5,1),(6,4),(7,6),(8,8),(9,3)

Q16:(1,1),(2,3),(3,6),(4,8),(5,2),(6,4),(7,9),(8,)7,(9,5)

Q17:(1,2),(2,4),(3,1),(4,7),(5,9),(6,6),(7,3),(8,5),(9,8)

Q18:(1,2),(2,4),(3,7),(4,1),(5,3),(6,9),(7,6),(8,8),(9,5)

Q19:(1,8),(2,2),(3,9),(4,6),(5,3),(6,1),(7,4),(8,7),(9,5)

Q20:(1,9),(2,2),(3,5),(4,7),(5,1),(6,3),(7,8),(8,6),(9,4)

Q21:(1,1),(2,6),(3,8),(4,5),(5,2),(6,4),(7,9),(8,7),(9,3)

Q22:(1,1),(2,7),(3,4),(4,6),(5,9),(6,2),(7,5),(8,3),(9,8)

Q23:(1,1),(2,8),(3,5),(4,3),(5,6),(6,9),(7,2),(8,4),(9,7)

Q24:(1,2),(2,9),(3,6),(4,3),(5,5),(6,8),(7,1),(8,4),(9,7)

Q25:(1,2),(2,3),(3,7),(4,1),(5,8),(6,5),(7,9),(8,4),(9,6)

Q26:(1,1),(2,5),(3,7),(4,9),(5,4),(6,2),(7,8),(8,6),(9,3)

Fig. 4 The unique solutions of the 9 queen problem

Step 1: Initialize a data block
Step 2: Count number of 1 in each row
Step 3: If (Count modulus 2 ==1)
Horizontal parity <- 1
Step 4: Else
Horizontal/Vertical parity <- 0.

Step 5: Repeats step 2, step 3, and step 4 for
vertical, and diagonal parity.
Step 6: If (sender parity != receiver parity)
error bit -> 1
Step 7: Endif
Step 8: End

Fig. 5 Pseudocode of detecting mismatched parity bits

247Journal of Electronic Testing (2021) 37:243–254

1 3

can detect and correct up to 9 erroneous bits; while
HVD15Q, HVD16Q, HVD17Q can detect and correct
up to 10 bits of errors; and HVD18Q, HVD19Q, and
HVD20Q can detect and correct 12 and 14 bits of error
respectively. In this experiment, we have innjected all
possible combinations of faults to evaluate the error cor-
rection coverage effectively.

The steps of implementation of HVD9Q has been
shown as follows.

4.1 Forming the Architecture of HVD9Q

Fig. 6 illustrates a Codeword Architecture of HVD9Q with
7-bit errors. As shown in this figure, there is an architecture
of a 155-bit codeword where it has 81 data bits and 74 check
bits. Since in this example (HVD9Q), N = 9, there are 17
diagonals in this architecture. If N is 10, then this value will

be 19. In Fig 7, we have highlighted the mistaken parity bits.
The parity bits of horizontal, vertical, double diagonal, and
Queen parity for HVD9Q have been shown in these architec-
tures. Regeneration of parity bits helps to generate candidate
bits. Candidate bits formation procedure is already illustrated
in Sect. 3.4. From the candidate bits, we proceed to detect the
actual erroneous bits.

4.2 Mark All Candidate Bits

Each parity bit belongs to either one of: : horizontal parity,
vertical parity, forward diagonal parity, backward diagonal
parity, and queen parity. We have chosen the crossing points
of three lines to form candidate bits. In Fig 8, there are 33
parity mismatches. So, when we take a crossing point of three
lines, we mark this bit as candidate bit and the refining pro-
cess is illustrated in Sect. 4.3.

Fig. 6 Codeword Architecture
of HVD9Q with 7-bit errors

248 Journal of Electronic Testing (2021) 37:243–254

1 3

The addresses of candidate bit are stored in a array. The
candidate bits are illustrated in Fig. 8 for the error patterns
as shown in Fig. 6.

4.3 Candidate Bits’ Refining, Error Detection,
and Correction

Candidate bits do not reflect that all of these should be erro-
neous. For refining candidate bits, the criteria used in this
paper is: if in any direction (horizontal, vertical, double
diagonal, or Queen), there is any candidate bit with cor-
responding syndrome bit set to 0, then the candidate bit is
discarded. If the corresponding syndrome bit is set to 1, then
it is kept. Let us look at some examples of refining candidate
bits for 9 Queen parity, on a 9 x 9 data grid. In Figure 9, for
the position - (1, 1), both the H1 and V1 are set. In order to
refine it, we need to make sure that the forward diagonal,

backward diagonal, and the Queen parity bits are set as well.
Hence, the parity bits for (1, 1) point are H1, V1, D1, D’9,
Q21, and Q26 which are all set. Hence, this is an error.

For the position (1,2): H1 and V2 have a cross-section but
the double diagonal parity and the Queen parity are not set. As
a result, this is not an error and we have discarded it. Similarly,
for (H1, V3), (H1, V4), (H1, V5), (H1, V6), (H1, V7), (H1, V8)
on the 1st row, we have eliminated these candidate bits as these
are not erroneous. To refine the candidate bits of the second
row, horizontal and vertical parity: H2 and V1, H2 and V2, H2,
and V3 are set, but the diagonals’ and queen parity are not set.
Hence, these are discarded from the set of candidate bits. How-
ever, in the case of the intersection point - (2, 5): all parity -H2,
V5, D6, D’6, and Q26 - are set. Hence, this is an erroneous bit.

Next, we consider another candidate bit on the third row
which is the cross-section of H3 and V8. For this position,
all other parity bits in D’4, D10, and Q6 parities are set.

Fig. 7 Codeword with parity
bits

249Journal of Electronic Testing (2021) 37:243–254

1 3

As a result, this is an erroneous bit. In such a way, all other
cross-sectional bits in other rows are checked whether they
have parity set in all five different types of parities. Theoreti-
cally, if there is a candidate bit for which no syndrome bits
are found in any parity, then the corresponding bit is not
erroneous. However, if all five different types of parity bits
of a candidate bit are found erroneous, then this bit is erro-
neous. Thus, the final erroneous bits are detected in (1,1),
(2,5), (3,8), (4,3), (6,7), (7,2) and (9,5) positions. Refining
the candidate bits are performed at three steps and Fig. 9(a),
Fig. 9(b), and Fig. 9(c) respectively show the procedure
sequentially. When the erroneous bits are detected, these
are corrected by inverting individually.

According to Kishani et al. [21], this rule was proposed for
four dimensions. In this paper, we have added one more parity
for N queen and it is proved that it improves the error detection
and correction capability for five different types of parities. In
experimental analysis, we have discussed these results in detail.

5 Experimental Analysis

The experimental setup that was used to evaluate the pro-
posed methodology and fault injection are detailed in this
section. The experimental results and discussion are also
highlighted in this section.

5.1 Experimental Setup

The proposed methodology is executed in Pentium Core i7
processor. The RAM size is 8 Gigabyte, and Turbo C++
language is used for the development of this method.

Fig. 9 (a) Refining Candidate Bits (First Step). (b) Refining Candi-
date bits (2nd Step). (c) Refining Candidate Bits (Final Step)

▸

Fig. 8 Candidate Bits

250 Journal of Electronic Testing (2021) 37:243–254

1 3

5.2 Fault Injection

In this experiment, the error is injected through simula-
tion. Fault injection means bit flipping, which means to
change a value from binary ‘0′ to a binary ‘1′ and vice
versa at any bit’s position in the N X N data block. For the
N X N data block, to inject one-bit fault, at first we gen-
erate all conceivable combinations of one-bit faults and
then we took each combination for the injection of faults
in the given data block. Similarly, we have generated two,
three, four, five, and all combinations’ of errors for 7 to
20 Queen solution.

5.3 Error Detction and Correction Capacity

To measure error detection coverage of HVDNQ, we used
the N X N data block. Error combinations of the chosen data
block are generated using mathematical combinational for-
mula among the data bits. The erroneous bit is detected and
corrected as the solution of HVDNQ differs on N’s value.
In this paper, N’s value lies between 7 to 20.

The code rate is an important parameter to evaluate the
performance of a fault-tolerant technique. It is the ratio
between the data word and codeword. Hence, if n is the
size of the dataword and m is the size of the codeword then
the code rate of this coding scheme will be n/m. In Fig. 10,
the code rate of HVD7Q to HVD12Q is shown to draw the
comparison among the varieties of HVDNQ.

Bit overhead, which is the ratio between check bit and
data word; Number of erroneous bits that a coding method
can correct; and accuracy, which shows the error correction
capability of a method, are three vital parameters to flag the
performance of an error correction coding method. Table 1
shows the comparison between the proposed HVDNQ and
several existing methods concerning these three parameters.
For this experiment, we have considered all combinations of
errors and maximum eror correction capacity of a method
means how many erroneous bits can be corrected at best by
that method. It can be observed from this table that HVDNQ
performs better than Golay, BCH, HVD, and HVDD con-
cerning bit overhead and the number of the corrected errone-
ous bits. For HVD7Q, the accuracy is found better than other
existing methods but the accuracy moves downward with the
increasing value of N in HVDNQ.

Different types of error patterns are shown in Fig. 11. In
Table 2, the detailed investigation report, where the capabili-
ties of different methods are shown concerning different error
patterns, has been appeared. Here, ‘YES’ means the method
can detect or correct error and ‘NO’ means the method is
not able for so. It is viewed from Table 2 that the proposed
HVDNQ performs better than other methods concerning the
capability of error detection and correction in different varie-
ties of error patterns.

251Journal of Electronic Testing (2021) 37:243–254

1 3

6 Conclusion

The proposed HVDNQ method is an efficient error correc-
tion coding scheme with a higher error correction cover-
age. HVDNQ is able to detect and correct 5 to 14-bit errors
(the capability varies with the differences of N) where all
possible combinations of faults are injected. Subsequently,
the proposed HVDNQ delineates the capacity to detect and
correct a larger number of errors by encountering informa-
tion overhead. Hence, it can be concluded that the proposed
method is useful for the systems where the systems require
high reliability. Further studies can be performed to lower
bit overhead by adopting new methodologies, e.g., applying
novel compression techniques in the codeword.Fig. 11 Different types of error patterns

Table 2 Detecting error patterns by various methods

Error Pattern Golay BCH HVD HVDD HVDNQ

Irregular Triangle Yes Yes Yes Yes Yes
Equilateral Triangle Yes Yes Yes No Yes
Close Triangle Yes Yes Yes Yes Yes
Rectangle No No No No Yes
Parallelogram No No No No Yes
Rhombus No No No No Yes
Pentagon No No No No Yes
Hexagon No No No No Yes
Heptagon No No No No Yes
Square No No No No Yes
Trapezoid No No No No Yes
Star-shaped No No No No Yes

Table 1 The Comparison between the Proposed HVDNQ and Several Existing Methods

Different Error Correc-
tion Methodologies

Size of the
data- word

Max Error Cor-
rection Capac-
ity (bit)

Number of bits
in a code-word

Bit over-head
(%)

Accuracy (%) Memory
Requirements
(MB)

Execution Time
(s)

Golay(23,12,7) 11 3 23 109.1 89.76% 4.0 2891
BCH(31,16,7) 15 3 31 106.6 76.9% 5.0 2446
HVDD(64) 64 3 91 42.19 42.19% 6.7 3540
HVD7Q(49) 49 5 96 95.91 96.2% 7.3 4887
HVD8Q(64) 64 5 124 93.75 70.5% 7.1 4556
HVD9Q(81) 81 7 155 91.35 68.4% 7.4 3776
HVD10Q(100) 100 8 190 90.00 65.2% 6.9 4553
HVD11Q(121) 121 8 227 87.60 58.78% 6.8 4779
HVD12Q(144) 144 8 268 86.11 55.3% 7.5 4998
HVD13Q(169) 169 9 311 84.02 53.1% 7.4 4671
HVD14Q(196) 196 9 358 82.65 53.09% 7.6 4632
HVD15Q(225) 225 10 407 80.88 52.56% 7.4 4678
HVD16Q(256) 256 10 458 78.90 51.67% 7.2 4876
HVD17Q(289) 289 10 511 76.81 50.1% 7.4 4567
HVD18Q(324) 324 12 564 74.07 50.03% 7.3 4356
HVD19Q(361) 361 14 621 72.02 48.9% 7.4 4667

Fig. 10 Comparison of code rates of HVD7Q to HVD12Q

252 Journal of Electronic Testing (2021) 37:243–254

1 3

References

 1. Siddiqui MSM, Ruchi S, Van Le L, Yoo T, Chang IJ, Kim TTH
(2020) SRAM Radiation Hardening through Self-Refresh Oper-
ation and Error Correction. IEEE Trans Device Mater Reliab.
https:// doi. org/ 10. 1109/ TDMR. 2020. 29947 69

 2. Junlong Z, Jin S, Xiumin Z, Tongquan W, Mingsong C, Shiyan H,
Xiaobo, Sharon H (2018) Resource management for improving soft-
error and lifetime reliability of real-time MPSoCs. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
38(12):2215–2228. https:// doi. org/ 10. 1109/ TCAD. 2018. 28839 93

 3. Sadi et al. (2018) A New Approach to Tolerate Soft Errors by
Using Triple Modular Redundancy. J Inf Technol 7(1):1–7

 4. Wu J (2016) Energy efficient dual execution mode scheduling
for real-time tasks with shared resources. Comput Syst Sci Eng
31(3):239–253. https:// doi. org/ 10. 1016/j. future. 2015. 05. 012

 5. Nan H, Choi K (2012) High performance, low cost, and robust
soft error tolerant latch designs for nanoscale CMOS technology.
IEEE Trans Circuits Syst I Regul Pap 59(7):1445–1457. https://
doi. org/ 10. 1109/ TCSI. 2011. 21771 35

 6. Wang F, Agrawal, VD (2008) Soft error rate determination for
nanometer CMOS VLSI logic. In Proceedings 40th Southeastern
Symposium on System Theory (SSST), pp. 324-328. https:// doi.
org/ 10. 1109/ SSST. 2008. 44802 47

 7. Crouzet Y, Collet J, Arlat J (2005) Mitigating soft errors to pre-
vent a hard threat to dependable computing. In Proceedings 11th
IEEE International On-Line Testing Symposium. https:// doi. org/
10. 1109/ IOLTS. 2005. 42

 8. Muhammad SS, Palash KB, Palash G, Muhammed SR (2013)
A new error correction coding approach. J Adv Inf Technol
4:142–147

 9. Hentschke R, Marques F, Lima F, Carro L, Susin A, Reis R (2002)
Analyzing area and performance penalty of protecting different
digital modules with Hamming code and triple modular redun-
dancy. In Proceedings 15th Symposium on Integrated Circuits and
Systems Design. https:// doi. org/ 10. 1109/ SBCCI. 2002. 11376 43

 10. Muhammad SS, Myers DG, Cesar OS (2010) Component Criti-
cality Analysis to Minimizing Soft Errors Risk. In International
Journal of Computer Systems Science and Engineering, CRL
Publishing, 25:5

 11. Ferreyra PA, Marques CA, Ferreyra RT, Gaspar JP (2005) Failure
map functions and accelerated mean time to failure tests: New
approaches for improving the reliability estimation in systems
exposed to single-event upsets. IEEE Trans Nucl Sci. 52(1):494–
500. https:// doi. org/ 10. 1109/ TNS. 2005. 845883

 12. Rubinoff M (1961) n-dimensional codes for detecting and correct-
ing multiple errors0. Commun ACM 4(12):545–551. https:// doi.
org/ 10. 1145/ 366853. 366878

 13. Imran M, Al-Ars Z, Gaydadjiev GN (2009) Improving soft error
correction capability of 4-d parity codes. In Proceedings 14th
IEEE European Test Symposium

 14. Dubney GO (2005) IS Reed Decoding the (23, 12, 7) Golay code
using bit-error probability estimates. In Proceedings GLOBE-
COM. IEEE Global Telecommunications Conference. https://
doi. org/ 10. 1109/ GLOCOM. 2005. 15778 67

 15. Sakib A, Muhammad SS, Md. Shamimur R, Jan J (2017) Soft
Error Tolerance using HVDQ (Horizontal-Vertical-Diagonal-
Queen parity method). International Journal of Computer Systems
Science and Engineering, CRL Publishing, 32(1):35–47

 16. Sumaiya M, Dewan, Sadi MS (2019) Soft Error Tolerance using
Horizontal, Vertical, Diagonal and Seven Queen Parity. In Pro-
ceedings IEEE International Conference on Signal Processing,
Information, Communication & Systems (SPICSCON), Dhaka,
Bangladesh, pp. 114–117. https:// doi. org/ 10. 1109/ SPICS CON48
833. 2019. 90649 71

 17. Pflanz M, Walther K, Galke C, Vierhaus HT (2003) On-line tech-
niques for error detection and correction in processor registers
with cross-parity check. J Electron Test 19(5):501–510. https://
doi. org/ 10. 1023/A: 10251 65712 071

 18. Sharma S, Vijayakumar P (2012) An hvd based error detection
and correction of soft errors in semiconductor memories used
for space applications. In International Conference on Devices,
Circuits and Systems (ICDCS). IEEE. https:// doi. org/ 10. 1109/
ICDCS yst. 2012. 61887 71

 19. Anne NB, Thirunavukkarasu U, Latifi S (2004) Three and four-
dimensional parity-check codes for correction and detection of
multiple errors. In Proceedings International Conference on Infor-
mation Technology: Coding and Computing (ITCC). https:// doi.
org/ 10. 1109/ ITCC. 2004. 12867 63

 20. Aflakian D, Siddiqui T, Khan NA, Aflakia D (2011) Error
detection and correction over two-dimensional and two-diago-
nal model and five-dimensional model. Int J Adv Comput Sci
Appl (IJACSA) 2(7)

 21. Kishani M, Zarandi HR, Pedram H, Tajary A (2011) HVD: horizon-
tal-vertical-diagonal error detecting and correcting code to protect
against with soft errors. Des Autom Embed Syst 15(3–4):289–310

 22. Argyrides C, Pradhan DK, Kocak T (2009) Matrix codes for reli-
able and cost efficient memory chips.IEEE Trans Very Large Scale
Integr (VLSI) Syst 19(3)420–428. https:// doi. org/ 10. 1109/ TVLSI.
2009. 20363 62

 23. Silva F, Freitas W, Silveira J, Marcon C, Vargas F (2020) Extended
Matrix Region Selection Code: An ECC for adjacent Multiple
Cell Upset in Memory Arrays. Microelectron Reliab 106:113582.
https:// doi. org/ 10. 1016/j. micro rel. 2020. 113582

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Muhammad Sheikh Sadi has been working as a Professor in the
department of Computer Science and Engineering, Khulna University
of Engineering & Technology, Bangladesh since 2013. He was DAAD
Research Scholar in the University of Koblenz-Landau, Germany in
2018. He was also a Visiting Research Scholar in Dependable Embed-
ded Systems and Software (DEEDS) Research Group, TU Darmstadt,
Germany in 2008. He has completed his PhD research from the Depart-
ment of Electrical and Computer Engineering, Curtin University, Aus-
tralia in 2010. His areas of research interests are: Soft Errors Tolerance,
Hardware Redundancy for Fault Tolerance, Error Correction Coding
Theory, Humanitarian Technology, and Internet of Things (IOT). He
has been holding IEEE membership since 2004. He has been upgraded
to senior member of IEEE in 2018. He is reviewers of several reputed
journals and he has published more than 70 research papers in peer
reviewed journals and conferences.

Sumaiya received B.Sc. (Honors) in Computer Science and Engineer-
ing degree from Khulna University of Engineering and Technology,
Bangladesh in 2020. She has published two papers in reputed IEEE
conferences in her area of expertise. Her reaserch interests include
Soft Error Tolerance, Fault Tolerance, and Transmission and Encoding.

Mouly Dewan received B.Sc. (Honors) in Computer Science and
Engineering degree from Khulna University of Engineering and Tech-
nology in 2020. She has published one paper in a reputed IEEE confer-
ence in her area of expertise. Her research interests include Soft Error
Tolerance and Fault Tolerant Systems.

Mohammad Atikur Rahman received his BSc in Computer Science
and Engineering from Patuakhali Science & Technology University. He
is studying as an MS student in the Department of Computer Science

253Journal of Electronic Testing (2021) 37:243–254

https://doi.org/10.1109/TDMR.2020.2994769
https://doi.org/10.1109/TCAD.2018.2883993
https://doi.org/10.1016/j.future.2015.05.012
https://doi.org/10.1109/TCSI.2011.2177135
https://doi.org/10.1109/TCSI.2011.2177135
https://doi.org/10.1109/SSST.2008.4480247
https://doi.org/10.1109/SSST.2008.4480247
https://doi.org/10.1109/IOLTS.2005.42
https://doi.org/10.1109/IOLTS.2005.42
https://doi.org/10.1109/SBCCI.2002.1137643
https://doi.org/10.1109/TNS.2005.845883
https://doi.org/10.1145/366853.366878
https://doi.org/10.1145/366853.366878
https://doi.org/10.1109/GLOCOM.2005.1577867
https://doi.org/10.1109/GLOCOM.2005.1577867
https://doi.org/10.1109/SPICSCON48833.2019.9064971
https://doi.org/10.1109/SPICSCON48833.2019.9064971
https://doi.org/10.1023/A:1025165712071
https://doi.org/10.1023/A:1025165712071
https://doi.org/10.1109/ICDCSyst.2012.6188771
https://doi.org/10.1109/ICDCSyst.2012.6188771
https://doi.org/10.1109/ITCC.2004.1286763
https://doi.org/10.1109/ITCC.2004.1286763
https://doi.org/10.1109/TVLSI.2009.2036362
https://doi.org/10.1109/TVLSI.2009.2036362
https://doi.org/10.1016/j.microrel.2020.113582

1 3

and Engineering at Khulna University of Engineering and Technology.
He is an Adjunct Faculty at North Western University in Khulna, Bang-
ladesh and a teaching assistant at Khulna University of Engineering

and Technology. Atikur has a strong interest in the field of Human-
Computer Interaction and Humanitarian Technology. He has authored
several papers in IEEE conferences.

254 Journal of Electronic Testing (2021) 37:243–254

	Tolerating Soft Errors with Horizontal-Vertical-Diagonal-N-Queen (HVDNQ) Parity
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed HVDNQ Methodology
	3.1 Forward and Backward Parity Calculation
	3.2 Queen Parity Calculation
	3.3 Finding Mismatched Parity Bits
	3.4 Candidate Bits’ Refining, Error Detection and Correction

	4 A Case Study with HVD9Q
	4.1 Forming the Architecture of HVD9Q
	4.2 Mark All Candidate Bits
	4.3 Candidate Bits’ Refining, Error Detection, and Correction

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Fault Injection
	5.3 Error Detction and Correction Capacity

	6 Conclusion
	References

