Skip to main content
Log in

A local semi-supervised Sammon algorithm for textual data visualization

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Sammon’s mapping is a powerful non-linear technique that allow us to visualize high dimensional object relationships. It has been applied to a broad range of practical problems and particularly to the visualization of the semantic relations among terms in textual databases. The word maps generated by the Sammon mapping suffer from a low discriminant power due to the well known “curse of dimensionality” and to the unsupervised nature of the algorithm. Fortunately the textual databases provide frequently a manually created classification for a subset of documents that may help to overcome this problem. In this paper we first introduce a modification of the Sammon mapping (SSammon) that enhances the local topology reducing the sensibility to the ’curse of dimensionality’. Next a semi-supervised version is proposed that takes advantage of the a priori categorization of a subset of documents to improve the discriminant power of the word maps generated. The new algorithm has been applied to the challenging problem of word map generation. The experimental results suggest that the new model improves significantly well known unsupervised alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Available from http://svmlight.joachims.org.

References

  • Aggarwal, C. C. (2001). Re-designing distance functions and distance-based applications for high dimensional applications. In Proc. of SIGMOD-PODS (Vol. 1, pp. 13–18).

  • Aggarwal, C. C., & Yu, P. S. (2002). Redefining clustering for high-dimensional applications. IEEE Transactions on Knowledge and Data Engineering, 14(2), 210–225 (March/April).

    Article  Google Scholar 

  • Aggarwal, C. C., Gates, S. C., & Yu, P. S. (2004). On using partial supervision for text categorization. IEEE Transactions on Knowledge and Data Engineering, 16(2), 245–255.

    Article  Google Scholar 

  • Backer, S., Naud, A., & Scheunders, P. (1998). Non-linear dimensionality reduction techniques for unsupervised feature extraction. Pattern Recognition Letters, 19, 711–720.

    Article  MATH  Google Scholar 

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Wokingham, UK: Addison Wesley.

    Google Scholar 

  • Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “Nearest Neighbor” meaningful?. In Proc. of the international conference on database theory (ICDT). Lecture notes in computer science (Vol. 1540, pp. 217–235). Jerusalem, Israel: Springer.

    Google Scholar 

  • Bezdek, J. C., & Pal, N. R. (1995). An index of topological preservation for feature extraction. Pattern Recognition, 28(3), 381–391.

    Article  Google Scholar 

  • Buja, A., Logan, B., Reeds, F., & Shepp, R. (1994). Inequalities and positive default functions arising from a problem in multidimensional scaling. Annals of Statistics, 22, 406–438.

    Article  MATH  MathSciNet  Google Scholar 

  • Chapelle, O., Weston, J., & Schölkopf, B. (2003). Cluster kernels for semi-supervised learning. Annual Conference on Neural Information Processing Systems (NIPS), 15.

  • Chung, Y. M., & Lee, J. Y. (2001) A corpus-based approach to comparative evaluation of statistical term association measures. Journal of the American Society for Information Science and Technology, 52(4), 283–296.

    Article  Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling (2nd ed.). USA: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Demartines, P., & Hérault, J. (1996). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 20, 1–6.

    Google Scholar 

  • Joachims, T. (2002). Learning to classify text using support vector machines. Methods, theory and algorithms. Boston: Kluwer.

    Google Scholar 

  • Kaplan, W. (1999). MAXIMA and MINIMA with applications. New York: Wiley.

    MATH  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. An introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  • Kohonen, T. (1995). Self-organizing maps (2nd ed.). Berlin: Springer Verlag.

    Google Scholar 

  • Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., et al. (2000). Organization of a massive document collection. IEEE Transactions on Neural Networks, 11(3), 574–585.

    Article  Google Scholar 

  • Kothari, R., & Jain, V. (2003). Learning from labeled and unlabeled data using a minimal number of queries. IEEE Transactions on Neural Networks, 14(6), 1496–1505 (November).

    Article  Google Scholar 

  • Kraaijveld, M., Mao, J., & Jain, A. (1995). A nonlinear projection method based on kohonen’s topology preserving maps. IEEE Transactions on Neural Networks, 6(3), 548–559 (May).

    Article  Google Scholar 

  • Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 37, 49–76.

    Article  Google Scholar 

  • Mao, J., & Jain, A. K. (1995). Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2), 296–317 (March).

    Article  Google Scholar 

  • Martín-Merino, M., & Muñoz, A. (2001). Self organizing map and Sammon mapping for asymmetric proximities. LNCS (Vol. 2130, pp. 429–435). Springer.

  • Martín-Merino, M., & Muñoz, A. (2004a). A new MDS algorithm for textual data analysis. Lecture notes in computer science LNCS-3316 (pp. 860–867). Springer.

  • Martín-Merino, M., & Muñoz, A. (2004b). A new Sammon algorithm for sparse data visualization. In International Conference on Pattern Recognition (Vol. 1, pp. 477–481) Cambridge, August.

  • Muñoz, A. (1997). Compound key word generation from document databases using a hierarchical clustering ART model. Journal of Intelligent Data Analysis, 1(1), 25–48.

    Article  Google Scholar 

  • Pedrycz, W., & Vukovich, G. (2004). Fuzzy clustering with supervision. Pattern Recognition, 37, 1339–1349.

    Article  MATH  Google Scholar 

  • Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18, 401–409 (May).

    Article  Google Scholar 

  • Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.

    Google Scholar 

  • Strehl, A., Ghosh, J., & Mooney, R. (2000). Impact of similarity measures on web-page clustering. In Proceedings of the 17th national conference on artificial intelligence: Workshop of artificial intelligence for Web search (pp. 58–64) Austin, USA (July).

  • Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  • Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. In Proc. of the 14th international conference on machine learning (pp. 412–420). Nashville, Tennessee, USA (July).

Download references

Acknowledgements

Financial support from Junta de Castilla y León grant PON05B06 is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martín-Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Merino, M., Blanco, Á. A local semi-supervised Sammon algorithm for textual data visualization. J Intell Inf Syst 33, 23–40 (2009). https://doi.org/10.1007/s10844-008-0056-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-008-0056-5

Keywords

Navigation