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Extracting and summarizing the frequent emerging
graph patterns from a dataset of graphs

Guillaume Poezevara - Bertrand Cuissart -
Bruno Crémilleux

Abstract Emerging patterns are patterns of great interest for discovering infor-
mation from data and characterizing classes. Mining emerging patterns remains a
challenge, especially with graph data. In this paper, we propose a method to mine the
whole set of frequent emerging graph patterns, given a frequency threshold and an
emergence threshold. Our results are achieved thanks to a change of the description
of the initial problem so that we are able to design a process combining efficient
algorithmic and data mining methods. Moreover, we show that the closed graph
patterns are a condensed representation of the frequent emerging graph patterns
and we propose a new condensed representation based on the representative pruned
graph patterns: by providing shorter patterns, it is especially dedicated to represent a
set of graph patterns. Experiments on a real-world database composed of chemicals
show the feasibility and the efficiency of our approach.

Keywords Data mining - Emerging patterns - Condensed representation -
Subgraph isomorphism - Chemical information
1 Introduction

Discovering knowledge from large amounts of data and data mining methods are useful
in a lot of domains such as chemoinformatics. One of the goals in chemoinformatics
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is to establish relationships between molecules and a given activity (e.g., toxicity).
Such a relationship may be characterized by graphs associating atoms and chemical
bonds. The combinations of theses graphs are called graph patterns and are required
in real-world data mining tasks such as the prediction of toxicity in chemoinformatics.
A difficulty of this task is the number of potential patterns which is very large. By
reducing the number of extracted patterns to those of a potential interest given
by the user, the constraint-based pattern mining (Ng et al. 1998) provides efficient
methods. A very useful constraint is the emerging constraint (Dong and Li 1999):
emerging patterns (EPs) are patterns whose frequency strongly varies between
two classes (the frequency of a pattern corresponds to the ratio of examples in the
database supporting this pattern). It is a powerful measure to highlight contrasts
between examples. EPs enable us to characterize classes (e.g., toxic versus non-toxic
chemicals) both in a quantitative and qualitative way. EPs are at the origin of various
works such as powerful classifiers (Li et al. 2001). From an applicative point of view,
we can quote various works on the characterization of biochemical properties or
medical data (Li and Wong 2001).

Even if a lot of progress has recently been made in the constraint-based pattern
mining, mining EPs remains difficult because the anti-monotone property which is
at the core of powerful pruning techniques in data mining (Mannila and Toivonen
1997) cannot be applied. As many data mining methods, the complexity of mining
the complete and correct set of EPs is exponential in the number of items in
the worst case. As EPs are linked to the pattern frequency, naive approaches for
mining EPs extract frequent patterns in a class and infrequent patterns in the set
of the other classes because the frequency and infrequency constraints satisfy (anti-
)monotone properties and therefore there are techniques to mine such a combination
of constraints. Unfortunately, such an approach only extracts a subset of the whole
set of EPs. That is why some techniques use handlings of borders but it is very
expensive (Dong and Li 1999). In the context of patterns made of items (i.e., database
objects are described by items), an efficient method based on a prefix-freeness
operator leading to interval pruning was proposed (Soulet and Crémilleux 2009;
Soulet et al. 2007). More generally, most of the works on EPs are devoted to the
itemset area and there are very few attempts in areas such as chemoinformatics
where chemicals are modeled by graphs (Borgelt et al. 2005; De Raedt and Kramer
2001). These last two works are based on a combination of monotone and anti-
monotone constraints and they do not extract the whole collection of EPs and are
limited in patterns of length 1. Note that in the case of EP of size 1, there exist anti-
monotone measures for convex statistical functions, such as chi-square (Morishita
et al. 2000). Mining patterns in a graph dataset is a much more challenging task than
mining patterns in itemsets.

In this paper, we tackle this challenge of mining emerging graph patterns. Our
main contribution is to propose a method mining all frequent emerging graph
patterns. This result is achieved by a change of the description of the initial problem
in order to be able to use efficient algorithmic and data mining methods (see
Section 3). We formally prove that these two problems are equivalent. Among other
results, all frequent connected emerging graphs are produced; they correspond to
the patterns of cardinality 1. These graphs are useful because they are the most
understandable graphs from the chemical point of view. The patterns of cardinality
greater than 1 capture the emerging power of associations of connected graphs. A
great feature of our method is to be able to extract all frequent emerging graph



patterns (given a frequency threshold and an emergence threshold) and not only
particular EPs. We also deal with the pattern condensed representation issue (Yan
and Han 2003) and we show that the closed graph patterns are a condensed
representation of the frequent emerging graph patterns. Moreover, we propose a
new condensed representation based on the representative pruned graph patterns:
by providing shorter patterns, it is especially dedicated to represent a set of graph
patterns. Finally, we present several experiments providing quantitative results on
our method and a case study on a chemical database provided by the Environment
Protection Agency. This experiment shows the feasibility of our approach and
suggests promising chemical investigations on the discovery of toxicophores (Lozano
et al. 2010). This paper extends the preliminary version (Poezevara et al. 2009)
by further results such as the proposition of the condensed representation of the
frequent emerging patterns, the formal proof of the equivalence of the change of the
description of the initial problem, the mining method has been improved by testing
the subgraph isomorphism during the mining process and further experiments.

This paper is organized as follows. Section 2 outlines preliminary definitions
and related work. Our method for mining all frequent emerging graph patterns
and results on the condensed representation of the frequent emerging patterns are
described in Section 3. Experiments showing the efficiency of our approach and
results on the chemical dataset are given in Section 4.

2 Context and motivations
2.1 Notation and definitions

Graph terminology In this text, we consider simple labeled graphs. We recall here
some important notions related to these graphs. A graph G(V, E) consists of two
sets V and E. An element of V is called a vertex of G. An element of E is called an
edge of G, an edge corresponds to a pair of vertices. Two edges are adjacent if they
share a common vertex. A walk is a sequence of edges such that two consecutive
edges are adjacent. A graph G is connected if any two of its vertices are linked
by a walk. Two graphs G (Vy, E;) and G,(V», E») are isomorphic if there exists a
bijection ¢ : Vi — V, such that for every uy, v; € Vi, {uy, vi} € E; if and only if
{v(uy), ¥(v1)} € Ey; ¢ is called an isomorphism. Given two graphs G'(V', E') and
G(V, E), G’ is asubgraph of G if (a) V' is a subset of V and E’ is a subset of E or if
(b) G’ is isomorphic to a subgraph of G. Given a family of graphs D and a frequency
threshold fp, a graph G is a frequent subgraph (of (D, fp)) if G is a subgraph of at
least fp graphs of D ; a frequent connected subgraph is a frequent subgraph that is
connected.

Graphs encountered in the text carry information by the meaning of labellings of
the vertices and of the edges. The labellings do not affect the previous definitions,
except that an isomorphism has to preserve the labels. A molecular graph is a
labelled graph that depicts a chemical structure: a vertex represents an atom, an
edge represents a chemical bond. Figure 1 displays molecular graphs. The graph
SG, (see Fig. 2) is (isomorphic to) a subgraph of molecule 2 in Fig. 1 and therefore
its frequency is 0.16 (1 molecule among 6 supports SG;). Let us assume that D is
partitioned into two subsets (or classes) D; and D,. For instance, in Fig. 1, its left
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Fig. 1 Molecules excerpted from the EPAFHM database (EPAFHM 2008)

part D; gathers positive molecules and its right part D, negative molecules. With a
minimum frequency threshold of 0.33, SG; is a frequent graph in D; (1 molecule
among 3 supports SG; thus its frequency is 1/3) but it is not a frequent graph in D,
(0 molecule among 3 supports SG).

The problem of mining all the frequent connected subgraphs of (D, fp) is called
the discovery of the Frequent Connected SubGraphs (FCSG). It relies on multiple
subgraph isomorphisms. Given a couple of graphs (G, G), the problem of deciding
whether G’ is isomorphic to a subgraph of G is named the Subgraph Isomorphism
Problem (SI). SI is NP-complete (Garey and Johnson 1979, p. 64). The problem
remains NP-complete if we restrict the input to connected graphs. Consequently,
the discovery of the FCSGs is NP-Complete. The labellings do not change the class
of complexity of SI and the discovery of the FCSGs.

In the following, a graph pattern denominates a set of connected graphs. Let G be a
graph pattern and D be a set of graphs. F (G, D) denotes the graphs of D that include
every graph of G as a subgraph (F(G,D) ={Gp € D : VG € G, G is a subgraph of
Gp}). Given a minimum frequency threshold f, the graph pattern G is frequent in
D if % > f (we use here a relative frequency threshold). In Fig. 2, the graph

pattern made of SGi, SG, and SGj3 has a frequency of 0.16 in D (it is included in
molecule 2). In this paper, a graph pattern is composed of connected graphs.

Emerging Graph Pattern (EGP) As introduced earlier, an emerging graph pattern
G is a set of graphs whose frequency increases significantly from one subset (or class)

Fig.2 Example of an

Emerging Graph Pattern ‘ / N
(fp, =0.33, EGP1 = { s—n o — o J }
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SG3

GRp,(EGP1) = 00)
SG1 SG2




to another. The capture of contrast brought by G from D, to D, is measured by its
growth rate G Rp, (G) defined as:

0, it F(G, D)) =0Pand F(G,D,) =9
0, if 7(G, D) #¥and F(G, Dy) =9
%, otherwise (].| denotes the cardinality of a set)

Therefore, the definition of an EGP is given by:

Definition 1 (Emerging Graph Pattern) Let D be a set of graphs partitioned into
two subsets D; and D,. Given a growth threshold p, a set of connected graphs G is
an emerging graph pattern from D, to D if GRp,(G) > p

We now define the problem of mining the whole set of the frequent EGPs; this
definition constitutes the terms of the problem handled by the text.

Definition 2 (Frequent Emerging Graph Pattern Extraction)

Input D a set of graphs partitioned into two subsets D; and D,, fp, a frequency
threshold in D, and p a growth threshold

Output the set of the frequent emerging graph patterns from D, to D; with their
growth rate and their frequency according to fp, and p such that | (G,
Dy) |= fp, and GRp,(9) = p.

The length of a graph pattern denotes its cardinality. Note that the set of frequent
EGPs of length 1 from D, to D; corresponds to the set of frequent emerging
connected graphs from D, to D;. On Fig. 2, EG P, has a length of 3. For the sake
of simplicity, the definitions are given with only two classes but all the results hold
with more than two classes (it is enough to consider that D, = D\Dy, as usual in the
EP area (Dong and Li 1999)).

2.2 Related work: extraction of discriminative graphs

Several methods have been designed for discovering graphs that are correlated to
a given class. All these algorithms operate on a set of graphs partitioned into two
classes called positive graphs and negative graphs.

Molfea (Kramer et al. 2001) uses a level-wise algorithm (Mannila and Toivonen
1997) enabling the extraction of linear subgraphs (chains) which are frequent in a
set of “positive” graphs and infrequent in a set of “negative” graphs. However, the
restriction to linear subgraphs disables a direct extraction of the graphs containing a
branching point or a cycle.

Moss (Borgelt and Berthold 2002; Borgelt et al. 2005) is a program dedicated to
mine molecular substructure; it can be extended to find the discriminative fragments.
Given two frequency thresholds fj; and f,,, a discriminative fragment corresponds
to a connected subgraph whose frequency is above fj; in a set of “positive” graphs
and is below f,, in a set of “negative” graphs. This definition differs from the usual
notion of emergence which is based on the growth rate as introduced in the previous
section. Note that the set of the discriminative fragments according to the thresholds
fu and f,, does not contain the whole set of the frequent EGPs having a growth



rate higher than fy,/f, or any other given growth rate threshold. Moreover, such
fragments only corresponds to EPs of length 1. On the contrary, we will see that our
approach follows the usual notion of emergence.

Another work has been dedicated to the discovery of the contrast subgraphs
(Ting and Bailey 2006). A contrast subgraph is a graph that appears in the set
of the “positive” graphs but never in the set of the “negative” graphs. Although
this notion is very interesting, it requires a lot of computation. To the best of our
knowledge, the calculus is limited to one “positive” graph and the mining of a
graph exceeding 20 vertices brings up a significant challenge. Furthermore, contrast
subgraphs correspond to jumping emerging patterns (i.e., EPs with a growth rate
equals oo) and therefore are a specific case of the general framework of EPs.

3 Mining frequent emerging graph patterns

This section explains our method to extract the set of the frequent emerging graph
patterns, as defined in Definition 2. We start by introducing the new context of
description of the input dataset and giving the formal proof of the equivalence of the
change of the description of the initial problem. Then, our mining method is detailed.
Finally, we show that the closed graph patterns are a condensed representation of the
frequent emerging graph patterns and we propose a new condensed representation
based on the representative pruned graph patterns.

3.1 An equivalent context for extracting the frequent graph patterns

The change of the description of the initial problem is a key idea of our method to
mine all the frequent emerging graph patterns. It brings two meaningful advantages.
First, the new descriptors, by being frequent subgraphs, strongly reduce the search
space and therefore the number of candidate patterns. Second, it enables us to set
the problem in an itemset context from which we can reuse efficient results on the
emerging constraint. We start by giving the new description of the input graphs.

Let D ={Gy, ..., G,} be aset of graphs, considered as the input dataset. Let A =
{ai, ..., any) be aset of graphs, considered as the attributes. The binary description of
an element, G, based on the occurrences of A is a sequence of digits d; = (d; j, 1 <
j<m:d;; =1if the attribute graph a; is a subgraph of Gj, d; ;, = 0 otherwise).
We extend this notion to a binary description of a set of graphs D, based on the
occurrences of A; it corresponds to the dataset D' = {d;, 1 <i < n} where every d;
is the description of the corresponding G; based on the occurrences of A.

As an example, we consider the set of molecular graphs depicted in Fig. 1 as being
the input dataset and the set of graphs depicted in Fig. 2 as being the set of attributes:
D={MOL,,..., MOLg¢} and A = (S5G, SG», SG3). As SG,, SG, and SG; are
subgraphs of M OL,, the binary description of MOL, based on the occurrences
of (SGy, §G,, SG3) is (1, 1, 1). Table 1 gives the binary description of D based on
(SG1, §G,, §G3) .

The datasets D and D’ are considered as multi-sets: we assume here that every
input graph represents one element of D. It means that when a same input graph
appears twice in D (G is isomorphic to G; with i # j), we consider G; and G| as two



Table 1 Binary description of ‘52 0p SG SG SG
the set of graphs shown on b8 ! 2 2

Fig. 1 based on the graphs of MOL, 0 1 0
Fig. 2 MOL, 1 1 1
MOL; 0 1 0
MOLy 0 0 0
MOLs 0 0 0
MOLg 0 0 0

elements of D. In a similar way, we consider every description of an input graph as
being one element of D’'. Consequently, we always have |D| = |D'|.

Proposition 1 (Equivalent context for mining the Frequent Graph Patterns) Let D
be a set of graphs partitioned into two subsets D, and D,, fp, a frequency threshold in
Diandpa growth threshold from D, to D,. Let A be the set of the frequent subgraphs
inDy: A= If(ﬂ Dyl -

A graph pattern d {gl, ..., &p} is a frequent emerging graph pattern from D, to
Dy if (g1, ..., gp) is an emerging pattern from D, to D, in the description of D based
on the occurrences of A.

Proof of the proposition As a graph pattern occurs in a graph G if all its elements
are subgraphs of G, we have the following lemma.

Lemma 1 (A frequent graph pattern is constituted of frequent graphs) Let D be
a dataset of graphs and G = {g, ..., gp} be a graph pattern. We have : F(G, D) C
F(gi,D),Viel,...p.

Consequently, a frequent emerging graph pattern is constituted only by frequent
connected graphs. We go on with the notations of Proposition 1 (i.e., A is the set of
the frequent graphs in D;) and we assume that D’ corresponds to the description
of the set of graphs D based on the occurrences of A. We also note D’y (resp.
D’,) the description of D; (resp. D) based on the occurrences of A. Thanks to the
lemma, G = {g1, ..., gy} being a frequent emerging graph pattern implies that g; is
a frequent graph in D, V1 <i < p. Consequently, {gi,...,g,} is a frequent pat-
tern of D'y. By construction, we have: (G, D) = F({g1,...,gp}, D), F(G,Dy) =
Fdgi, ..., gph D'1) and F(G, Dy) = F({g1, ..., &}, D). The proposition is an im-
mediate consequence of these equalities.

Consequences The description of D based on the set of the frequent subgraphs in
D, together with the previous proposition lead to an efficient method of computa-
tion. The relation of inclusion defined between two sets can naturally be used as a
specialization relation in the context of the graph patterns. Let G and G’ be two graph
patterns. G’ is included in G if for any element g’ of G’, there exists an element g of G
such that g’ is isomorphic to g and g € G. We note the inclusion of G’ in Gby G’ C G.
With this relation, the frequency satisfies the anti-monotone property (Mannila
and Toivonen 1997) (i.e., G’ € G implies that F(G, D) € F(G’, D)) whereas the
emergence does not satisfy it. Consequently, as the pruning only relies on the
frequency, the successive generation of every candidate graph pattern that is required



in order to check if a candidate satisfies the two constraints cannot be applied due to
the huge number of candidates.

Proposition 1 ensures that the frequent emerging graph patterns may be derived
from the set from the frequent subgraphs in D;. As these descriptors must satisfy a
frequency threshold, we can benefit from the pruning properties coming from the
frequency early in the calculation. It leads to our method described in the following
section.

3.2 The method and its implementation

Our method consists in a succession of the three following steps:

— extracting the frequent connected subgraphs in D; according to the frequency
threshold fp,. This is the FCSG problem defined in Section 2.1.

— for each graph Gp of D, we recode Gp according to the set of connected graphs
resulting from the previous step: each row of the dataset is a graph G of D and
each column indicates whether a frequent connected graph extracted at the first
step is present in G or not.

— the problem is then described by items (presence or absence of each frequent
connected graph) and we are able to use an efficient method (i.e., Music-DFs)
based on itemsets to discover the frequent emerging graph patterns.

Extraction of the frequent subgraphs of D Graph mining tools for extracting fre-
quent connected subgraphs generate the candidate graphs according to a specializa-
tion relation (such as the inclusion relation presented above). The search space is
then pruned thanks to the anti-monotone property of the of the frequency. Based
on this principle, there are several methods to solve the FCSG problem and the
algorithms are classified into two families: the Apriori-Based algorithms and the
Pattern-Growth-Based algorithms. The two families have been compared for mining
sets of chemical graphs (Cook and Holder 2006): the Apriori-Based algorithms spend
less time while the Pattern-Growth-Based algorithms consume less memory. A com-
parison of four Pattern-Growth-Based algorithms has been conducted in Worlein
etal. (2005). For mining a set of chemical graphs, Gaston (Nijssen and Kok 2004) runs
faster than the other ones. The efficiency of Gaston mainly relies on the adoption
of the quick-start principle. Gaston first extracts the frequent paths (the connected
graphs made only with vertices of degree 1 or 2), then it extracts the frequent trees
(the connected acyclic graphs), finally it extracts the frequent graphs. Each step
of the process uses the results of the previous extraction to perform an efficient
pruning. Moreover, Gaston is available on http://www.liacs.nl/home/snijssen/gaston/
under GNU GPL License Version 2.! For these reasons, we have chosen Gaston for
extracting frequent connected subgraphs.

Determining the support of the frequent connected subgraphs Figure 3 illustrates the
change of the description from the input graph dataset to its description based on

Thttp://www.gnu.org/licenses/gpl/html
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Fig. 3 Converting a graph dataset into its description based on the frequent connected subgraphs

the frequent connected subgraphs of D;. For every extracted frequent subgraph,
this change of representation requires to know the graphs of D that include it.
Once we have extracted the frequent connected subgraphs in D;, we may com-
pute the description of D based on the set of the extracted subgraphs. This may
correspond to the computation of a huge number of subgraph isomorphism (|D| x
|{extracted subgraph}|). Asit is, this calculation turns very hard to achieve even if the
input graphs are small and even if we use an up-to-date tool for solving the subgraph
isomorphism problem such as VFLib (Cordella et al. 1999). We now explain how we
circumvent this difficulty.

A general subgraph isomorphism method treats the problem with two graphs as
input (a graph and a target graph) and answers the question: is the graph a subgraph
of the target graph? When it processes a subgraph isomorphism, a graph mining
tool takes as input a graph and a target graph as well as all the embeddings of a
large subgraph of the graph into the target graph. This supplementary knowledge
drastically simplifies the problem and we use it in our work. The following example
illustrates this improvement.

To decide whether a studied graph is a subgraph of a target graph, an algorithm
dedicated of subgraph isomorphisms tries to embed every vertex and every edge of
the studied graph into the target graph, preserving the adjacency relationship. Such
an algorithm does not have to memorize its last solved problems. A graph mining
tool, like Gaston, traverses the space of graphs in a rigourous manner like the pattern
growth approach. It takes advantage of the last subgraph isomorphisms solved: the
latters facilitate the next isomorphisms to proceed. For example, suppose that a graph
mining tool has to sucessively determine whether the graphs 1, 2 and 3 depicted on
Fig. 4 are subgraphs of the target graph. When it processes graphl and the target



target graph graph naive method Gaston

Fig. 4 A single call to a graph mining tool is more efficient than multiple, independent calls to a
subgraph isomorphism tool

graph, such a tool memorizes all the embeddings it finds. When it will have to process
graph? and the target graph (suppose graph2 comes just after graphl in the traversal
of the space of graphs), the graph mining tool will just have to check whether each
of the memorized embeddings between graphl and the target graph can lead to an
embedding between graph2 and the target graph. The embeddings between graph2
and the target graph will then be memorized and, later, they will be used to process
graph3 and the target graph. As a conclusion, to get the embeddings of a “well
organized” family of graphs into a database of graphs, one call of a graph mining
tool may be, by far, more efficient than multiple, independent calls of a subgraph
isomorphism tool.

In order to solve an instance of Frequent Emerging Graph Pattern Extraction, we
first call a graph mining tool to extract the set of the frequent connected subgraphs
in D;. As the whole database of input graphs (both D; and D,.) will have to be
described based on this set of frequent connected subgraphs, we also use this call
of a graph mining tool to determine the occurrences of each frequent connected
subgraphs in every graph of D,. That way, we take advantage of the fact that one
call to a graph mining tool is more efficient than multiple, independent calls to a
subgraph isomorphism tool.

Extracting the frequent emerging (graph) patterns Frequent emerging graph pat-
terns are mined by using Music-prs.? This tool offers a set of syntactic and aggregate
primitives to specify a broad spectrum of constraints in a flexible way, for data de-
scribed by items (Soulet et al. 2007). Then Music-DFs mines soundly and completely
all the patterns satisfying a given set of input constraints. The efficiency of Music-
DFs lies in its depth-first search strategy and a safe pruning of the pattern space
by pushing the constraints. The constraints are applied as early as possible. The

Zhttp://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html



pruning conditions are based on intervals. Here, an interval denominates a set of
patterns that include a same prefix-free pattern and that are included in the prefix-
closure of this pattern (see Soulet et al. 2007, for more details). Whenever it is
computed that all the patterns included in an interval simultaneously satisfy (or not)
the constraint, the interval is positively (negatively) pruned without enumerating all
its patterns (Soulet et al. 2007). The output of Music-DFs enumerates the intervals
satisfying the constraint. Such an interval condensed representation improves the
output legibility and each pattern appears in only one interval. In our context, this
tool enables us to use the emerging and frequency constraints.

Finally, our approach ensures to produce the whole set of frequent EGPs because
the FCSG step extracts all the connected subgraphs and Music-DFs is complete and
correct for the pattern mining step.

3.3 A condensed representation of the frequent emerging graph patterns

As said earlier, the number of extracted patterns may be large and many works
propose methods to reduce the collection of patterns, such as the constraint-based
paradigm previously introduced or the so-called condensed representations (Calders
et al. 2005). Indeed, even if constraints such as the emergence and the frequency
reduce the number of resulting patterns, we can go further thanks to the notion
of pattern condensed representations. The key principle of the pattern condensed
representations with respect to a constraint is to mine a set of patterns as concise
as possible from which the whole set of patterns satisfying the constraint can be
efficiently derived. Whereas there are many propositions for data described by
items (Calders et al. 2005), including the constraint of emergence (Soulet et al. 2005),
condensed representations on sequences or graphs mainly address the frequency
constraint and are based on the closed patterns (Plantevit and Crémilleux 2009;
Yan and Han 2003). In this section, we show that the closed graph patterns are a
condensed representation of the frequent emerging graph patterns and we propose
a new condensed representation based on the representative pruned graph patterns.

Let D be a dataset of graphs. The description of D is based on the occurrences of
a finite set of graphs A (see Section 3.1). A graph pattern denominates any subset of
A. Recalling the inclusion relation: a graph pattern G’ is included in a graph pattern
G if every element of G’ is (isomorphic to) an element of G: G’ C G if Vg’ € G', g €
G such that g’ is isomorphic to g.

Definition 3 (Closed graph pattern) A graph pattern G is a closed graph pattern in D
if VG' a graph pattern, (G, D) = F(G’, D) implies that G’ C G.

Proposition 2 follows:

Proposition 2 (Existence and uniqueness of a closure) Let G’ be a graph pattern.
There exists a unique closed graph pattern G such that F(G',D) = F(G, D). G is the
closure of G/, denoted by G’ = G.

Figure 5 displays the graph pattern CGP1 which is the closure of the emerging
graph pattern EGP1 displayed on Fig. 2.



Fig. 5 Example of a Closed Graph Pattern

Sketch of proof

(existence) Let G’ be a graph pattern. One of the two mutually exclusive situations
happens:

(i) For all graph patterns G, either G € G’ or F(G', D) # F(G, D). In
this situation, F(G’, D) = F(G, D) implies G C G'. G’ is a closed
graph pattern.

(ii) (negation of i)) There exists a graph pattern G (different from G’)
such that G’ C G and F(G', D) = F(G, D). In this situation, the
existence of a closed graph pattern representing G’ depends on
the existence of a closed graph pattern representing G. We iterate
the process by substituting G for G’. As the length G is strictly
greater than the length of G’, the process terminates in situation
i) after a finite number of iterations. As a conclusion, there exists
a closed graph pattern G such that 7(G', D) = F(G, D).

(uniqueness) Definition 3 indicates that if G; and G, are two distinct closed graph
patterns then F (G, D) # F(G,, D) (either F(G,, D) € F(G,, D) or
F(Gy, D) € F(G1, D) does not hold). The uniqueness is immediate.

Consequently, a set of graph patterns — a family of sets over A- can be partitioned
according to their closures in D, as soon as the set contains the closure of all its
elements. We name the subsets given by this partition as the subsets induced by the
closed graph patterns. We now define the notion of a proper set for a representation
by its closed elements. Basically, a proper set is a set that can be represented by its
closed patterns. We will show that a proper set is suitable to condense the frequent
emerging graph patterns.

Definition 4 (A proper set for a representation by its closed elements) Let P be a set
of graph patterns. P is a proper set for a representation by its closed elements if for any
pair of graph patterns G and G’ such that (G, D) = F(G, D), G € P is equivalent to
G eP.

A consequence of Definition 4 is the following: with a proper set for a repre-
sentation by its closed elements P, as soon as one graph pattern belongs to P,
any graph pattern that shares its extension (its support) in D also belongs to P.
By definition of P, for all pair of graph patterns G and G’ such that F(G', D) =
F(G, D)}, we have F(GU G, D) =F(G', D) =F(G,D). The following proposition
is an immediate consequence of this remark:

Proposition 3 Let P be a set of graph patterns. If P is a proper set for a representation
by its closed elements then the union is a closed operation on the subsets of P induced
by its closed graph patterns.



As a consequence of Proposition 3, a proper set for a representation by its closed
elements may be summarized by its closed elements without loss of information. For
any pair of graph patterns G and G’ such that F(G', D) = F(G, D), the proposition
“@ is a frequent emerging graph pattern” is equivalent to “G’ is a frequent emerging
graph pattern”. Consequently, the set of the frequent emerging graph patterns
is always a proper set for a representation by its closed elements and thus the
set of the frequent emerging graph patterns is condensed by its subset of closed
patterns.

The previous results of this section can be seen as an extension to the graph
patterns of the results on the condensed representations on itemsets or sequences
(Calders et al. 2005; Plantevit and Crémilleux 2009). In the following, we show that
with graph patterns, the condensed representation based on the closed patterns can
be improved by providing shorter patterns that we call representative pruned graph
patterns.

The relation “being a subgraph” satisfies the anti-monotone property with respect
to the inclusion of support: if a graph g’ is a subgraph of a graph g then F({g},
D) € F({g'}, D). The following proposition is an immediate consequence of this
remark:

Proposition 4 (Constraint brought by the addition of a graph to a graph pattern) Let
G be a graph pattern and g be a connected graph. If g is a subgraph of an element of
G then F(G U {g'}, D) = F(G, D).

It states that adding graphs to a graph pattern G maintains its support as soon as
the added graphs are subgraphs of G. Combining Proposition 4 and the fact that a
closed graph pattern can not be included in a distinct graph pattern with the same
support, we straightforwardly have the proposition:

Proposition 5 (Composition of a closed graph pattern) Let G be a graph pattern and
g be a connected graph. If G is a closed graph pattern, then the following property is
true: for any couple of graphs (g,¢'), if g € G and g' is a connected subgraph of g then
gegd.

We now define the notion of a representative pruned graph pattern:

Definition 5 (A representative pruned graph pattern) A graph pattern G is a repre-
sentative pruned graph pattern if (i) no element of G is a subgraph of another element
of G and (ii) the graph pattern obtained by adding all the connected subgraphs of
every element of G is a closed graph pattern.

It is important to note that it is always possible to construct a representative
pruned graph pattern from a closed graph pattern G: it is enough to remove every
element of G that is a subgraph of another element of G.

We now show that a representative pruned graph pattern has the same support
as its corresponding closed pattern. Let G be a closed graph pattern and G’ be its
corresponding representative pruned graph pattern. As G’ € G, F(G, D) € F(G', D).
On the opposite, as any element of G is a subgraph of an element of G’, we have:
F(G',D) € F(G.D).



Fig. 6 Example of a
Representative Pruned Graph N //
Pattern RPGP1 =

As two distinct representative pruned graph patterns cannot generate the same
closed graph pattern, we can state that there is a one to one mapping between the set
of the closed graph patterns and the set of the representative pruned graph patterns.

Figure 6 displays the representative pruned graph pattern that represents the
closed graph pattern CGP1 shown on Fig. 5.

Consequently, we can state the following result which is necessary to obtain the
exact values of the frequency and the emergence of each graph pattern.

Proposition 6 (Pruning a closed graph pattern maintains its support) Let G be a
closed graph pattern. Let G' be a graph pattern. If G' is the representative pruned graph
pattern corresponding to G then F(G', D) = F(G, D).

It means that the whole set of the frequent emerging graph patterns is condensed
by its set of representative pruned graph patterns. Moreover, the exact values
of the frequency and the emergence of each graph pattern can be inferred from
the condensed representation since a representative pruned graph pattern has the
same support as its closed graph pattern (Proposition 6). Note that the condensed
representation based on the representative pruned graph patterns and the condensed
representation based on the closed patterns have the same size (i.e., the same number
of graph patterns). But, the great interest of the representative pruned graph patterns
is to provide shorter patterns, thus more understandable patterns.

4 Experiments on chemical data
4.1 Motivations, materials and methods

The aims of the experiments is to study: (i) the feasibility of our approach by pro-
viding quantitative results on the computation method, (ii) the condensed represen-
tation of the Frequent Emerging Graph Patterns (FEGPs) by their Representative
Pruned Graph Patterns (RPGPs), (iii) the relationships between the FEGPs and the
discriminative fragments and (iv) the interest of the FEGPs of length greater than 1.

The dataset gathers molecules stored in EPA Fathead Minnow Acute Toxicity
Database (EPAFHM 2008). It has been generated by the Environment Protection
Agency of the United-States and it has been used to elaborate expert systems
predicting the toxicity of chemicals (Veith et al. 1988). From EPAFHM, we have
selected the molecules classified as toxic and non-toxic, toxicity being established
according to the measure of LC50. The resulting set D contains 395 molecules
(Table 2) and it is partitioned into two subsets: D; contains toxic molecules (223
molecules) and D, contains non-toxic molecules (172 molecules). Experiments were
conducted on a computer running Linux operating system with a dual processor at
2.83 GHz and a RAM of 3.8 GB.



Table 2 Excerpt from the EPAFHM database: 395 molecules partitioned into two subsets according
to the measure of LC50

Set Toxicity LC50 measure Number of Size
molecules Min Max Average
Dy Toxic LC50 <10 mg/l 223 3 34 12.8
D, Non-toxic 100 mg/l < LC50 172 2 19 8.2
D - - 395 2 34 10.8

Methods used throughout the experimental part 'When we have to assess the FEGPs
in a context of classification we adopt a cross-validation scheme (Section 4.3). In a n-
folds cross-validation scheme, both D; and D, are split into n samples of equal size.
Each of these n samples constitutes successively the festing set, the gathering of the
other ones constituting the learning set. The resulting classification model leaves a
large testing set on which we can measure the model’s average performance, and it is
almost as powerful as the full model which is trained on 100% of the dataset (Hassan
et al. 1996). As our dataset is constituted of 395 graphs and as we need one hundred
graphs in each testing set, we have chosen a four-folds cross-validation scheme.

The Frequent Connected SubGraphs (FCSGs) are extracted according to a
minimum frequency threshold in D,. Except for the Section 4.2.1, this threshold is
set thanks to a Chi-Square Test of Independance; it corresponds to the minimum
frequency an attribute has to exceed to be able to be considered as dependant of
the classification (Schervish 1995). This threshold is always determined at a level of
confidence of 99% for the statistical test, assuming the attribute never occurs in D,.
It is named the Chi-square frequency threshold. For example, considering the entire
dataset D partitioned into D; (223 graphs) and D, (172 graphs), the correponsding
Chi-square frequency threshold is 4.5%.

4.2 Extraction and representation of the emerging graph patterns

This section focuses on both the feasibility of the method and the study of the con-
densed representation of the FEGPs based on the RPGPs.

4.2.1 Extraction of the frequent connected subgraphs

The first experiment studies the first step of our mining method, the extraction of
the FCSGs. It focuses on the number of the FCSGs and on their average size. The
related runtimes also are of a particular interest.

The minimum frequency threshold fp, varies from 1 to 10% with a step of 1%.
For each value of fp,, we measure (i) the number of FCSGs, (ii) the average size
(number of vertices) of the FCSGs, (iii) the runtime of the extraction and (iv) the
number of FCSGs extracted per second. Results are displayed in Table 3.

As explained in Section 3.2, we have modified the implementation of Gaston in
order to obtain not only the FCSGs but also their supports for the whole dataset.
As the difference between the original version of Gastion and our modified version
never exceeds 0.004 second, we only provide the runtimes related to the modified
version of Gaston without loss of generality. Measured on the modified version
of Gaston, the runtime dedicated to extract the FCSGs depends on the minimum
frequency threshold,; it varies from 2.74 s ( fp, = 1%) to 0.02 second ( fp, = 10%).



Table 3 Measures related to

. Frequency Number  Average Computing Number of
glsnig?gggﬁg étr};;ir equent  h reshold (%) of FCSGs size runtime (s) FCSGs/sec
according to the minimum 1 49,428 13.9 274 18,039
frequency threshold 2 3,487 9.22 0.17 20,511

3 958 7.11 0.09 10,644
4 561 6.90 0.06 9,350
5 414 6.91 0.05 8,280
6 288 6.05 0.04 7,200
7 195 5.82 0.04 4,875
8 155 5.52 0.03 5,166
9 120 5.28 0.03 4,000
10 109 5.20 0.02 5,450

The number of extracted FCSGs is strongly correlated to the minimum frequency
threshold; it varies from 49 428 FCSGs ( fp, = 1%) to 109 FCSGs ( fp, = 10%).
The average size of the extracted FCSGs also depends on the minimum frequency
threshold; it varies from 13.9 vertices ( fp, = 1%) to 5.2 vertices ( fp, = 10%). The
number of extracted FCSGs per second relies on the minimum frequency threshold;
it varies from 18 039 FCSGs per second ( fp, = 1%) to 5 450 FCSGs per second
( f D, = 10% )

Even if this experiment has been conducted on a medium sized dataset, the results
point out the feasibility of the extraction of the FCSGs (the first step of our method)
in this context. Lowering the minimum frequency threshold increases the number of
extracted FCSGs and their average size.

4.2.2 The emerging graph patterns: their mining step and their condensed
representation based on the representative pruned graph patterns

This section details the mining of the FEGPs and it assesses the condensed rep-
resentation of the FEGPs based on the RPGPs. We assume that the FCSGs have
already been extracted with a Chi-square frequency threshold calculated on the
whole dataset (4.5%). The set of the FCSGs contains 477 subgraphs with an average
size of 6.87 vertices.

The first experiment evaluates the efficiency of the condensed representation of
the FEGPs based on the Closed Graph Patterns (CGPs). The minimum growth rate
threshold varies from 1 to 10 with a step of 1. For each threshold we measure (i) the
number of FEGPs and CGPs, (ii) the average lengths of the FEGPs and the CGPs,
(iii) the runtime for the extraction of the FEGPs and (iv) the number of FEGPs
represented by one CGP. Results are displayed in Table 4. We also give the values of
these measures when the minimum growth rate is equal to oo; this rate corresponds
to the patterns that are not present in D, (see Section 2.2).

The number of extracted FEGPs varies from 5.21.10° (p = 1) to 1.15.10° (p = o).
The number of extracted CGPs varies from 677 (p = 1) to 87 (p = o0). Consequently
the condensed representation of the FEGPs based on the CGPs reduces significantly
the number of patterns without loosing any information. The number of FEGPs
embedded into one CGPs increases as the growth rate threshold increases: it varies
from 7,703 (p = 1) to 13,273 (p = oo). The condensed representation of the FEGPs
based on the CGPs seems to be more efficient when the growth rate threshold is high.



Table 4 'Ex'traction and Growth Number Number Extraction Number of
summarization of the Frequent rate of FEGPs  of CGPs  runtime (s) FEGPsin
Emerging Graph Patterns 6
according to the minimum threshold  (.10%) one CGP
growth rate threshold 1 521 677 352 7,703

2 5.02 548 335 9,168

3 4.16 438 255 9,505

4 352 345 164 10,216

5 3.15 286 129 11,022

6 2.94 255 96 11,555

7 252 212 75 11,903

8 2.03 172 52 11,830

9 1.83 154 23 11,895

10 1.77 142 41 12,527

00 1.15 87 22 13,273

The runtime for extracting the FEGPs decreases when the growth rate threshold
increases: it varies from 352 s for p = 1 to 22 s for p = co. As the extraction of the
FCSGs never exceeds 3 s, the runtime for the whole process (extraction of FCSGs
and extraction of FEGPs) is close to the runtime of the extraction of the FEGPs. We
may conclude that the whole method is applicable on medium-sized dataset.

The second experiment focuses on the condensed representation of the CGPs
based on the RPGPs. The minimum growth rate threshold varies from 1 to 10 with
a step of 1. For each threshold we measure (i) the average length of the FEGPs and
the RPGPs. Results are displayed in Table 5. We also give the values of the measures
when the minimum growth rate is equal to co.

The average length of the CGPs varies from 15.1 (p = 1) to 18.1 (p = o0). The
average length of the RPGPs from 2.23 (p = 1) to 2.55 (p = 00). In average the
RPGPs are by far smaller than the CGPs. The condensed representation of the
FEGPs based on the RPGPs reduces significantly the length of the FEGPs without
loosing any information.

Even if the experiments were conducted on a medium-sized dataset, the extraction
of the EGPs from a chemical dataset is feasible. When we have to memorize the

Table 5 Measures on Fhe Growth Average Average Average
condensed representation of
the Frequent Emerging Graph rate length of length of Number of
Patterns based on the threshold the CGPs the RPGPs FCSGs deleted
Representative Pruned Graph 1 151 2.23 12.8
Patterns according to the 2 16.1 2.20 13.8
minimum growth rate 3 16.8 2.37 14.4
threshold 4 16.4 2.39 14

5 17.1 2.44 14.6

6 17.3 2.43 14.8

7 16.6 2.42 14.2

8 17 2.45 144

9 171 2.44 14.6

10 16.6 2.43 14.2

00 18.1 2.55 15.6




EGPs, their condensed representation by their RPGPs appears to be very efficient:
it drastically reduces both the number of patterns and their average length.

4.3 Evaluation of the frequent emerging graph patterns in a classification context

Quantitative results have shown the feasibility and the efficiency of the method. We
now evaluate the interest of the FEGPs in a context of classification.

4.3.1 Relationship between the discriminative fragments and the frequent
emerging graph patterns

First we recall the notion of discriminative fragment. Given two thresholds of fre-
quency fy and f,, a pattern of length 1 is a discriminative fragment if its frequency
in D, exceeds fy and its frequency in D, is above f,, (Borgelt and Berthold
2002; Borgelt et al. 2005). As the notion of FEGP relies on a minimum frequency
threshold in D;, fp,, and on a minimum growth rate threshold from D, to Dy, p,
we naturally relate the notion of discriminative fragments with the notion of the
FEGPs by terming: a FEGP is a discriminative pattern if its frequency threshold in D,
is above %. Under this definition, a discriminative pattern is always a FEGP (the
discriminative fragments constitute a subset of the FEGPs). As a RPGP has exactly
the same support than any FEGP it represents, the following property is immediate:
a RPGP is a discriminative pattern if any of its represented FEGP is a discriminative
pattern. Consequently we are able to compare the notion of FEGPs and the notion
of discriminative patterns by comparing the RPGPs that are discriminative with the
RPGPs that are not discriminative.

During the following experiment, the frequency threshold fp, is the correspond-
ing Chi-square frequency threshold (fp, =5.9%). The coverage rate of a set of
patterns P into a set of graphs D corresponds to the proportion of the elements
of D that contain at least one pattern of P.

For each fold of the cross-validation scheme, the minimum growth rate threshold
varies from 1 to 10 with a step of 1. The RPGPs are extracted from the learning
set and they are partitioned into two subsets: the discriminative ones (D-RPGPs)
and the non discriminative ones (ND-RPGPs). For the three resulting subsets we
measure (i) the number of patterns (Nb), (ii) their coverage rate (CR) into the
positives graphs of the testing set (PT) and (iii) their coverage rate into the negatives
graphs of the testing set (NT'). Results are displayed on Table 6.

Measured on the testing set, the coverage rate of the RPGPs varies from 95 to
26.5% for the positive graphs and it varies from 83.5% (p = 1) to 4% (p = oo) for the
negatives graphs. The coverage rate of the D-RPGPs does not vary when the growth
rate threshold increases : from 26.5% (p = 1) to 26.5% (p = oo) for the positive
and from 4.2% (p = 1) to 4% (p = oo) for the negatives graphs. These results show
that there exist non discriminative RPGPs that are of interest within a classification
context.

4.3.2 The interest of the emerging graph patterns of length greater than 1

This experiment shows that there exists FEGPs of length greater than 1 that are of
interest in a context of classification. When a RPGP has a length greater than 1, its
corresponding CGP has also a length greater than 1 and, consequently, they both



Table 6 Average number and coverage rates of the Representative Pruned Graph Patterns into the
testing sets according to the minimum growth rate threshold

Growth D-RPGPs ND-RPGPs RPGPs

rate Nb CR (%) Nb CR (%) Nb CR (%)
threshold PT NT PT NT PT NT
1 10.7 26.5 4.2 417.7 95 83.5 428.5 95.5 83.5
2 10.2 26.5 2.5 333.7 89.7 53 344 89.7 53

3 10 24.2 3.7 25.6 82.5 38.5 246 83 39
4 10 24 2 181 76.2 29.7 191 71.5 32.7
5 11.5 28.2 3 149.7 75.5 21 161.2 76.7 21.7
6 10.5 26 2 1255 63.7 17.2 136 65 17.2
7 11.2 27.7 2 100.7 63.7 17.2 112 66.7 17.5
8 10.7 27.2 1.5 88.5 59.5 17.2 115 61.2 17.2
9 12.7 24.2 2.5 78.7 56.5 14 91.5 58 14
10 12.2 28.2 4.5 54.7 53.7 8 67 55 9.2
00 12.5 26.5 4 0 0 0 12.5 26.5 4

represent at least one FEGP of length greater than 1. If we exhibit RPGPs of length
greater than 1 that are of interest in a classification context, we will be allowed to say
that there exist interesting FEGPs of length greater than 1.

A jumping emerging pattern is a special type of EP: a pattern is a jumping pattern
when it never appears in the negative class. A jumping pattern corresponds to a
highly discriminative set of characteristics (Li et al. 2001). We now focus on the
RPGPs that are jumping patterns; these patterns are extracted with a growth rate
threshold equal to oo.

During the following experiment, the frequency threshold fp, is the correspond-
ing Chi-square frequency threshold (5.9%). For each fold of the cross-validation
scheme, the jumping RPGPs are extracted from the learning set and they are
partitioned into two subsets: the patterns of length 1 and the patterns of length
greater than 1. For these two resulting subsets, we measure (i) the number of
extracted patterns, (ii) the number of patterns that are still jumping patterns in the
testing set and (iii) the number of jumping RPGPs that are still jumping patterns in
the testing set and that composed only with FCSGs that are not emerging fragment.

By averaging the results obtained with the different folds of the cross-validation
scheme, there is 7 jumping RPGPs of length equal to 1 and 38 of length greater than
1.65% of the jumping RPGPs of length greater than 1 are still jumping patterns in
the testing set: these patterns (of length greater than 1) appears to be of interest in a
context of classification.

If we focus on the jumping RPGPs of length greater than 1 that still jump in the
testing set, 73% of theses jumping RPGPs are constituted only with FCSGs that
are not emerging alone. We can say that there exists FEGPs of length greater than
one that are of interest in a context of classification. Moreover, these patterns are
not always made of emerging graphs. These facts justify the extraction of FEGPs of
length greater than one. As a FEGP may have an interest in a context of classification
whatever its length and its constitution are, the whole set of RPGPs has to be
extracted.

These experiments have shown that mining emerging graph patterns from real-
world chemical dataset is feasible. Moreover, these experiments indicate that the



condensed representation of the FEGPs based on the RPGPs is very efficient :
it drastically reduces both the number of patterns to memorize and their lengths.
Furthermore these patterns may have an interest in a context of classification
whatever their length is.

5 Conclusion and future work

In this paper, we have investigated the notion of emerging graphs and we have pro-
posed a method to mine emerging graph patterns. A strength of our approach
is to extract all frequent emerging graph patterns (given thresholds of frequency
and emerging) and not only particular emerging patterns. In the particular case of
patterns of length 1, all frequent connected emerging graphs are produced. Our
results are achieved thanks to a change of the description of the initial problem so
that we are able to design a process combining efficient algorithmic and data mining
methods. Moreover, we show that the closed graph patterns are a condensed repre-
sentation of the frequent emerging graph patterns and we propose a new condensed
representation based on the representative pruned graph patterns: by providing
shorter patterns, it is especially dedicated to represent a set of frequent emerging
graph patterns. Experiments on a real-world database composed of chemicals have
shown the feasibility and the efficiency of our approach. Further work is to better
investigate the use of such patterns in chemoinformatics, especially for discovering
toxicophores. A lot of data can be modeled by graphs and, obviously, emerging graph
patterns may be used for instance in text mining or gene regulation networks.
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