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Abstract

In this paper, a novel feature selection method based on rough sets and mutual information is 

proposed. The dependency of each feature guides the selection, and mutual information is 

employed to reduce the features which do not favor addition of dependency significantly. So the 

dependency of the subset found by our method reaches maximum with small number of features. 

Since our method evaluates both definitive relevance and uncertain relevance by a combined 

selection criterion of dependency and class-based distance metric, the feature subset is more 

relevant than other rough sets based methods. As a result, the subset is near optimal solution. In 

order to verify the contribution, eight different classification applications are employed. Our 

method is also employed on a real Alzheimer's disease dataset, and finds a feature subset where 

classification accuracy arrives at 81.3%. Those present results verify the contribution of our 

method.
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1. Introduction

The size of dataset has been increasing dramatically, which usually incurs high 

computational costs, so handling huge dataset and large dimensional dataset have become a 

major problem [1, 2]. In order to deal with this problem, feature reduction and data 

reduction are practically important. Feature selection (FS), as a kind of feature reduction, 

can find a more relevant feature subset with labels. Since FS reduces the number of features, 

it can save cost of computational time and memory when dealing with high dimensional 

datasets. It is also useful to improve classification accuracy as a result of removing 

redundant and irrelevant features. According to different mechanisms of selection, FS 

methods fall into three catalogues: wrapper feature selection [3, 4], embedded method [5, 6], 

and filter method [7-12]. Since filter methods can support the balance between classification 

accuracy and computational cost, it is used most widely. Two kinds of filter methods based 
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on mutual information (MI) or rough sets are introduced below, because the theories are also 

employed in our methods.

Since MI can estimate the certainty between two variables, it is used as a criterion to select 

features. The main idea of MI based methods finds a subset by maximizing MI between 

features and labels, and minimizing MI among features. On the basis of this idea, each 

method defines its own selection criterion. The basic methods, Mutual information based 

feature selection (MIFS) [13] and MIFS-U [14], consider the certainty between labels and 

features. Feature selection by mutual information based on parzen window (PWMI) 

eliminates features with little information about class variable [15]. For optimal feature 

subset using MI (OFS-MI), salient features are selected by comparing the quadratic MI [16, 

17]. Normalized MIFS [18] is a fast and efficient method, due to its incremental nature. For 

MI methods, a serious problem is that the subset found by ‘best individual feature’ does not 

imply that it is the best subset of features [19]. That is to say that the subset selected by MI 

cannot verify the combination of features due to large computational cost of high 

dimensional MI. In contrast, rough sets based feature selection delivers encouraging results 

in combination of features.

Rough set is a mathematical theory developed by Pawlak [20-24]. The process of standard 

feature selection employing rough sets can be viewed as reduct construction [20]. 

Comparing with other feature selection methods, reduct construction defines its own 

selection and termination criteria [25]. A method of reduct construction does not stop until it 

finds a set where the combination of each feature with others favors the increasing of 

dependency. There are extensions about rough sets base FS methods. Samples in the 

Boundary Region are employed to define a distance metric as part of selection criterion [29, 

30]. The subsets selected by these methods include more information about labels. Heuristic 

functions guide the searching process of FS methods [31-35], which favor finding a more 

desirable output. Heuristic functions depend on internal information of data. In contract, 

external information based on semantics or constraints [26] is used to find a reduct with user 

preference. Hybrid fuzzy and rough method [36, 37, 51-55] can provide flexible solutions by 

extending lower and upper approximations of rough sets to fuzzy sets. Finally, a feature 

selection algorithm for multiple classifiers can decrease the number of decision-relative 

feature subsets [56]. This method evaluates the feature subsets according to deterministic 

and inhibitory rules which consider the influence of an added new object on decision table 

[57-61].

Rough sets based FS methods are filter methods, but the concept of rough sets is 

classification, which is similar with wrapper methods. That is to say that the subsets selected 

by rough sets methods favor the classification accuracy without dramatical improvement of 

computational cost. However, it is a NP-hard problem to find an optimal solution. In this 

paper, we propose a new algorithm to find a near optimal subset. Since dependency 

expresses the ability to discern feature values, it is set to guide the searching process. To 

avoid selecting the features with small addition of dependency, MI is employed to evaluate 

the similarities of features. As a result, the dependency of the subset found by our method 

reaches the maximum with small number of features. The dependency shows the definitive 

relevance of the samples in the Positive Region. But the relationship between the samples in 
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the Boundary Region and labels is not considered by the dependency. A class-based distance 

metric (CDM), which is part of selection criterion, is defined to evaluate the benefit of the 

Boundary Region on classification accuracies.

Our proposed feature selection based on rough sets and mutual information (RSMI-FS) 

shows four major advantages. First, since the dependency of each single feature as heuristic 

information guides the searching process, the subset determined by RSMI-FS is optimal or 

near-optimal. This is confirmed by our results in section 4. For each dataset, the 

classification accuracies of the subsets found by our method are larger or comparable 

comparing with other methods. Second, RSMI-FS can find more relevant features, since its 

selection criterion, which combines the dependency with CDM, evaluates the definitive and 

uncertain relevance between features and labels. Third, MI is used to reduce the redundant 

features. Fourth, the optimal subset is found without dramatical increasing of computational 

time cost, as quadratic MI is used to estimate the similarities of features, which can reduce 

the computational complexity of MI [16, 17].

A real application dataset is also used to verify the effectiveness of our method. Estimated 

5.4 million Americans have Alzheimer's disease (AD). Every 68 seconds, an additional 

person with AD is found now. By 2050, there will be one new case of AD every 33 seconds. 

The situation of AD is serious, but the precise physiological changes triggering the 

development of AD largely remain unknown. In this work, our method is used for a real AD 

dataset developed by National Alzheimer's Coordinating Center of US. The maximum of 

classification accuracies on the selected subsets arrives at 81.3%. For the samples with AD, 

the maximum of classification accuracies is 82.75%. These results verify our method is 

suitable tool to mine the characteristics of AD.

The rest of paper is organized as follows. Section 2 gives the background of our study. The 

basic knowledge about rough sets and mutual information is shown. The proposed feature 

selection scheme is detailed in Section 3. The experimental results are presented in Section 

4. The application of AD dataset is in Section 5. Finally, the conclusion is drawn in Section 

6.

2. Background

In this section, the related theories with our work are introduced. First, the concepts of 

mutual information is shown, which can be used to evaluate the similarities among features. 

Then, basic idea of rough sets and the extended method employing samples of the Boundary 

Region are given.

2.1. Mutual Information

In according with Shannon's information theory [19], the uncertainty of a variable C can be 

measured by entropy H (C). For two variables C and Y, the MII(C;Y) expresses the degree of 

reduced uncertainty about C after observing Y. It is calculated as

(1)

where H(C|Y) is conditional entropy measuring the uncertainty about C after observing Y.
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When C is a discrete variable, with the entropy defined by Shannon, the entropy of C is 

expressed as

(2)

where p(·) is the probability mass function of C. When Y is also a discrete variable, the 

conditional entropy H(C|Y) is expressed as

(3)

where p(c|y) epresents the conditional probability mass of C and Y. Their MI is

(4)

where p(c,y) is the joint probability mass function. When C and Y are continuous variables, 

the MI between C and Y is [16]

(5)

Based on the basic MI expression, quadratic MI is got by inserting quadratic expressions of 

the related variables [38], which are useful to reduce the complexity of computational cost. 

If D1 and D2 are discrete variables, their quadratic MI[16, 17, 38] is

(6)

For two continuous variables E1 and E2, their quadratic MI is:

(7)

The probability mass function describes the relative likelihood for the variable to occur at a 

given point, which is estimated according to the observation. Histogram and Kernel method 

are also used to estimate the probability mass function. However, Histogram tends to 

produce large estimation errors and pushes the memory requirement exponentially, with the 

increasing size of data.

2.2. Rough Sets based Feature Selection

The theory of rough sets aims to approximately describe the sets that are unknown, 

incompletely specified, or whose specification is over complex. The fundamental notions of 
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rough sets are lower and upper approximations of sets [20-24]. The lower approximation is a 

description of the domain objects with certainty belonging to the concept of interest, 

whereas the upper approximation is a description of the domain objects that possibly belong 

to the concept of interest.

Definition 2.1: Let IS(U, A) be a complete information system, where U is a nonempty finite 

set of objects and A is a nonempty finite set of features so that f :U → Vf for every f ∈ A. Vf 

is the set of values that f takes. For any P ⊆ A, there exists an indiscernible relation IND(P)

(8)

Dataset can be seen as an information system, where samples are the objects of U and 

features are the elements of A.

Definition 2.2: A partition of U generated by P is defined as

(9)

where

(10)

If (x, y) ∈ IND(P), x and y are indiscernible according to the feature subset P. The 

equivalence class of x on the P-indiscernible relation is denoted by [x]p. If x and y are 

indiscernible according to the features subset P, y ∈ [x]p. Construct the P-lower 

approximations and P-upper approximations of X as

(11)

(12)

where (11) is the P-lower approximations, and (12) is the P-upper approximations.

By the definition of the P-lower approximations and P-upper approximations, the objects in 

U can be partition into three regions which are the Positive Region, the Boundary Region, 

and the Negative Region.

Definition 2.3: Positive Region, Boundary Region and Negative Region are defined as

(13)
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(14)

(15)

Although L can be the set of any features, it is fixed as the set of label feature to reduce the 

burden of description. In this work, we just consider the system with one label feature. That 

is to say that L = {l}.

Definition 2.4: Dependency of label feature set L on a feature set P is calculated as

(16)

where |·| is the number of objects in the set.

The following lists the QUICK REDUCT [39] using forward search. C is the set of all 

conditional features. That is to say that C includes all features except label. R is the output of 

the algorithm. However, the output of QUICK REDUCT is possible to be not a reduct. For a 

set S, that is a subset of C , it is a reduct, if and POSS(L) = POSC (L) and ∀a ∈ S, 

POSS−{a}(L) ≠ POSS(L)[21]. The algorithm provides an addition strategy in constructing a 

subset. POSR(L) = POSC (L) is verified by the value of dependency. However, a ∈ R making 

POSR−{a}(L) = POSR(L) possibly exists. In this case, the output of QUICK REDUCT is not 

a reduct. Three strategies shown in [25] can make sure that the output is a reduct. They are 

reduction construction by deletion, reduction construction by addition-deletion and 

reduction construction by addition. Deletion strategy eliminates the features in the set of all 

conditional features until it finds a subset R producing the same Positive Region with the set 

of all conditional features. And there is not such feature a ∈ R making POSR−{a}(L) = 

POSR(L). This strategy is not efficient when a reduct is short [25]. Addition-deletion 

strategy firstly constructs a set R by inserting features regarding to the Positive Region. 

Then, a deletion process reduces such feature a ∈ R and POSR−{a}(L) = POSR(L). Reduction 

construction by addition inserts features by considering instinct matrix to directly get a 

reduct.

Algorithm 2.1

QUICK REDUCT

    Input: C, the set of all conditional features

    Input: L, the set of decisional feature

    Output: R, a selected feature subset

        R ← {}

            Repeat

                ∀ f ∈ (C − R)
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                if γR∪( f )(L ) ≻ γR
(L )

                    R ← R ∪ { f }

                end

            Until γR (L) = γC (L)

        Return R

2.3. Boundary Region of Rough Sets

QUICK REDUCT only considers the samples in the Positive Region, so the information of 

the samples in other regions can not be contained. Distance Metric Quick Reduct (DMQR) 

[29] and Distance Metric Tolerance Rough sets (DM-TRS) [30] drive distance metrics as 

part of the feature selection criteria for finding a better feature subset. The distance metrics 

employed by DMQR and DM-TRS qualify the Objects in the Boundary Region with regard 

to their proximity to the low approximations. Since evaluating the margin of high 

dimensional space needs large computational effort, the two definitions calculate the mean 

of all samples in the P-lower approximations to reduce the computational burden. And the 

mean defined in [29, 30] is

(17)

Another definition [37] of the mean is given as .

(18)

Formulas (17) and (18) give two definitions of the mean. The means are employed to 

calculate the distance metric in formula (19). These two formulas calculate the means of 

samples in the Positive Region according to their explanation. However, X is not described 

clearly. Moreover, they are general means of all objects. So the distance metric can not 

evaluate the clustering of samples in the same class. That is to say that the distance metric is 

not sure to be benefit to classification accuracy. In addition, it is more complex problem 

when the Positive Region is sparse, since there are not enough samples providing 

information.

The distance metrics of DMQR and DM-TRS are defined as

(19)

where y is a sample in the Boundary Region, and δ is a distance function which is a 

Euclidean distance function described in [29, 30].

Li et al. Page 7

J Intell Inf Syst. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The feature selection criteria of DMQR and DM-TRS [29, 30] include two parts: the 

dependency and the distance metric of the samples in the Boundary Region. The evaluation 

measure of the two algorithms is defined as

(20)

Apart from the feature selection criterion and stopping rule, their mechanisms are the same 

as QUICK REDUCT. Since γR(L) = γC (L) is an ideal condition that cannot always be 

obtained in practical situations, DMQR and DM-TRS are set to stop when no new feature is 

found.

3. Class-based Boundary Rough Sets with Mutual Information for Feature 

Selection

Rough sets based feature selection methods focus on analyzing the Positive Region which is 

the certain part of the data information. This, however, means the data information which 

lies in the Boundary Region is overlooked. DMQR and DM-TRS explore the distance metric 

of the samples in the Boundary Region as part of the feature selection criteria. Compared 

with other rough sets based feature selection methods, the feature subset determined by 

DMQR or DM-TRS exhibits a stronger relationship between selected features and labels. In 

this section, we introduce a new algorithm which selects features according to the data 

information of the Positive Region and Boundary Region. In the new method, a class-based 

distance metric is defined to measure the clustering degree of the samples in the Boundary 

Region and the Positive Region. With the class-based distance metric, samples in the 

Boundary Region are as close as possible to the samples having the same label in the 

Positive Region, so that the possibility of the samples in the Boundary Region decreases, 

which is classified incorrectly. Rough sets can not evaluate the degree of relevance 

improvement with a new feature inserted into the selected subset, so it can not always 

reduce the redundancy of features efficiently. In this paper, we use MI to eliminate feature 

redundancy. MI, which is robust to noise, can estimate the similarity of variables. Thus, the 

solution of the proposed method appears to be less redundant and more relevant.

3.1 Differentiated Rough Sets

For rough sets based FS methods, the dependency is one of the most important concepts. 

The dependency is based on samples in the Positive Region, so it verifies the definitive 

relevance between features and labels. DMQR and DM-TRS evaluate the uncertain 

relevance by the distance metrics which attempts to qualify the samples in the Boundary 

Region, with regard to their proximities to the samples in the P-low approximations. That is 

to say, the larger the distance metric is, the higher the likelihood that samples in the 

Boundary Region belong to the set of interest is [30]. But the P-lower approximations are 

not direct objects in the process of FS. Thus, in this paper, we focus on the Positive Region 

directly.
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In some situations, the information concerning label feature is only partial. That is to say 

that the values of labels for some samples are missed. For rough sets, label feature is 

sensitive data, which plays important role in calculating relevance. When we categorize 

samples, missed labels must be considered.

We can categorize the samples of a dataset into six groups:

Type-1: For a sample, its equivalence class of P-indiscernible relation only includes 

itself. And its value of label is observed.

Type-2: For a sample, its equivalence class of P-indiscernible relation includes more 

than 1 object. Its value of label is observed. And all the samples in its equivalence class 

have the same value of label feature.

Type-3: For a sample, its equivalence class of P-indiscernible relation includes more 

than 1 object. The values of labels for the samples in its equivalence class are all 

observed. And there exists at least 2 samples in its equivalence class with different 

values of label feature.

Type-4: For a sample, its equivalence class of P-indiscernible relation only includes 

itself. And its value of label is not observed.

Type-5: The equivalence class of a sample includes more than 1 sample. There exits 

samples with observed values of labels and samples with missed labels in its 

equivalence class.

Type-6: The equivalence class of a sample includes more than 1 sample. All samples 

missed the values of label feature.

If there are some samples with missed labels, the dataset is not complete. In this work, we 

focus on complete dataset. That is to say that the values of all samples concerning label 

feature are observed.

Theorem 3.1: The samples of Type-1 or Type-2 are in the Positive Region; the samples of 

Type-3 are in the Boundary Region.

Proof of Theorem 3.1:

When a sample “x” is of Type-1, the equivalence class [x]p of P-indiscernible relation only 

contains the sample itself. According to the definition of Type-1, the value of x concerning 

label is observed. So ∃Z ∈ U |IND(L) makes x ∈ Z, where U | IND(L) is a partition of U 

generated by label feature. As a result, [x]p = {x} ⊆ Z. According to Definition 2.3, the 

sample must be in the Positive Region.

When x is of Type-2, [x]p contains more than 1 samples. For label feature, the values of the 

samples in [x]p are the same. So∃Z ∈ U | IND(L) and [x]p ⊆ Z. Thus, x must be in the 

Positive Region.

When x is of Type-3, there exists at least 2 samples with different values of label feature. 

For ∀Z ∈ U | IND(L), if ⊆y ∈ [x]p makes y ∈ Z, ⊆y′ ∈ [x]p and y′ ∉ Z. So 
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. Since the values of lables for all samples in [x]p are observed, ⊆Z′ ∈ U 

| IND(L) makes . As a result, x is in the Boundary Region.

In rough sets, missed value is generally considered as any possible value in the same feature. 

However, this method is dangerous for label. First, the reason of missed value is that the 

value is not possible to be obtained or is definitively impossible to be obtained [62]. Second, 

this method decreases the possibility that samples in the Positive Region are classified into 

correct class. The samples of Type 4-6 can not be directly partitioned into regions before 

redefining U / IND(L). Since incomplete system is not our objective in this work, its details 

are not given, and more contents of incomplete system can found in [62-64].

Table 1 shows an example elaborating the three types of samples and Theorem 3.1. The 

example contains 6 samples among which 3 samples are of class “F”, 3 samples are of class 

“S”. Sample 1 is of Type-1; sample 2 and 3 are of Type-2; sample 4-6 are of Type-3. So 

sample 1-3 are in the Positive Region; others are in the Boundary Region.

It is easy to verify each sample in complete dataset must be in only one group from Type-1 

to Type-3, so Theorem 3.2 is found according to Theorem 3.1.

Theorem 3.2: For complete information system, the samples in the Positive Region are of 

Type-1 or Type-2; the samples in the Boundary Region are of Type-3.

In the Positive Region, we define that the samples, which are in the same equivalence class 

of P- indiscernible relation, consist of a cluster-element. The cluster-element of a Type-1 

sample just contains the sample itself. Thus, the label of this cluster-element is the same 

with the sample. For a sample of Type-2, the samples in its cluster-element have the same 

label, so the cluster-element has the same label with the samples. By the analysis of cluster-

elements, the Positive Region has the characteristic of labels. According to the concept of 

rough sets, the samples in the Positive Region are classified correctly. In theory, an optimal 

selected feature subset should be able to deliver high classification accuracy. In our work, 

we require that the samples in the Boundary Region should be with regard to their proximity 

to the samples in the Positive Region. Since the Positive Region has the characteristic of 

labels, we conduct partition of the samples in the Positive Region and Boundary Region 

according to their respective class labels.

Definition 3.1: Samples in the Positive region are divided into subsets where samples have 

the same class label. It can be denoted as

(21)

By definition 3.1, the Positive Region is divided into several subsets according to label 

feature.

Definition 3.2: The mean set of elements in is defined as POSLP
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(22)

where

(23)

L(PL) = {l(x) | x ∀ ∈ PL} and l is the label feature, since we just consider the system with 

unique decisional feature; denotes the number of samples in the current PL. Since all the 

samples in one PL have the same label because of Definition 3.1, the L(PL) of each object in 

POSLMP has only one element. Each object POSLMP in has two elements—the first one is 

the mean of the amples in the same PL, and the other is the label set.

Definition 3.3: Samples in the Boundary Region are divided into subsets where samples 

have the same class label. It can be denoted as

(24)

Definition 3.4: Distance metric set is denoted as

(25)

where δ is a distance function, and L(BL) = {l(x) | ∀ x ∈BL}. l(BL) = L′ means that the 

elements of these two sets are completely the same. Since all the samples in one BL have the 

same label, the element of L(BL) is unique.

Definition 3.5: Class-based distance metric on a feature set (CDMp) is defined as

(26)

CDMp is based on POSLP and BNDLP which are partitioned according to class labels. Thus, 

CDMP exhibits the characteristic of labels. For samples with the same label, samples in the 

Boundary Region are getting closer to the mean of samples in the Positive Region by 

increasing CDMP.That is to say that the uncertain part of dataset is getting closer to samples 

which are sure to be classified correctly. As a result, CDMP evaluates the uncertain 

relevance of features and labels.

The combination of class-based distance metric and dependency is denoted as CDM − Dp = 

CDMP + γp.

3.2. Forward Feature Selection Process with CDM-D and MI

Rough sets based feature selection relies on an estimated relevance relationship between 

features and labels to find a feature subset. But the increasing degree of relevance by adding 

Li et al. Page 11

J Intell Inf Syst. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



a new feature into subset is not considered. The FSC proposed in [16] can estimate the 

similarity between the feature subset S and a single feature fm. The FSC is defined as

(27)

When FSC(fm) is large enough, i.e, FSC(fm) ≥ θ, the feature fm can be considered as a 

redundant feature for S, and should not be added into S. Throughout this paper, θ is set to 

0.95. In order to verify the effectiveness of similarity estimation, the comparison of CDM−D 

on different feature subsets in the LED dataset, which is highly redundant, is presented in 

section 4. Without the FSC, the redundant features are inserted into the selected subset, so 

the increasing of CDM−D is slow. In contrast, the redundant features can be reduced byFSC, 

enabling the CDM−D reaches its own maximum in a much speedy way.

The proposed RSMI-FS is a forward process. It begins with an empty feature set, and 

additional features are included in the way of one by one. The process of FS is guided by the 

dependency of each feature. That is to say the initial feature sequence is determined by its 

own dependency. Based on CDM − D and FSC, the RSMI-FS algorithm is realized as 

follow, and its flow diagram is illustrated in Fig. 1.

Algorithm 3.1 Feature selection method based on rough sets and mutual information (RSMI-

FS)

Step 1) Set C, S the conditional feature set and an empty set, respectively. Remember γall = γC.

Step 2) In C, find out the feature fi having the maximal dependency. Put fi into S, and delete it form C. Remember the 
current CDM – D = CDM – D{fi} and current dependency γ{fi}.

Step 3) If γS = γall, or there is no features remaining in C, go to step 6.

Step 4) Select the feature fi having the maximal dependency, and delete it form C.

Step 5) If FSC{fi} < θ and CDM − D{ f 1}∪S ≻ CDM − DS , put fi into S, and remember the current CDM – D = 

CDM – DS and dependency γS. Then, go to step 3.

Step 6) Output S.

4. Results and Discussion

In this study, 2 synthetic datasets and 6 real datasets were used. The 2 synthetic datasets 

verify the correctness of the proposed RSMI-FS. The first synthetic dataset highlights the 

advantage of computational time of finding an optimal subset by RSMI-FS. The highly 

redundant LED domain dataset is used to verify the capability of dealing with the 

redundancy and irrelevance in feature set. For 6 real datasets, five indexes, namely Naïve 

Bayes, NNge, DTNB, OneR, and JRIP, are adopted to evaluate classification accuracies of 

the selected subsets. A comparative analysis among RSMI-FS, QUICK REDUCT, and 

DMQR, and DM-TRS is based on subset size and classification accuracy. Additionally, for 

RSMI-FS, the difference between Mahalanobis Distance and Euclidean Distance is 

discussed. Then, three MI based methods (FS-RAW-MI [40], PWMI [15], and OFS-MI 

[16]), two fuzzy rough methods (Attribute Selection with Fuzzy Decision Reducts [51], and 

Vaguely Quantified Rough Sets based Method (VQRS) [55] ), and typical Filter methods 
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( Relief [65, 66], and Filter method based on correlation-based feature subset selection 

(Filter-CFS) [67]) are also compared with RSMI-FS.

4.1. Feature Subset Evaluation Index

In this section, five classifiers are employed to evaluate the classification accuracies of the 

selected subsets. They are Naïve Bayes, NNge, DTNB, OneR, and JRIP which are briefly 

outlined below.

Naïve Bayes [41] is based on Bayesian Classifier. For Bayesian network, the model of 

probability mass function is an important problem, when the variables are continuous. Most 

works solve the problems by discretizing, or assuming that the data are generated by 

Gaussian distribution. But this assumption is not suitable for certain domains, such as clear 

semantics. Naïve Bayes employs a kernal estimation to approximate more complex 

distribution.

NNge [42] is an instance-based learning classifier that classifies new examples by 

comparing them to those already known. A main problem of instance-based learners is that 

running time increases as more examples are used for learning. NNge proposes a non-nested 

generalized exemplar to solve this problem, and represents more useful rules. With the 

generalized exemplar, NNge reduces the role of distance function to determine the class, and 

decreases the classification errors caused by the inaccuracies of distance function.

The algorithm for learning the combined model (DTNB) [43] investigates a semi-Naïve 

Bayesian ranking method that combines Naïve Bayesian with induction of decision table. 

DTNB splits the set of features into two groups. The class probability of one group is 

assigned according to Naïve Bayesian, the other group is based on decision table, and the 

resulting probability estimation is combined.

The OneR algorithm [44] is based on the theory that highly accurate results on most datasets 

can be obtained by simple rules. The OneR uses a system, called 1R, whose input is a set of 

training examples and whose output is a 1−rule. OneR constructs a relatively small set of 

candidate rules, and selects one of these rules. It has been verified that, on many datasets, 

the performance of OneR is highly competitive with some complex numerous implications 

in the convex of machine learning research and applications.

JRIP [45] learns propositional rules by growing rules and pruning them to produce error 

reduction. Before a termination condition is satisfied, antecedents are inserted greedily 

during the growing phase. Then, the antecedents are pruned according to a pruning metric. 

When the rule set is generated, an optimization is performed to evaluate the rules.

4.2 Synthetic Data Set of Varying Size

Four dimension synthetic datasets F = {f1, f2, f3, f4} are generated in this experiment. These 

datasets consist of 100, 500, 1000, 2000, 3000, 4000 samples, respectively. For each dataset, 

the samples belong to two classes {1, 2}, and each class has one half of the samples. For the 

input variables f2 and f1, the data is generated from the following two Binomial 

Distributions:
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Class 1: (half samples of the dataset) {f1, f2}− binornd([10,10],[0.5,0.5])

Class 2: (half samples of the dataset) {f1, f2}− binornd([20,20],[0.5,0.5]).

The input variable f3 is equal to the sum of f1 and f2, and f4 is equal to 2 × f2. Obviously, the 

input variables f1 and f2 are considered more important than f3 and f4 in this experiment. So 

a good feature selection method should select the subset {f1, f2}.

Table 2 shows the selection results of the compared methods. In this section, RSMI-FS uses 

Euclidean distance to calculate CDM − D. It indicates that RSMI-FS, ORS, and Relief are 

able to identify the relevant features correctly. ORS [46], which can also find an optimal 

method, is introduced to compare the computational time with RSMI-FS. Relief can find the 

correct subset, but it needs the priori knowledge that 2 features are suitable. QUICK 

REDUCT finds the correct subset when the number of samples is 1000. DMQR finds the 

correct subsets when the numbers of samples are 500 and 2000. Also, it is noticed that DM-

TRS with tolerance value 0.9, FS-RAW-MI, PWMI, and OFS-MI are not able to obtain the 

correct results in each dataset. For Fuzzy Decision Reducts method, α = 0.95 is set in this 

work, which is suitable choice verified in [51]. For VQRS based method, 0 and 0.8 are 

employed to define the VQRS Positive Region [55]. The values of current CDM − D on 

different numbers of samples are shown in Fig. 2. When the selection process stops 

according to its stopping criterion, additional features are not selected into the subset by 

RSMI-FS. Although the remaining features are not deleted from the initial feature set, the 

values of current dependency and CDM − D do not change after the process stops. We find 

that, with the increasing of sample number, the maximum of related CDM − D in Fig. 2 

decreases. This is because that the number of samples, which have the same feature value 

and different labels, is likely to be larger when the dataset is larger.

Fig. 3, which illustrates the average computational time on different numbers of samples for 

5 trials, shows that the computational time cost of RSMI-FS is not significantly larger than 

QUICK REDUCT, DMQR, and DM-TRS. ORS can find the correct feature subset for 

datasets with different number of samples, but its time cost is substantially larger compared 

with other four rough sets methods. Because each new feature found by ORS must most 

dramatically increase the dependency of its combination with the features having been in 

selected set. That is to say that all features not in selected set must be considered in each 

selecting step. As a result, the feature number plays significant role in computation cost of 

time, which is illustrated in Fig. 4. In our study, with the number of samples being set at 

1000, the features ranged from 4 to 20 are used for conducting a running time comparative 

analysis. The additional features are generated by the linear combination of f1 and f2 which 

is similar with f3 or f4. In Fig. 4, with the increasing of feature numbers, the running time of 

ORS increases dramatically.

4.3. Highly Redundant LED Display Domain Dataset

The dataset of LED display Domain has 24 features in which the first 7 features determine 

the concept of LED display, whilst the rest 17 features are redundant [47]. In this work, 

1000 samples are generated. With the priori knowledge, a subset, which consists of the first 

7 features, is a good result. Table 3 shows the results of the first 7 features in the feature 
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subsets found by the FS methods. In Table 3, fi represents the feature in the selected feature 

subset, and (fi) represents the feature which is not included by feature selection. There are 

other features in the results, so QUICK REDUCT, DMQR, and DM-TRS cannot avoid the 

redundancy in the selected feature sets. MI-based Method, Fuzzy Decision Reducts and 

Filter-CFS can deal with redundancy of the feature set, but the relevance features are also 

ruled out from the selected subsets. On the contrary, RSMI-FS, Relief, and VQRS find the 

correct feature subset which only contains the first 7 features.

In order to show the necessary of MI for RSMI-FS, the increasing value of current CDM − 

D with the number of features is shown in Fig. 5. When the selection progress of RSMI-FS 

stops, all the samples are in the Positive Region. Hence, the related maximum of CDM − D 

in Fig. 5 is 1. When feature similarities are not evaluated by MI, 15 features are selected in 

order to partition all samples into the Positive Region. In contrast, only 7 features are in the 

subset found by RSMI-FS, which is shown in Table 3. This comparative analysis verifies 

that MI is necessary for RSMI-FS.

4.4. Comparison of RSMI-FS with Rough sets based Methods

This section shows the results of experimental studies using 5 UCI datasets and one YALE 

datasets [48]. The data in Table 4 show the classification accuracies using the 5 classifiers, 

which are expressed as percentage. The setup of the experiments in this work is the same 

with [30, 37], where classification using 10-fold cross validation is initially performed on 

the unreduced dataset, following by the reduced datasets. In this section, the results of 

RSMI-FS with Euclidean distance and Mahalanobis distance are shown to evaluate the 

effect of different distance functions. The results of DM-TRS setting tolerance values 0.8 or 

0.9 are both considered.

In Table 4, the classification accuracies of RSMI-FS are larger or comparable with the 

related unreduced set. This verifies that FS is useful to find an indicative subset and remove 

measurement noise. For Small Soybean, Heart and Breast Tumor Diagnosis, the 

performance of RSMI-FS is almost better than other methods. Especially, for Small Soybean 

and Heart, the subsets of RSMIFS do the best for every classifier. Although the 

performances of RSMI-FS and QUICK REDUCT are the same in Small Soybean, the 

features in the subset selected by QUICK REDUCT is 2.5 times as RSMI-FS, which is 

shown in Table 5. Comparing with other methods, their improvement of classification is 

more than 21.2766%. For YALE, the best performance is found by DM-TRS (tolerance 

value 0.9), but 86 features are selected into the subset, which is 13 times larger than the 

results of RSMI-FS. The computational time cost of DM-TRS is 3827.3 second, but the cost 

of RSMI-FS with Euclidean distance and Mahalanobis distance is just 396.4 and 391.7 

second, respectively.

For FS methods based on rough sets, their dependencies evaluate the definitive relevance of 

features with labels. Fig. 6 shows the values of the current dependency with increasing 

features. For rough sets based method, when the selection process stops according to the 

stopping criterion, additional features are not selected. Although remaining features are not 

deleted from the initial feature set, they are not useful to increase the dependency. In Fig. 6, 

RSMI-FS (ED) and RSMI-FS (MD) express that RSMI-FS uses Euclidean distance and 
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Mahalanobis distance to calculate distance metric, respectively. Fig. 6 shows that the 

maximal dependencies of RSMI-FS are always larger than DMQR and DM-TRS. 

Comparing with QUICK REDUCT setting the dependency as its selection criterion, RSMI-

FS can reach its maximum value in a faster rate. In SPECT, the dependency of QUICK 

REDUCT is larger than RSMI-FS, but its accuracies shown in Table 4 are not larger than 

RSMI-FS. According to those results, the features selected by RSMI-FS are more relevant 

and less redundant.

In this work, we use Euclidean distance and Mahalanobis distance, which are widespread in 

machine learning, to calculate CDM − D of RSMI-FS. Their difference of classification 

accuracies shown in Table 4 ranges from 0 to 2.99%. Fig. 7 shows the values of current 

CDM − D with the increasing features. It can be observed that the difference of CDM − D is 

not distinctive. As a result, we can conclude that, in RSMI-FS, the difference between 

Euclidean distance and Mahalanobis distance is not significant.

4.5. Comparison of RSMI-FS with MI based Methods

In this section, the results of RSMI-FS are compared with other three MI based FS methods 

which are FS-RAW-MI, PWMI, and OFS-MI. Table 6 shows their classification accuracies. 

For Small Soybean, Heart, and Breast Tumor, the accuracies of the subsets found by RSMI-

FS with the 2 distance functions are almost larger than the other methods. For Heart, the 

accuracies of PWMI in Naïve Bayes and DTNB are larger than RSMI-FS. But the number 

of features found by PWMI is 13, which is shown in Table 7. That is to say that PWMI 

selects all features of Heart. So PWMI does not play role in this dataset. For YALE, the 

performance of MI based methods is better than RSMI-FS, but the difference is 

insignificant. RSMI-FS selects the most relevant features, so its number of selected features 

is rather smaller than MI methods. Moreover, the computational time cost of RSMI-FS is 

significantly less than the other three methods, and the difference of computational time cost 

ranges from 9504 second to 24706 second.

The numbers of features found by RSMI-FS are consistently less than the MI methods, 

which are shown in Table 7. And, in terms of classification accuracies detailed in Table 6, 

RSMI-FS are larger or comparable. The above findings in section 4.4 and 4.5 confirm 

RSMI-FS is able to find a more relevant and less redundant feature subset, compared with 

the rough sets or MI based FS methods.

4.6. Comparison of RSMI-FS with other methods

In this section, RSMI-FS is compared with two fuzzy rough methods and two typical non 

rough sets methods. Fuzzy sets and rough sets are two natural computing methods to deal 

with data of inconsistency and uncertainty in a human-like fashion [68]. Their difference is 

the type of uncertainty and their approach to deal with it [27]. In this work, Attribute 

Selection with Fuzzy Decision Reducts [51] and Vaguely Quantified Rough Sets based 

Method (VQRS) [55] are compared with RSMI-FS. By setting the degree of reducthood α, 

the subset found by Fuzzy Decision Reducts can provide a comparable accuracy with small 

size of features. In this work, α is set 0.95 which is suitable value introduced in [51]. The 

other details of setup about this method are the same with [51]. Fuzzy rough methods are 

Li et al. Page 16

J Intell Inf Syst. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



abrupt in a sense that adding or omitting a single element may drastically alter the outcome 

of approximations. So any misclassified object prevents rough sets from making any 

conclusive statement about all objects related to it. VQRS based method defines a smoother 

region of tolerance towards classification errors to reduce this kind negative impact. The 

parameters of the region are set 0 and 0.8 which is employed in [55]. Relief [65, 66] gives 

each feature a relevance weighting that reflects its ability to discern class labels. It is 

typically used in conjunction with a feature ranking method to select features. In order to 

comparing the performance with our method, the number of its selected features is set as the 

same with RSMI-FS. When the numbers of features selected by RSMI-FS with two distance 

functions are different, the number for Relief is set as the larger one. For Filter method 

based correlation-based feature subset selection [67] (Filter-CFS) runs a subset evaluator on 

the data passed through a resample filter. The subset evaluator is correlation-based feature 

subset selection which evaluates the worth of a feature subset by considering the individual 

predictive ability of each feature along with the degree of redundancy among the features. 

Filter-CFS employs linear forward search [28] which is an extension of best first.

Table 8 shows the accuracy performance. For Small Soybean, the accuracies of subsets 

found by RSMI-FS, VQRS, and Fuzzy Decision Reducts are the same in Naïve Bayes, 

DTNB, NNge, and JRIP. In OneR, the accuracy of RSMI-FS is 4.26% more than VQRS and 

Fuzzy Decision Reducts. For the same dataset, comparing with Relief, the improvement of 

RSMI-FS is more than 23.4%. For SPECTF, RSMI-FS obtain the largest classification 

accuracies in DTNB and OneR. For the results of JRIP about SPECTF, RSMI-FS with 

Euclidean distance is better than other methods. Moreover, features selected by RSMI-FS 

are not more than others, shown in Table 9. Especially, the features selected by Filter-CFS 

are 4.7 and 7 times as RSMI-FS with two distance function. For datasets of SPECT, Heart, 

and Breast Tumor, the performance of RSMI-FS is better or comparable with others. 

Because of computational cost of memory, the fuzzy rough methods, Relief, and Filter-CFS 

can not finish the process of FS about YALE.

5. An application of RSMI-FS in Alzheimer's disease

Alzheimer's disease (AD) was first identified more than 100 years ago, but the research 

about its symptoms, causes, risk factors, and treatment has gained momentum only in the 

past 30 years. Until now, the precise physiological changes triggering the development of 

AD largely remain unknown [49]. In this section, we employ machine learning method to 

find the characteristics of AD.

In order to provide the data of current research initiatives, National Alzheimer's 

Coordinating Center of US develops a dataset which includes standardized clinical and 

cognitive data. The dataset is not hypothesis-driven, since all clinical data are developed 

according to uniform assessment and diagnosed by all participants in AD center. So the 

research of this dataset is useful to mine the factors triggering AD.

RSMI-FS is a suitable tool to find the relevant factors. Rough sets analyze data using 

human-like fashion [68] which is uniform with construction of dataset and process of 

diagnosing AD. Although rough sets based FS methods are filter methods, the concept of 
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rough sets is classification. So they can find the subsets which improve classification 

accuracy without dramatical addition of computation cost. Our method has the advantage of 

rough sets and MI, so the subset selected by RSMI-FS is more relevant and less redundancy. 

That is to say that RSMI-FS can find the most dangerous factors. In order to find more 

information of AD, the algorithm stops only when the dependency of selected features 

arrives at maximum. In Section 4, it is verified that difference between Euclidean distance 

and Mahalanobis distance is not significant. So Euclidean distance is only used.

The dataset has 11053 samples and 171 features. Each sample expresses the detail of one 

person. The features are reduced from dataset, whose proportion of missed values is larger 

than 70%. After reducing the features, only 60 features remain. The missed values of the 

remaining features are estimated by Self-Organizing Map. The detail of Self-Organizing 

Map is in [50].

In the process of mining factors triggering AD, three aspects must be considered:

1. The quality of results obtained by machine learning method.

2. The number of samples in dataset. It should be large enough to mine the credible 

factors which trigger the development of AD.

3. The role of label distribution. The proportion of samples with disease is 70.52%, so 

it must play role in classification accuracy.

The samples should be enough to provide credible results, so the variation of classification 

accuracies with different amount of samples is evaluated. 100, 500, 1000, 2000, 3000 and 

4000 samples are respectively set as experiment objects. In order to avoid contingency, for 

each number of samples, 10 different sets are constructed by random sampling. The setup of 

classification on each subset found by RSMI-FS is the same with Section 4.4. Table 10 

shows the details of results, where accuracy is expressed as percentage. For each amount of 

samples, there are 50 classification accuracies, because of 10 samplings and 5 classifiers. It 

is hard to directly analyze the variation of classification accuracies with increasing of 

samples. So the mean of 50 accuracies is used, presented as “Average of the same size” in 

Table 10. We find the difference among the means of 1000, 2000, 3000, and 4000 just 

ranges from 0.484% to 3.175%. This guarantees that the samples in the dataset are sufficient 

to provide precise information. In each row of Table 10, the average accuracy is the average 

of each sampling set about Naïve Bayes, DTNB, JRIP, NNge and OneR. Average accuracy 

favors performance evaluation of each sampling set, which is used in following experiment 

step.

The proportion of samples with AD in the dataset is 70.52%. It is more dangerous that a 

person with AD is diagnosed as health, so the center mainly focuses on the people with the 

disease. But the results of FS should provide service to all kinds of people. That is to say 

that the proportion of AD in tested people is unknown. It is much possible that healthy 

people are more than the people with the disease. In order to evaluate effect of the testing 

sets with different proportion of AD, the setup of new classification is as follows: choose a 

selected subset from above results as training set; then, a testing set with the same number of 

samples is formed of samples except in the training set. It must be noted that the proportion 
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of samples with AD in testing set is fixed before random sampling. For each training set, we 

have 5 testing sets with 0.9, 0.7, 0.5, 0.3, and 0.1 proportion of AD, respectively. The 

process of choosing training sets: for each number of samples, the selected subset with 

largest average accuracy and the smallest are both chosen as training sets; one of the 8 

others is randomly picked as the third training set. Obviously, all the training sets are the 

results of FS, so the features in a testing set are reduced according to related training set 

before classification. A direct classifier, 1NN, is employed in Fig. 8 to avoid role of 

classifiers. In Fig. 8, the proportion of samples with AD plays significant role in accuracy. 

With addition of the proportion, the accuracies increase. This result comes to an agreement 

of label distribution between training and testing set. It must be noted that, for AD dataset, 

the indicative ability of samples with disease is more important. So Fig. 9 shows the 

classification accuracies of the samples with disease in the testing sets. It can be observed 

that the variation of accuracies with proportion in Fig.9 is not significant. According to the 

analysis above, RSMI-FS provides the quality results.

6. Conclusion

Feature selection aims to find a small feature subset to represent a given high dimensional 

dataset. In this paper, we propose a new feature selection method (RSMI-FS) which is based 

on rough sets theory and mutual information. Attributing to the theoretical contribution of 

CDM-D and FSC criteria, the proposed feature selection method offers three desirable 

properties over the existing rough sets method. First, the feature subset considers both 

definitive and uncertain relevance with the labels. The definitive relevance is calculated on 

the samples in the Positive Region, and the uncertain part implies the relevance information 

provided by the samples in the Boundary Region. This enables RSMI-FS finds a strong 

indicative subset of datasets. Second, the proposed method also hybridizes the concept of 

rough sets with mutual information so that the redundancies of features are reduced by using 

the FSC. Third, using the dependency of each feature as heuristic information, the results of 

RSMI-FS are optimal or close-optimal feature subsets. And more importantly, the running 

time of our proposed RSMI-FS is comparable to the other rough sets based methods.
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Fig. 1. 
Flow diagram of RSMI-FS
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Fig. 2. 
CDM-D of the datasets with increasing samples. |samples| expresses the number of samples 

in the dataset.
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Fig. 3. 
Comparison of computational time cost with increasing number of samples.
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Fig. 4. 
Computational time cost with increasing features.
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Fig. 5. 
Comparing of CDM − D between RSMI-FS and the method without MI.
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Fig.6. 
Values of dependencies with increasing features, (a) Small Soybean (b) SPECT (c) SPECTF 

(d) Heart (e) Breast Tumor (f) YALE.
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Fig.7. 
Values of CDM − D with increasing features, (a) Small Soybean (b) SPECT (c) SPECTF (d) 

Heart (e) Breast Tumor (f) YALE.
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Fig.8. 
Variation of classification accuracy under proportion of AD. (a1) the training set is one with 

smallest average accuracy among experiments of 100 samples; (a2) the training set is one 

with largest average accuracy among experiments of 100 samples; (a3) the training set is 

picked randomly among other 8 experiments of 100 samples. (b1)-(b3) the results of 500 

samples are shown in the same way of 100 samples; (c1)-(c3) 1000 samples (d1)-(d3) 2000 

samples. (e1)-(e3) 3000 samples. (f1)-(f3) 4000 samples.
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Fig.9. 
Classification accuracy of samples with diseases. The setup is the same with Fig. 8.
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Table 1

An example elaborating Theorem 3.1

Sample Feature-1 Feature-2 Label Sample Feature-1 Feature-2 Label

1 2 3 S 4 2 4 F

2 4 5 F 5 2 4 S

3 4 5 F 6 2 4 S
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Table 2

Results of feature selection on the synthetic dataset

Sample number 100 500 1000 2000 3000 4000

Methods

QUICK REDUCT {f1, f3} {f1, f4} {f1, f2} {f3, f4} {f2, f4} {f1, f4}

DMQR {f4, f2} {f2, f1} {f3, f4} {f2, f1} {f1} {f4, f1}

DM-TRS {f1, f3} {f2, f3} {f4, f1, f3} { f3} {f4, f3, f1} {f2, f3}

ORS {f1, f2}

FS-RAW-MI {f1, f2, f4}

PWMI {f1, f2, f4}

OFS-MI {f1, f2, f3, f4} {f1, f2, f4}

Fuzzy Decision Reducts {f1, f3, f4} {f1, f2, f3, f4} - -

VQRS {f1, f3, f4} {f1, f4} {f1, f2, f3, f4} - -

Relief {f1, f2,}

Filter-CFS {f1, f4} {f1, f4} {f1, f2} {f1, f4} {f1, f4} {f1, f4}

RSMI-FS {f1, f2}
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Table 3

Results of feature selection on LED dataset

Feature selection method Result of feature selection

QUICK REDUCT {(f1), f2, f3, f4, f5, (f6), (f7)}

DMQR {(f1), (f2), (f3), (f4), (f5), f6, (f7)}

DM-TRS {(f1), (f2), (f3), (f4), (f5), (f6), f7}

FS-RAW-MI {f5, f2, f3, f4, f1, f6, (f7)}

PWMI {f5, f2, f3, f4, f1, f6, (f7)}

OFS-MI {f5, f2, f3, f4, f1, f6, (f7)}

Fuzzy Decision Reducts {f1, f2, f3, f4, f1, (f6), (f7)}

VQRS {f1, f2, f3, f4, f5, f6, f7}

Relief {f2, f5, f7, f4, f3, f1, f6}

Filter-CFS {f1, f2, f3, f4, f5, (f6), (f7)}

RSMI-FS {f6, f3, f5, f4, f1, f7, f2}
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Table 4

Classification accuracies of FS methods based on rough sets

FSmethod Unreduced set RSMI-FS 
(Euclidean 
distance )

RSMI-FS (Mahalanobis distance) QUICK REDUCT DMQR DM-TRS 
(tolerance 
value 0.9)

DM-TRS 
(tolerance 
value 0.8)Classifier (%)

Data set Small Soybean (47 samples and 35 features)

Naïve Bayes 97.8723 100 100 100 72.3404 40.4255 36.1702

DTNB 100 100 100 100 74.4681 36.1702 36.1702

OneR 82.9787 82.9787 82.9787 82.9787 57.4468 36.1707 36.1702

NNge 97.8723 100 100 100 78.7234 25.5319 27.6596

JRIP 97.8723 100 100 100 78.7234 36.1702 36.1702

Data set SPECT (267 samples and 21 features)

Naïve Bayes 75.2809 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007

DTNB 76.03 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007

OneR 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007

NNge 76.4045 71.161 71.161 70.0375 64.794 65.9176 63.6704

JRIP 79.0262 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007

Data set SPECTF (267 samples and 44 features)

Naïve Bayes 68.5393 67.0412 70.0375 69.6696 67.4157 70.412 70.0375

DTNB 76.03 81.2734 81.2734 75.6554 77.1536 70.7865 79.0262

OneR 75.6554 80.5243 80.5243 76.4045 77.9026 77.9026 77.9026

NNge 79.4007 76.03 74.1573 74.1573 73.7828 78.6517 79.0262

JRIP 75.6554 79.0262 77.1536 80.5243 78.2772 73.7828 80.1498

Data set Heart (294 samples and 13 features)

Naïve Bayes 82.9932 77.8912 77.8912 77.665 76.5306 73.8095 76.1905

DTNB 84.3537 82.3129 82.3129 79.932 78.5714 76.5306 78.5714

OneR 78.5714 81.9728 81.9728 81.2925 78.5714 78.5714 78.5714

NNge 77.551 77.8912 77.8912 76.1905 77.2109 72.7891 76.8707

JRIP 79.5918 81.2925 81.2925 79.932 78.5714 77.2109 78.5714

Data set Breast Tumor (699 samples and 9 features)

Naïve Bayes 95.9943 96.5616 96.7096 96.5616 95.9885 95.442 87.2675

DTNB 96.9957 95.702 96.4235 94.8424 95.9885 96.4235 90.701

OneR 92.7039 92.2636 92.7039 91.9771 91.1175 89.9857 90.701

NNge 96.2804 95.702 95.422 94.8424 94.5559 94.8498 87.6967

JRIP 95.1359 95.5651 94.9928 94.8498 94.4206 94.7067 90.701

Data set YALE (2415 samples and 1024 features)

Naïve Bayes - 53.604 53.604 52.9412 52.5269 54.7639 53.0655

DTNB - 60.3977 60.3977 57.5808 57.208 67.8128 56.4209

OneR - 61.599 61.599 51.8641 52.9826 57.008 54.6396

NNge - - - - - - -

JRIP - 65.7001 65.7001 60.0249 58.9478 81.2345 59.942
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Table 5

Numbers of features selected by rough sets based methods

FS method RSMI-FS 
(Euclidean 
distance )

RSMI-FS (Mahalanobis distance) QUICK REDUCT DMQR DM-TRS 
(tolerance 
value 0.9)

DM-TRS 
(tolerance 
value 0.8)Dataset

Small Soybean 2 2 5 4 1 2

SPECT 2 2 3 2 1 1

SPECTF 3 2 4 7 19 3

Heart 6 6 10 3 6 5

Breast Tumor 4 6 7 5 5 1

YALE 6 6 7 3 86 6
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Table 6

Classification accuracies of RSMI-FS and MI based methods

FS method RSMI-FS (Euclidean distance) RSMI-FS (Mahalanobis distance) FS-RAW-MI PWMI OFS-MI

Classifier (%)

Data set Small Soybean

Naïve Bayes 100 100 97.8723 95.7447 100

DTNB 100 100 100 95.7447 100

OneR 82.9787 82.9787 78.7234 55.3193 82.9787

NNge 100 100 97.8723 97.8723 97.8723

JRIP 100 100 100 95. 7447 97.8723

Data set SPECT

Naïve Bayes 79.4007 79.4007 76.4045 75.6554 77.5281

DTNB 79.4007 79.4007 77.1536 76.779 79.0262

OneR 79.4007 79.4007 79.4007 79.4007 79.4007

NNge 71.161 71.161 76.779 75.6554 79.4007

JRIP 79.4007 79.4007 80.5243 81.2743 82.397

Data set SPECTF

Naïve Bayes 67.0412 70.0375 78.2772 71.5356 68.6593

DTNB 81.2734 81.2734 78.6517 77.1536 76.03

OneR 80.5243 80.5243 77.9026 79.4007 75.6554

NNge 76.03 74.1573 79.7753 73.4082 79.4007

JRIP 79.0262 77.1536 79.0262 78.2772 75.6554

Data set Heart

Naïve Bayes 77.8912 77.8912 77.2727 82.9932 79.5918

DTNB 82.3129 82.3129 80.5924 84.3537 77.2109

OneR 81.9728 81.9728 81.2925 78.5714 81.2925

NNge 77.8912 77.8912 78.5714 77.551 76.5306

JRIP 81.2925 81.2925 76.5306 79.5918 78.5714

Data set Breast Tumor

Naïve Bayes 96.5616 96.7096 95.4155 95.1289 95.1289

DTNB 95.702 96.4235 95.1289 94.8424 94.8424

OneR 92.2636 92.7039 92.2636 91.9771 91.9771

NNge 95.702 95.422 95.702 93.9828 93.9828

JRIP 95.5651 94.9928 95.7082 95.9943 95.9943

Data set YALE

Naïve Bayes 53.604 53.604 57.9122 56.7523 58.575

DTNB 60.3977 60.3977 66.6259 67.4399 -

OneR 61.599 61.599 59.6106 61.7647 61.3505

NNge - - - - -

JRIP 65.7001 65.7001 78.2461 79.2461 79.8674
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Table 7

Numbers of features found by RSMI-FS and MI methods

FS methods RSMI-FS (Euclidean distance ) RSMI-FS (Mahalanobis distance) FS-RAW-MI PWMI OFS-MI

Dataset

Small Soybean 2 2 3 5 13

SPECT 2 2 18 20 17

SPECTF 3 2 3 3 44

Heart 6 6 10 13 3

Breast Tumor 4 6 3 3 3

YALE 6 6 17 23 40
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Table 8

Classification accuracies of RSMI-FS and other methods

FS method RSMI-FS (Euclidean distance) RSMI-FS (Mahalanobis distance) VQRS Fuzzy Decision Reducts Relief Filter-CFS

Classifier (%)

Data set Small Soybean

Naïve Bayes 100 100 100 100 76.5957 100

DTNB 100 100 100 100 76.5957 97.8723

OneR 82.9787 82.9787 78.7234 78.7234 57.4468 82.9787

NNge 100 100 100 100 70.2128 97.8723

JRIP 100 100 100 100 55.3191 97.8723

Data set SPECT

Naïve Bayes 79.4007 79.4007 79.4007 75.2809 76.4045 77.9026

DTNB 79.4007 79.4007 79.4007 76.4045 79.4007 79.7753

OneR 79.4007 79.4007 79.4007 79.4007 79.4007 79.4007

NNge 71.161 71.161 67.0412 76.779 71.9107 77.9026

JRIP 79.4007 79.4007 79.4007 80.5234 79.4007 76.9231

Data set SPECTF

Naïve Bayes 67.0412 70.0375 66.6667 70.7865 75.1685 70.7865

DTNB 81.2734 81.2734 79.4007 81.2734 79.4007 74.5318

OneR 80.5243 80.5243 78.2772 77.5281 76.03 74.5318

NNge 76.03 74.1573 77.9026 75.6554 73.0337 80.1498

JRIP 79.0262 77.1536 78.2772 74.1573 74.1573 77.5281

Data set Heart

Naïve Bayes 77.8912 77.8912 74.4898 77.551 81.2925 82.3139

DTNB 82.3129 82.3129 78.5714 78.2313 80.2721 79.2517

OneR 81.9728 81.9728 81.9728 81.9728 81.2925 81.2925

NNge 77.8912 77.8912 74.8299 78.5714 77.8912 73.1293

JRIP 81.2925 81.2925 82.9932 82.9932 79.5918 77.2109

Data set Breast Tumor

Naïve Bayes 96.5616 96.7096 95.9943 96.1373 96.4235 95.9943

DTNB 95.702 96.4235 97.1388 95.8512 97.2818 96.9957

OneR 92.2636 92.7039 92.7039 92.7039 92.7039 92.7039

NNge 95.702 95.422 96.7096 96.2804 96.2804 96.2804

JRIP 95.5651 94.9928 95.279 95.5651 95.422 95.1359

Data set YALE

Naïve Bayes 53.604 53.604 - - - -

DTNB 60.3977 60.3977 - - - -

OneR 61.599 61.599 - - - -

NNge - - - - - -

JRIP 65.7001 65.7001 - - - -
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Table 9

Numbers of features found by RSMI-FS and other methods

FS method RSMI-FS 
(Euclidean 
distance )

RSMI-FS (Mahalanobis distance) VQRS Fuzzy Decision Reducts Relief Filter-CFS

Dataset

Small Soybean 2 2 2 2 2 8

SPECT 2 2 1 20 2 9

SPECTF 3 2 6 5 3 14

Heart 6 6 7 9 6 3

Breast Tumor 4 6 6 4 4 9

YALE 6 6 - - - -
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Table 10

Results of AD dataset

Experiment sequence Number 
of 

selected 
features

Naïve Bayes DTNB JRIP NNge OneR Average accuracy Average 
of the 
same 
size

Proportion 
of samples 

with 
AD(%)

100 samples

1 2 74 74 71 61 71 70.2 66.54 74

2 3 68 71 70 60 70 67.8 71

3 4 74 73 71 64 64 69.2 73

4 3 72 74 69 67 70 70.4 74

5 4 63 69 63 55 54 60.8 69

6 3 63.6 65.7 59.6 55.6 57.6 60.42 66

7 2 76.8 77.8 75.8 66.7 71.7 73.76 78

8 3 64 67 66 63 56 63.2 67

9 3 66 65 67 60 59 63.4 65

10 3 61 69 67 61 73 66.2 69

500 samples

1 3 67.1 66.7 65.7 65.1 67.1 66.34 67.54 68

2 4 70.8 71.6 70 62.4 68.2 68.6 71.6

3 4 67.9 68.3 66.1 63.1 66.7 66.42 68.2

4 5 66.2 66.8 67 59 59.6 63.72 67

5 6 66.8 66.8 65.4 59.2 65.2 64.68 68

6 4 70 70.2 70 65 66 68.24 70.2

7 3 70.6 71 69.8 69 68 69.68 71

8 5 71.4 72.6 71.4 65.2 69.4 70 72.6

9 3 71 70.8 71 63.2 68.4 68.88 71

10 3 71 70.8 71 63.2 68.4 68.88 67.4

1000 samples

1 9 63.2 70.9 69.1 63.9 68.7 67.16 73.98 70.4

2 5 79.4 79.4 79.3 75.9 79.5 78.7 71.2

3 5 72.5 73.1 72.3 64.7 73.2 71.16 73

4 5 78.9 79.3 80.6 75.8 79.3 78.78 71.6

5 4 70.3 70.4 69.5 65.7 67.2 68.62 71.6

6 5 80.1 80.6 79.8 76 79 79.1 71.8

7 5 80.2 80.2 80.5 76.4 80.5 79.56 68.2

8 4 69.6 69.8 68.7 62.8 70.8 68.34 69.8

9 4 70.7 70.6 70 65 72.6 69.78 71.2

10 5 80.1 79.4 79.4 74.5 79.4 78.56 72

2000 samples

1 7 69.8 70.8 70.6 - 69.9 70.275 71.46 70.07
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Experiment sequence Number 
of 

selected 
features

Naïve Bayes DTNB JRIP NNge OneR Average accuracy Average 
of the 
same 
size

Proportion 
of samples 

with 
AD(%)

2 7 68.2 71.6 70 - 71.9 70.425 71.2

3 7 68.6 69.7 68 - 69.1 68.85 70.4

4 6 71.9 71.9 71.6 - 71 71.6 71.95

5 9 67.2 68.1 67.6 - 68.1 67.75 68.65

6 11 69.9 70.4 69.9 - 69.9 70.025 71.2

7 7 69.5 69.8 69.1 - 67.6 69 68.2

8 6 79.7 80.1 81.3 - 80.1 80.3 71.75

9 7 66 68.5 68 - 68.6 67.775 68.95

10 5 78.6 78.6 78.6 - 78.7 78.625 70

3000 samples

1 6 79.8 80 80.3 - 79.5 79.9 74.15 70.8

2 9 70.6 71.5 70.9 - 72.1 71.275 71.2

3 7 68.9 69.9 69.1 - 67.9 68.95 69.97

4 7 79.4 80.2 79.9 - 80.2 79.925 71.37

5 7 69.8 71.4 69.7 - 70.5 70.35 70.1

6 8 79.3 79 80.4 - 80 79.675 70.6

7 8 79 80.1 80.7 - 79.3 79.775 70.6

8 8 69.6 69.6 68.9 - 69.4 69.375 70.4

9 7 71.2 70.6 71.2 - 71.3 71.075 71.23

10 7 71.2 71.4 71 - 71.3 71.225 71.6

4000 samples

1 8 68.6 70.4 69 - 69.5 69.375 74.64 69.6

2 8 79.1 78.9 80.1 - 79.2 79.325 71.23

3 8 79.1 78.9 80.1 - 79.2 79.325 69.7

4 7 69.6 70.1 70 - 69.9 69.9 70.03

5 11 68.7 70.9 68.5 - 70.6 69.675 69.97

6 6 78.8 80.6 80.6 - 79 79.75 70.6

7 11 69.8 70.2 70.6 - 70.2 70.2 70.3

8 10 68.2 70.1 69.9 - 70.8 69.75 69.9

9 7 79.2 80.7 80.5 - 79.3 79.925 70.45

10 9 78.4 79.3 80 - 78.9 79.15 71.45
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