J Intell Inf Syst (2016) 47:375-401 @ CrossMark
DOI 10.1007/510844-015-0369-0

Characterization and search of web services through
intensional knowledge

Devis Bianchini! - Paolo Garza? - Elisa Quintarelli®

Received: 26 July 2013 / Accepted: 8 June 2015/
Published online: 26 June 2015
© Springer Science+Business Media New York 2015

Abstract Web service technologies are widely adopted to access services and compose
new applications starting from software components available from the shelf. Consequently,
more and more service descriptions are becoming available on the network to designers,
who often filter them according to keyword-based search, thus obtaining huge amounts of
matching results, that, if not properly controlled, lead to an information overload that might
cause confusion rather than knowledge. In this paper, we propose to apply data mining tech-
niques to SOAP-based service descriptions in order to infer patterns providing a summarized
and integrated representation of service functionalities. These patterns provide succinct
(intensional) knowledge that can be directly queried or used to drive exploratory searches.
Specifically, we propose W-DREAM (Web services DiscoveRy via intEnsionAl knowledge
Mining), an infrastructure to perform intensional service representation and querying to
support application designers to select the web services that best suit their needs.

Keywords Intensional knowledge representation - Intensional knowledge querying - Web
service search engine - Data mining

P4 Paolo Garza
paolo.garza@polito.it

Devis Bianchini
devis.bianchini @ing.unibs.it

Elisa Quintarelli
elisa.quintarelli @polimi.it
Dipartimento di Ingegneria dell’ Informazione, Universita degli Studi di Brescia,

Via Branze 38, 25123 Brescia, Italy

Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10844-015-0369-0-x&domain=pdf
mailto:paolo.garza@polito.it
mailto:devis.bianchini@ing.unibs.it
mailto:elisa.quintarelli@polimi.it

376 J Intell Inf Syst (2016) 47:375-401

1 Introduction

SOAP-based Web services enable interoperability between software components imple-
mented in a distributed, possibly heterogeneous, environment, by providing a platform-
independent way to expose their software interface (specified using the Web Service
Description Language, WSDL) and by activating the operations included in the interface
through messages expressed according to the Simple Object Access Protocol (SOAP). Plat-
form independency makes Web services a powerful tool to develop new web applications
starting from existing components, although implemented and deployed using different
languages. Service providers make available their own functionalities as Web services,
by providing WSDL documents that are used by web designers to develop new, service-
oriented applications, which invoke component Web services in an orchestrated way. The
trait d’union for the interaction between providers and service-oriented application design-
ers is a repository of Web services where they can be searched and selected for aggregation.
In this paper, we focus on Web service search, with the aim of supporting service-oriented
application composition.

We rely on a paradigm for Web service search that is iterative and explorative. It is
iterative since the web designer selects and aggregates available Web services step-by-
step, with the aim of building a composite service-oriented application. It is explorative
since the web designer has not in mind a complete list of useful services for reach-
ing her goal, when she starts aggregating available Web services; indeed, at each step
she chooses among proposed Web services, adaptively evolving the goal according to
the contents of the repository, the suggestions of the system, and the current status of
the application under development (i.e., the set of already selected Web services). This
differentiates our approach from the ones targeted to Web service composition, that are
based on Al planning and automated synthesis techniques (see Hull (2005) and Rao and
Su (2005) for a survey). These approaches take as input a well-defined goal, expressed
as a designer request (e.g., book a trip to Rome), often using formal languages, and
try to generate a consistent plan (e.g., a sequence of service invocations) such that
the goal is satisfied. These approaches treat the goal as a black-box and might lead
to higher performance complexity (e.g., NP-hard (Hull 2005)), without enabling web
designer to have any control on the intermediate service selection steps to obtain the final
application.

Unfortunately, existing Web service repositories do not have the pre-requisites for satis-
fying an iterative and explorative search. They do not enable an iterative search, since they
have not been designed to serve service aggregation, but only atomic service search and
selection. Furthermore, they present several limitations that have been highlighted in Sabou
and Pan (2005). In particular: (i) they only provide basic keyword-driven search, where
specified keywords are searched within the WSDL description of the Web service (e.g.,
BindingPoint, NET XML Web Services Repertory); (ii) they provide browsing through
few, coarse-grained categories which are not able to express the distinguishing features of
all Web services they gather (WebServiceX.NET, Web Service List, Seekda, Xmethods);
(iii) some of them enable multi-facet based browsing, where facets suffer from the same
limitations of categories and it is not possible to formulate queries which combine more
facets together. These repositories allow for specifying very general queries, but the iden-
tification of the best Web service for the application under development among the large
set of returned ones is not provided. Semantic-based Web service discovery approaches
(e.g., SWoogle (Dong et al. 2004)) have been proposed to face such limitations and improve
search precision and recall, but they have not been designed for explorative purposes, since

@ Springer

J Intell Inf Syst (2016) 47:375-401 371

they force web designers to pose very specific queries, that is, they are suitable when the
designer exactly knows the service she is looking for.

As often happens, large amount of information leads to an information overload that may
cause confusion rather than knowledge. Therefore, the increased number of available ser-
vices (Seekda counts over 28,600 Web services, Xmethods several hundreds of services,
numbers which are ever growing) motivated the design of a new system to: (i) provide the
visualization of a compact, summarized representation of Web service repository contents,
in particular when they are highly populated; (ii) provide a query language on such a com-
pact representation, in order to enable an explorative search within the repository; (iii) take
into account the current status of the application under development while providing such a
representation, thus supporting an iterative Web service selection and aggregation.

For instance, consider a designer who is in charge of implementing an application for
the participants of an international academic conference, also including a hotel booking ser-
vice. Suppose that the designer has to select one of the available hotel booking services.
She has not in mind what are exactly the inputs/outputs of the Web service to include in
the application under development. Therefore, she performs a generic search using hotel
and booking as keywords for the service category. If the Seekda search engine
is used, the designer obtains 36 Web services among search results, split on four pages’.
The designer will probably select randomly one service among the returned ones in the first
or the second page, because the in-depth analysis of all Web service details, by inspect-
ing their WSDL documents, would be a time-consuming task. Now consider the following
intensional answer:

90 % of the hotel booking services have the credit card number as input parameter

An intensional answer (Pirotte et al. 1991; Motro 1994) gives a summarized repre-
sentation of the query results (in our case, Web services), which represent the so-called
extensional answer. In our example, the intensional answer suggests that the most of the
available hotel booking Web services is characterized by the credit card number as input
parameter. This knowledge can be exploited by the designer to focus her choice among Web
services which present this parameter. Since intensional answers are very compact, they
are more easily manageable by human beings, therefore might be useful in an exploratory
search system. Moreover, such compact answer can suggest the designer to look for Secure
Payment Web services to be included in the web application she is developing, to manage
payment requests via credit card. Hence, the provided intensional answer suggests the next
needed service and the potential query to submit, thus enabling iterative query refinement.

The idea is that Web services whose interface contains the most popular parameters
(i) are the best candidates to satisfy the requirements of many users and (ii) can be more
easily substituted by other Web services if needed. Intensional answers help the designer to
identify these sets of Web services.

The very simple example reported above shows only one possible use of intensional
knowledge in the proposed Web service searching system. In the following sections, we will
also describe how the intensional knowledge can be used to mine interesting information
from the log files recording Web service invocations. In particular, the use of log files allows
selecting a Web service not only by considering its interface, but also the data (i.e., the
content) that can be accessed through it.

INumbers in this example refer to the status of the Seekda search engine on November 11th, 2012.

@ Springer

378 J Intell Inf Syst (2016) 47:375-401

In this paper, we propose W-DREAM (Web services DiscoveRy via intEnsionAl knowl-
edge Mining), an infrastructure to perform intensional service representation and querying
to support service-oriented application design. Our contributions are the following:

— the definition of a set of patterns used to provide an intensional representation of Web
service interfaces and data accessible through them; patterns can be used to provide
intensional answers to designer’s queries when extensional answers are composed of a
large set of services;

— the definition of a data mining algorithm for the extraction of the patterns defined
above;

— an intensional querying system that supports designers to query the patterns in order to
explore the Web service repository for iterative development of new service-oriented
applications.

The structure of the paper is the following: in Section 2 we provide preliminary defini-
tions and we further motivate the paper with a running example; Sections 3 and 4 describe
in detail patterns representation, mining and querying; the W-DREAM architecture, which
implements the patterns repository and the intensional querying system, is described in Sec-
tion 5; experiments are presented in Section 6; finally, related and future work are discussed
in Sections 7 and 8, respectively.

2 Background

In this section we introduce the running example used throughout the paper and some
background definitions about data mining.

2.1 Running example

Consider the example of the service-oriented application for the international aca-
demic conference to be organized in Italy, introduced above. The application must
support both the preliminary activities (e.g., participants’ on line registration and
hotel reservations) and the on site activities (e.g., searching for a good ethnic restau-
rant for dinner when attending the conference). Rather than implementing the whole
application from scratch, the designer aims at reusing available hotel booking ser-
vices, secure on-line payment services or search services to enable conference par-
ticipants to find out hotels, restaurants and other facilities nearby the conference
venue.

Performing a keyword-based search on Seekda, the designer may find: (i) about 36
hotel booking services; (ii) about 3139 search services; (iii) about 40 on-line payment ser-
vices. Less populated sets of search results can be obtained only if the designer is able to
issue a more precise Web service request, but this is not possible in an exploratory search
scenario, such as the one we are considering here, where the designer aims at inspecting
the repository of services to decide which ones could be selected and inserted within the
application under development. Among the obtained results, the designer has to inspect the
WSDL of each service to find out details about input/output parameters: for instance, the
designer might select an on-line payment service to be included in the final application
only if the hotel booking services enable payment by credit card. Moreover, the designer
should be able to check if services enable to book a hotel in the city where the confer-
ence is located or what are the credit card types accepted by on-line payment services.

@ Springer

J Intell Inf Syst (2016) 47:375-401 379

All this information is of paramount importance to perform focused service selection and
aggregation.

Our aim within W-DREAM is to use data mining techniques to extract useful intensional
representation of Web service repository contents, in order to help the designer to learn some
new and previously unknown succinct knowledge about the available services and make a
more focused choice.

Consider our running example and suppose the designer is looking for the first Web ser-
vice to be included in the service-oriented application under development. The designer
starts the search process by specifying a service category (e.g., service category=hotel
booking). We denote this kind of query as category-driven. The search engine of the system
provides the following intensional answers:

60 % of the hotel booking services have the credit card and the city as input
parameters

35 % of the hotel booking services have the hotel category as output parameters

The percentage can be used by the designer to choose the best subset of services for her
application. Since 60 % of hotel booking services present the credit card and the city as
input parameters, the designer might suppose that these two parameters are important for
the hotel room booking providers. The same consideration holds for the hotel category as
output parameter. If available, a hotel booking Web service with at least the three parame-
ters highlighted by the intensional answer (credit card, city and hotel category) should be
selected.

Now W-DREAM can suggest other useful services that can be combined with the pre-
vious designer’s choice, by automatically applying a parameter-driven query that looks for
services having some parameters in common with the one related with previously selected
services. This new query, which can be applied iteratively, can be exploited to suggest
additional Web services to be included in the service-oriented application under devel-
opment. As an example, suppose that the designer selected a hotel booking service that
presents an address among its output parameters. The system will automatically create and
execute a query searching for all the Web services characterized by an (input) parame-
ter of type address. A potential useful intensional answer proposed to the designer is the
following one:

65 % of services which have an address among its parameters are mapping services

This is an example of even more explorative search, since the designer was not
originally thinking on mapping services to be included within the application under
development, but she starts considering them after the system visualizes the intensional
answer.

The intensional answers shown here only consider the signature of the available services
(e.g., the type of input and output parameters) or the categories they belong to and pro-
vide a functional classification of services. However, if the values assumed by the input
and output parameters are also known (for instance, extracting them from SOAP messages
exchanged with Web services), then better choices can be performed. Consider the following
intensional answers:

100 % of on-line payment services accept VISA as credit card type

80 % of hotel booking services which have been invoked with Rome as the city input
parameter present the IBAN code as input parameter

@ Springer

380 J Intell Inf Syst (2016) 47:375-401

5 % of hotel booking services which have been invoked with Rome as the city input
parameter present the credit card number as input parameter

The designer might use this kind of patterns, that combines information coming from
the service description repository and the invocation log files, to better focus the atten-
tion on a subset of services. For instance, the first pattern could be used to focus on
hotel booking services which enable the use of VISA as credit card type, since this
choice ensures the availability of on-line payment services which accept VISA credit
cards, if required. The other two patterns suggest that, since in Italy credit cards are fre-
quently not used, the majority of the services that allow booking hotels in Rome are
characterized by the IBAN code (International Bank Account Number). Since the applica-
tion under development is related to an Italian conference located in Rome, the designer
may decide to include within the service-oriented application, a hotel booking service
which accepts bank transfer as payment type. Note that by using additional informa-
tion about the data (i.e., content) associated with the available services, the designer
might choose a Web service that is not the same picked before. However, the use of the
intensional answers mined from the combination of log files and web service descrip-
tions can be applied with success only when a significant number of invocations have
been logged. If small log files are considered the mined patterns could be not statisti-
cally significant and hence they could be not representative of all the content accessible
through the indexed web services. We provide this additional facility within the WDREAM
system; the constraints and pre-requisites of this facility will be detailed in the next
sections.

2.2 Itemset and association rule mining problem

Given the running example described above, the problem of extracting intensional answers
from a Web service repository can be faced by applying data mining techniques to extract
association rules from a set of data items. The general problem can be described as fol-
lows. We will adapt it to the Web service context in Section 2.3, for which we will provide
examples.

Given a dataset D, composed of sets of items, itemset mining consists of extracting those
subsets of items, called itemsets in the following, that are frequent in D (Agrawal and
Srikant 1994). Suppose that D is the dataset of a supermarket, where each record repre-
sents the set of items bought by a customer. By applying an itemset mining algorithm on D,
enforcing a minimum frequency threshold minsup, all the itemsets composed of items that
appear together in at least minsup records are extracted. Each of the extracted itemsets is
called frequent itemset.

Definition 1 (Transaction) More formally, let Z = {I, I, ..., I,,} be a set of items. A
transaction ¢ is defined as a subset of Z (i.e., t € Z), while a dataset D is a set of transactions.

Let X be an itemset in Z (i.e., X C 7). Given a transaction t € D, we
say that X matches ¢ if X C . A support value is usually associated to each
itemset X, where the support of X (denoted as sup(X)) is defined as the fraction
of transactions in D matched by X. Given a minimum frequency threshold min-
sup, the itemset mining problem consists in extracting from D all the itemsets X
such that sup(X)>minsup. By exploiting frequent itemsets, association rules can be
extracted.

@ Springer

J Intell Inf Syst (2016) 47:375-401 381

Definition 2 (Association rule) An association rule is an implication in the form X=7Y,
where both X and Y are itemsets. An association rule is used to quantify the likelihood of
finding the itemset Y within the dataset D given the presence of the itemset X in the same
dataset. The quality of an association rule is usually measured by means of its support, that
is, sup(XUY), and its confidence. Confidence, denoted with conf (X=Y), corresponds to
the conditional probability of finding Y, having found X and is given by

conf(X=Y) = % (1)

The association rule mining task consists of extracting from D all the rules with a support
at least equal to a minimum support threshold (minsup) and a confidence at least equal to a
minimum confidence threshold (minconf).

2.3 Transactional representation of web service repository

We model a SOAP-based Web service repository as a set of Web service descriptors, defined
as follows.

Definition 3 (Web service descriptor) A Web service descriptor WS D' is a pair
WSD' = (C', WSDL'))

where: C' represents the set of categories where the Web service has been classified (to be
as more general as possible, we admit that each Web service can be classified in more than
one category); WSDL' is the WSDL document that describes the Web service interface
(abstract part) and how to invoke its operations through the SOAP protocol (concrete part).

Although the only standard that has been defined for the structure of a Web service
repository, namely the UDDI (Universal Description, Discovery and Integration?), did not
received the diffusion that has been foreseen, nevertheless contents of existing repositories
can be abstracted using the structure formalized in (2). They may also contain additional
information (e.g., on the Web service providers) which we do not consider because they are
out of the scope of our approach. Like traditional SOA design, in our approach we require
the providers to expose only the WSDL of their Web services to show how to properly
invoke Web service functionalities. Consider for example the WSDL document of the hotel
booking service shown in Fig. 1.

The document describes the Web service operation bookRoom, that has five inputs
and three outputs, each of them described through a name and a type. Paramater types are
qualified names uniquely identified through their name and the namespace where they are
defined. Some input/output paramater types belong to the set of XML Schema built-in types
(e.g., string or integer, qualified through the xsd suffix), other ones are domain-
specific parameter types (e.g., NumberOfStars, CreditCardType or Price), qual-
ified through the travel suffix. The concrete part (within the wsdl :binding tags)
describes SOAP binding for exchanging messages with the bookRoom operation. The
distinguishing feature is the value of style attribute of the soap:binding tag. For
example, if style="rpc", request/response SOAP messages exchanged with the opera-
tion are serialized as shown in Fig. 2, while if style="document" they are serialized

2See http://uddi.xml.org/.

@ Springer

http://uddi.xml.org/

382 J Intell Inf Syst (2016) 47:375-401

<wsdl:definitions
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://wuw.w3.0rg/2001/XMLSchema"
xmlns:travel="http://localhost:8080/travelSchema.xsd">

<wsdl:message name="bookRoomRequest">
<wsdl:part name="City" type="xsd:string"/>
<wsdl:part name="Country" type="xsd:string"/>
<wsdl:part name="NumberOfPersons" type="xsd:integer"/>
<wsdl:part name="CreditCard" type="travel:CreditCardType"/>
<wsdl:part name="CreditCardNumber" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="bookRoomResponse">
<wsdl:part name="HotelName" type="xsd:string"/>
<wsdl:part name="NumberOfStars" type="travel:NumberOfStars"/>
<wsdl:part name="Price" type="travel:Price"/>
</wsdl:message>
<wsdl:portType name="FindHotel">
<wsdl:operation name="bookRoom">
<wsd:input message="bookRoomRequest" name="bookRoomIn"/>
<wsd:output message="bookRoomResponse" name="bookRoomOut"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="FindHotelBinding" type="FindHotel">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="bookRoom">
<soap:operation soapAction=""/>
<wsdl:input name="bookRoomRequest">
<soap:body use="literal">
</wsdl:input>
<wsdl:output name="bookRoomResponse">
<soap:body use="literal">
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="FindHotelService">
<wsdl:port binding="FindHotelBinding" name="FindHotelService">
<soap:address location="http://..."/>
</wsdl:port>
</wsdl:service/>
</wsdl:definitions>

Fig.1 An example of WSDL document of an hotel booking service

as shown in the same figure, but the tags bookRoom which denote the operation are omit-
ted. The way Price is expressed in the response (that is, with the addition of an attribute
currency to denote the adopted currency) is defined in the t ravel namespace>.

Given the WSDL specification WSDL of the Web service descriptor WS D', we extract
association rules both from the abstract part of the WSDL, concerning the description
of Web service interface, and from the log files of Web service invocations, concern-
ing instantiations of SOAP messages exchanged with the service. To extract association
rules, the descriptions of Web service interfaces within the repository, as well as the

3More details on SOAP binding and encoding rules can be found at http://www.w3.org/TR/soap/.

@ Springer

http://www.w3.org/TR/soap/

J Intell Inf Syst (2016) 47:375-401 383

Fig. 2 Example of SOAP
messages exchanged with the
hotel booking service

SOAP request
<soap:Envelope>

<soap:Body>
<bookRoom>
<City>Rome</City>
<Country>Italy</Country>
<NumberOfPersons>2</Number0fPersons>
<CreditCard>VISA</CreditCard>
<CreditCardNumber>***</CreditCardNumber>
</bookRoom>
</soap:Body>
</soap:Envelope>

#S0AP response
<soap:Envelope>

<soap:Body>
<bookRoomResponse>
<HotelName>RomanEmpireHotel</HotelName>
<NumberOfStars>Five</NumberOfStars>
<Price currency="euro">125</Price>
</bookRoomResponse>
</soap:Body>
</soap:Envelope>

contents of log files, must be expressed as sets of transactions as explained in the fol-
lowing of this section. We denote the former with transactional service dataset (TSD)
and the latter with transactional log dataset (TLD). Specifically, in the transactional ser-
vice dataset each operation is represented as a transaction, composed of the following
items:

— an item (serviceID=value), representing the identifier (within W-DREAM
system) of the service which the operation belongs to;

— one or more items (serviceCategory=value), representing the categories
associated with the service which the operation belongs to;

— anitem (operationName=value);

— one or more items (input=inputName), representing the names of the input
parameters;

— one or more items (inputParameterType=inputType), where each
inputType is a qualified name representing the type of an input parameter;

— one or more items (output=outputName), representing the names of the output
parameters;

— one or more items (outputParameterType=outputType), where each
outputType is a qualified name representing the type of an output parameter.

Consider the abstract part of the WSDL document reported in Fig. 1. The bookRoom
operation of the service is represented through the transaction reported in Fig. 3.

Association rules which are extracted from the contents within exchanged SOAP mes-
sages may provide additional information about the Web service to select, as shown in the
running example. To extract these rules, the available service invocations, obtained from
Web service invocation logs, are expressed as a set of transactions in the transactional log
dataset, where each transaction represents an invocation of a Web service operation. Each
transaction is composed of the following items:

— anitem (serviceID=value), representing the identifier of the invoked service;

@ Springer

384 J Intell Inf Syst (2016) 47:375-401

{(serviceID=1), (serviceCategory="Travel"), (operationName="bookRoom") ,
(inputName="City"), (inputParameterType="xsd:string"),
(inputName="Country") , (inputParameterType="xsd:string"),
(inputName="NumberOfPersons") , (inputParameterType="xsd:integer"),
(inputName="CreditCard") , (inputParameterType="travel:CreditCardType"),
(inputName="CreditCardNumber"), (inputParameterType="xsd:string"),
(outputName="HotelName") , (outputParameterType="xsd:string"),
(outputName="NumberOfStars") , (outputParameterType="travel:NumberOfStars"),
(outputName="Price"), (outputParameterType="xsd:decimal") }

Fig. 3 Transactional representation of Web service descriptor operations

— one or more items (inputParameterName_SIN=value), where inputPara-
meterName is the name of an input parameter and value is the parameter value, as
extracted from SOAP messages;

— one or more items (outputParameterName_$OUT=value), where output -
ParameterName is the name of an output parameter and value is the parameter
value, as extracted from SOAP messages.

Consider the invocation reported in Fig. 2; it is represented through the transaction
reported in Fig. 4.

3 Intensional knowledge management

The proposed system includes an intensional knowledge manager module that mines
a compact, summarized representation of the most interesting (frequent) association
rules from both the transactional service dataset and the transactional log dataset.
We propose three different types of association rules that we consider relevant
for supporting iterative and explorative Web service search. We denote them as
patterns.

Signature pattern A signature pattern is a type of association rule that represents frequent
correlations between the information available in the descriptions of Web services (e.g.,
Web service category, type and name of parameters).

Content pattern A content pattern is a type of association rule that represents frequent
correlations within data extracted from the log files of the invoked Web services.

Signature&content pattern A signature&content pattern is a type of association rule that
represents frequent correlations obtained by combing both the descriptions of Web
services and data extracted from log files.

In the following we formally define patterns. Then, we show how data mining tech-
niques can be used to extract the patterns. Finally, the physical representation of patterns is
described.

{(serviceID=1),(City_$IN="Rome"), (Country_$IN="Italy"),
(NumberOfPersons_$IN="2"), (CreditCard_$IN="VISA"),
(CreditCardNumber_$IN="xx**"), (HotelName_$0UT="RomanEmpireHotel"),
(NumberOfStars_$0UT=*‘Five’’), (Price_$0UT="125")}

Fig. 4 Transactional representation of a Web service invocation

@ Springer

J Intell Inf Syst (2016) 47:375-401 385

Definition 4 (Signature pattern) Formally, a signature pattern is represented as follows.
Let be Z° the set of items such that 7S DCP(Z¥), where P (Z*) denotes the power set of
Z°. This means that Z* contains only items that compose transactions in 7SD. A signature
pattern is an association rule X=Y such that X, Y C7Z°.

This pattern allows for representing the main characteristics of the indexed web
services in terms of input and output parameters and categories. The following table pro-
vides some examples of association rules that are expressed according to the signature
pattern.

X = Y sup conf
P1.1 (ServiceCategory= = (inputParameterType= 5 % 90 %
“HotelBooking™) “City”),
(inputParameterType=
“CreditCardType”)
P1.2 (ServiceCategory= = (outputParameterType= 4% 20%
“Booking”) “Hotel”)
P1.3 (ServiceCategory= = (inputParameter Type= 5% 60 %
“RestaurantSearch”) “foodType”)
P14 (ServiceCategory= = (outputParameterType= 4 % 70 %
“HotelBooking”) “hotelCategory”)

The first rule specifies that 90 % of the hotel booking services are characterized by at
least two input parameters of type City and CreditCardType, respectively, by consid-
ering the confidence value of the rule. Hence, 90 % of the hotel booking services can be
invoked only providing at least the city where the hotel to book should be located and by
specifying a credit card for booking. Since the support of the rule is equal to 5 %, we can
learn that 5 % of the Web services available in the registry are hotel booking services and
are characterized by at least two input parameters of type City and CreditCardType,
respectively. The second rule provides information regarding the output parameters of the
services of the macro category Booking. According to the rule, 4 % of the services in
the registry are booking services with a hotel as output. Among booking services, 20 %
are characterized by an output parameter of type Hotel (hence, 20 % of the booking ser-
vices are probably hotel booking services). The third rule specifies that in the 60 % of
cases it is possible to specify the food type while searching for a restaurant (i.e., 60 %
of the restaurantSearch services are characterized by an input parameter of type
FoodType). The last rule specifies that 70 % of the available hotel booking services are
characterized by at least an output parameter of type hotelCategory.

Definition 5 (Content pattern) Formally, a content pattern is represented as follows. Let be
7€ the set of items such that T L DCP(Z¢), where P(Z°) denotes the power set of Z¢. This
means that Z¢ contains only items that compose transactions in TLD. A content pattern is
an association rule X=Y such that X, Y CZ°.

The content pattern represents correlation at the data level, i.e., correlation among the val-
ues assumed by the parameters of the services extracted from log files. The following table
provides some examples of association rules that are expressed according to the content
pattern.

@ Springer

386 J Intell Inf Syst (2016) 47:375-401

X Y sup conf

P2.1 (City_$IN="Rome”)
P22 (City_$IN="Rome”)
P2.3 (City_$IN="Ostia”)
P24 (City_$IN="Florence”)

(NumberOfStars_$OUT="Five”) 9% 90 %
(NumberOfStars_$OUT=“Four”) 1% 10%
(NumberOfStars_ $OUT="“Three”) 5% 80 %
(NumberOfStars_$IN="Three”) 5% 80 %

O

The first two rules highlight a strong correlation between the city of Rome (Rome is
the value of the input parameter City) and the stars of its hotels (in 90 % of the cases
when the city input parameter of a service is set to Rome then the number of stars of the
returned hotel is a five star hotel, while in the other 10 % of the cases the returned number
of stars is four). The third rule shows that in 80 % of the analyzed data, when the city of the
hotel is Ostia (a city near Rome), the number of stars is three. The first three rules, which
summarize the correlations between cities and number of stars of the hotels, can be used
when developing an application for a conference located in Rome. Since it is well known
than many of the conference participants, in particular PhD students, cannot book expensive
hotels, the application designer would probably focus her attention on Web services that
allow for booking low and medium level hotels located near Rome. By using the intensional
answer about the city of Ostia, which is close to Rome, the designer may decide to choose a
Web service that allows for booking also hotels in Ostia for the conference located in Rome.

Definition 6 (Signature&content pattern) A signature&content pattern is represented as
follows. Let be Z° and Z¢ the sets of items defined above for signature and content pat-
terns, respectively. A signature&content pattern is an association rule X=Y such that
X, YCTSUZ“.

The signature&content pattern combines both signature of Web services and content
data accessible through their interfaces. Examples of association rules that are expressed
according to the signature&content pattern are shown in the following table.

X = Y sup conf
P3.1 (ServiceCategory= = (inputParameterType= 2 % 100 %
“HotelBooking”), “CreditCardType”)
(City_$IN="Rome”)
P3.2 (ServiceCategory= = (CreditCardType _$IN= 5% 75 %
“HotelBooking”), “Visa”)

(City _$IN="Florence”)

The first rule indicates that 100 % of the hotel booking services to reserve a hotel located
in Rome (content information) require the credit card to complete the reservation (service
description information). Hence, a credit card is always needed to book a hotel in Rome.

3.1 Interestingness measures

Traditional measures, such as support and confidence, can be exploited to select the
most interesting rules from the Web service registry to summarize Web service descrip-
tions and invocation records. However, we define a new measure to characterize content
and signature&content patterns for Web service analysis, because we argue that some
features of these patterns can not be represented by using traditional measures. The

@ Springer

J Intell Inf Syst (2016) 47:375-401 387

Table 1 An example (simplified) of transactional log dataset

{ (serviceld=1),(City_$1 N =Rome),(Numberof Stars $OUT =Five) }
{ (serviceld=1),(City_$1 N =Rome),(Numberof Stars $OUT =Five) }
{ (serviceld=1),(City_$1 N =Rome),(Numberof Stars $SOUT =Five) }
{ (serviceld=2),(City_$1 N =Rome),(Numberof Stars $OUT =Five) }
{ (serviceld=2),(City-$I N =Florence),(Numberof Stars $OUT =Five) }
{ (serviceld=2),(City_$I N =Florence),(Numberof Stars $OUT =Four) }

new measure we propose, called distinctServices, counts for each association rule p
expressed according to the content pattern the number of distinct services associated
with p. Consider the example of transactional log dataset TLD reported in Table 1
and the rule p; : {(City,$IN =" Rome"”) = (Numberof Stars $OUT =" Five”)}.
The TLD contains the invocations of two hotel booking services, identified by two
distinct serviceID. The support of p; is 4 (absolute support) because it matches
4 transactions of TLD. However, the number of distinct services matching the
rule is 2. We define the distinctService measure as this number, formally defined
as follows.

Definition 7 (Distinct service measure) Let 7LD be a transactional log dataset, X a pattern
mined from 7LD, and M the set of transactions in 7LD matched by X. Each transaction
in TLD is characterized by a service identifier. The distinct service measure, denoted as
distinctServices(X), is defined as the number of distinct service identifiers in M.

Hence, given a rule expressed according to the content or signature&content patterns,
its support represents the number of invocations of services that match the rule, while the
value of distinctService represents the number of distinct Web services in the reposi-
tory whose invocations match the rule. The distinctServices and the support measures
serve different targets. The distinctService measure can be used, for example, to under-
stand how easily a Web service can be substituted by another one. In fact, if the value of
distinctServices is high it means that many different services have invocation logs that
match a given rule. Hence, a significant set of exchangeable services are probably available
if distinctServices is high.

3.2 Rule mining algorithm

Given the transactional representation of Web service descriptors and their invocations
stored within 7SD and TLD, traditional rule mining algorithms can be applied to extract
the rules, according to the patterns described above. However, traditional rule mining
algorithms cannot be used to compute straightforwardly the distinct Service measure for
content and signature&content patterns. Two possible approaches can be used to compute
this measure for each pattern:

1. the introduction of proper data structures in the current itemset and rule mining
algorithms in order to store for each rule expressed according to content or sig-
nature&content patterns the set of services whose invocation match the rule, and
consequently the number of distinct services for each rule;

@ Springer

388 J Intell Inf Syst (2016) 47:375-401

Algorithm: Computation of the distinctService measure

Input: Transactional log dataset T'LD, frequent pattern set R
Output: The value of distinctService for each pattern in R

1: for each r € R do

2 servicel Ds = (;

3 for each [€ TLD do

4 if (r C) then

5: servicel Ds = servicel Ds U {l.servicel D};
6 end if

7 done

8 r.distinctService = cardinality of servicelDs;
9: done

Fig. 5 Computation of the distinct Service measure

2. the application of a post-processing step, after the application of traditional rule mining
techniques.

We decided to propose a solution based on the post-processing approach. We
currently discarded the first approach because the integration of an ad-hoc data
structure, able to store for each rule the set of related services, is not efficient
for what concerns memory space consumption. The use of a post-processing step
allows for efficient mining of the set of frequent rules. In fact, only the limited
set of selected rules, used to synthetically represent Web service descriptions and
their invocations, are analyzed in the post-processing step in order to compute the
distinct Service measure.

The pseudo code of the post-processing step is reported in Fig. 5. The post-processing
step is based on two loops. An outer loop is used to scan the set of selected frequent rules
(R) (lines 1-9), while an inner loop scans, for each rule, the transactional log dataset 7LD
from which the rules have been extracted (lines 3-7). In the inner loop, for each rule r the set
of service identifiers associated with the transactions matched by r is generated. The value
of the distinct Service measure for r is set to the cardinality of the set servicel Ds (line
8). As it is well known in the database query optimization area, if data is properly sorted,
the computation of counting operations, such as count (distinct servicelID), is
improved. In this particular case the set servicel Ds and its cardinality can be computed
more efficiently if the transactions in 7LD are sorted by serviceID. Rule mining algo-
rithms have been implemented in the W-DREAM architecture as described in details in
Section 5.

Moreover, the proposed algorithm is executed periodically. Hence, it is a periodic off-
line operation used to refresh the content of the intensional knowledge repository exploited
to provide intensional answers to web designers. The periodicity of the mining algorithm
execution depends on the dynamics of the Web service repository (e.g., how often new Web
service descriptions are added, how often Web services are invoked and invocation data are
stored in the TLD).

3.3 Physical representation of association rules
The described rules can be stored on disk by exploiting different approaches. We decided
to use XML to store the extracted patterns since XML is platform-independent and Web

service standards (namely, WSDL and SOAP) are XML-based as well. Hence, a com-
mon data model and query engine can be used to query both Web service descriptions

@ Springer

J Intell Inf Syst (2016) 47:375-401 389

<?xml version="1.0" encoding="UTF-8"7>

<!ELEMENT RuleSet (AssociationRule+)>

<!ELEMENT AssociationRule (RuleBody, RuleHead)>

<!ATTLIST AssociationRule NumberItemHead CDATA #REQUIRED
NumberItemBody CDATA #REQUIRED
support CDATA #REQUIRED
distinctServices CDATA #REQUIRED
confidence CDATA #REQUIRED>

<!ELEMENT RuleBody (item+)>

<!ELEMENT RuleHead (item+)>

<!ELEMENT Item (#PCDATA)>

<!ATTLIST Item Element CDATA #REQUIRED>

Fig. 6 DTD associated with the XML document for physical representation of association rules

and their summarized represen tation. To store rules we use the XML representation pro-
posed in (Baralis et al. 2007), extended in order to store rules according to signature,
content and signature&content patterns and to compute the distinctServices measure.
The DTD of the proposed representation is reported in Fig. 6. The XML document is
composed of a set of rules. Each rule is characterized by the antecedent (body) of
the rule, its consequent (head) and the measures of interest (support, confidence
and distinctServices). Both the antecedent and the consequent of rules are rep-
resented as sets of items, where each item is a pair (Element,value). Depending
on the type of pattern, Element can be the name of an input/output parameter, the
label ServiceCategory, etc. Since each type of pattern represents different char-
acteristics of the analyzed services, we propose to use an XML document for each

type.
4 Intensional knowledge querying
W-DREAM allows designers to issue different types of queries and to iteratively refine the

search criteria being guided by the summarized representation of available Web services
and their past invocations. We define a query ¢ as follows:

q=(CONDy, 1) 3)
COND,y is a condition used for filtering available services, defined as item; =
value; N ... A item, = value,. Exploiting the intensional representation of Web

service descriptions and invocations, the W-DREAM infrastructure proposes to the
designer the set of association rules whose antecedent matches the itemsets compos-
ing COND,. We denote this set as the Set of Matching Rules (SMR). A mined rule
X =Y e SMR iff

{(itemy, valuey), ..., (item,, value,)} C X)

The element t, is the query type, among ’single search’, ’completion search’ or
‘proactive search’. We will introduce the different query types t, with the help of
a service selection scenario (which is represented through the flowchart shown in
Fig. 7).

In the flowchart shown in Fig. 7a, the iterative nature of the selection process is evi-
dent. Interactions with the web designer in the flowchart are intended to be performed
through the W-DREAM Web interface. The designer firstly formulates a query in the

@ Springer

390 J Intell Inf Syst (2016) 47:375-401

query formulation area and the system performs the query processing. Given the set of
rules SMR returned by the system, the designer browses the list of intensional answers
returned by the query and, in case, selects the rule X = Y € SM R she considers more
relevant to guide the selection of the services suitable for her final application. From the
transactional representation of services, W-DREAM extracts the descriptions S of services
satisfying R, i.e. the identifiers, category, parameters of services with a transaction contain-
ing both X and Y. At this point, the designer might select a service s € S (see detailed
flowchart portion shown in Fig. 7b). After the first selection, the designer may iteratively
repeat the search and selection of a new Web service according to the three different query
types.

The single search query is equivalent to the first query issued by the designer. Its
goal is to search and select a new service independently of previously selected Web
services.

In the proactive search query, the system iteratively starts an autonomous new search
q’ of services that can be combined with the selected services, that is, present among their
inputs the outputs of already selected services. Let o1, ..., 0, be the type of the output
parameters of 5. The condition CON Dy is formalized as (input ParameterType = 01) A
... A (input ParameterType = 0,) and is used to retrieve intensional descriptions of
services with input parameters related to the output of s (i.e., parameters of the same type).
In this case, W-DREAM proposes to the designer the set of mined rules matching in the
antecedent the itemsets describing CON D. In this case, a mined rule X = Y € SM R iff
{(input ParameterType, 01) A ... A (input ParameterType, 0,)} N X # . Note that,
when the query is generated by the system, the notion of matching is less strict; indeed, we
require a non-empty intersection between the query condition and the body of the mined
rules.

The completion search query is a combination of the two previous types of queries; the
designer formulates the CON D, condition and checks one or more services among the
already selected ones.

Stop single search Formulate /
query /
Start T ¢ =
Formulate eb service choose search check already Formulate Web service
en search and ety type. selected ton search and
query selection guery e services duery selection
Proactive query
proactive search formulation
Start Stop | ()
Browse : a
intensional | W-DREAM
answers | activity
1
service among the ' interaction
selected ones i
Conditional
(b)

Fig. 7 A Web service selection scenario

@ Springer

J Intell Inf Syst (2016) 47:375-401 391

Consider our running example and suppose the designer’s first query is “What about
services that satisfy ServiceCategory = Hotel Booking?”. W-DREAM returns the following
set SMR of association rules:

X = Y sup conf
P1.1 (ServiceCategory= = (inputParameterType= 5% 90 %
“HotelBooking”) “City”),
(inputParameterType=
“CreditCardType”)
P14 (ServiceCategory= = (outputParameterType= 4 % 70 %
“HotelBooking™) “hotelCategory”)
P3.1 (ServiceCategory= = (inputParameterType= 2 % 100 %
“HotelBooking”), “CreditCardType”)
(City_$IN="Rome”)
P3.2 (ServiceCategory= = (CreditCardType $IN = 5% 75%
“HotelBooking”), “Visa”)

(City_$1 N =“Florence”)

If the designer selects as relevant the rule P3.1, becoming aware that all Web services
related to hotel booking in Rome require as input parameter the Credit Card type, then
WDREAM returns the transactional representation of the set of services satisfying it. Note
that the rule selected by the designers contains both information on the service category
and parameters, and a value for the input parameter City, extracted from the log of past
invocations (i.e., according to the signature&content pattern).

Then the designer selects, randomly or on the basis of her experience, a service from the
list of services associated with the selected rule, e.g., the following transaction that matches
the rule P3.1:

{ (servicelID=10), (serviceCategory="HotelBooking"), (operationName="bookHotel"),
(inputName="City"), (inputParameterType="City"),
(inputName="CreditCard"), (inputParameterType="CreditCardType"),
(outputName="HotelName") , (outputParameterType="HotelName"),
(outputName="Address") , (outputParameterType="Address"),

At this point , the designer issues another query; e.g. What about services that satisfy Ser-
viceCategory = On Line Payment?, to add to the application under development a service
for Secure Payment.

Independently from the designer’s queries, W-DREAM autonomously applies the
new request What about services that satisfy InputParameterType = HotelName OR
inputParameterType=Address?, to find services that can be combined with the previously
selected one. As we noticed above, an OR condition corresponds to pose many queries, one
for each operand.

The approach used to formulate the automatic query g’ is based on the assumption
that the same parameter types are used by all the indexed services, or that a set of
matching functions are available in order to identify parameters types representing the
same type of information. However, this matching problem is out of the scope of this

paper.

@ Springer

392 J Intell Inf Syst (2016) 47:375-401

5 Architecture

Figure 8 shows the W-DREAM functional architecture. This architecture will be integrated
in a design framework for service-oriented applications, where designers are in charge
of implementing new applications based on a set of already available Web services. The
first step of this framework is based on the explorative search enabled by the W-DREAM
architecture. The architecture is composed of three modules: the W-DREAM-Registry
Manager, the Intensional Knowledge Manager, and the Intensional Query Execution
Engine.

W-DREAM-Registry Manager. This module provides the basic primitives to index Web
services coming from different repositories and to store information into the W-DREAM-
Registry (W-DREAM-R). In particular, W-DREAM-R contains: (i) a reference to the
transactional representation of Web service repository S; (ii) optionally, a reference to the
transactional representation of invocation logs L; (ii) for each stored Web service, the ref-
erence to the WSDL document that describes the Web service interface, the Web service
category (according to a given categorization scheme) and a human-readable description
of the Web service. Figure 9 reports the XML representation of the W-DREAM-Registry
structure.

Intensional Knowledge Manager. This module relies on data mining algorithms to man-
age a summarized, intensional representation of the W-DREAM-R contents and to store
it within the Intensional Knowledge Repository (IKR) in an efficient way, in order to
support the designer’s query execution.

Intensional Query Execution Engine. This module provides the methods to query the IKR
and supports the user to perform an exploratory search of web services, as explained in

Section 4.
Service-oriented
application designer
New application 0

Intensional Query
Execution Engine
@ Intensional Knowledge Web Service
R it H i
epository invocation

@ Intensional Knowledge Web Service
Manager invocation
e Web Service
W-DREAM LM s proxy

Regist @«
_ Registry Logs storage ‘\:/:
@ invocation @

Local WSDL .
documents WDREAM-Registry ‘éVEb Service
@ Manager @ epositories

Publishing Interface Crawling

Web Service
Provider

Fig. 8 The W-DREAM functional architecture

W-DREAM

@ Springer

J Intell Inf Syst (2016) 47:375-401 393

<W-DREAM_R>
<transaction_service_dataset ref="localhost/TSD_OXY"/>
<transaction_logs_dataset ref="localhost/TLD_OXY"/>
<W-DREAM_Web_services>
<service name="FindHotel">
<description>

</description>
<categories>
<categorizationScheme ref="http://www.unspsc.it/">
<item>Travel</item>
</categorizationScheme>
</categories>
<interface ref="http://localhost:8080/FindHotel.wsdl"/>
</service>

</W-DREAM_Web_services>
</W-DREAM_R>

Fig. 9 W-DREAM-Registry contents

In the following, we provide details about the architecture and interactions between W-
DREAM modules. The information about indexed Web services can be collected in two
ways. In the first case, the W-DREAM-R Manager is in charge of collecting available Web
services by crawling their WSDL documents from the net (step 1). Sources of the crawler
are public Web service repositories (e.g., Seekda), that are specified within a W-DREAM
configuration file. Alternatively, the Web service providers could be directly engaged in
the publication of their WSDL documents within the W-DREAM (step 2). The Publish-
ing Interface is quite simple: it enables the provider to select the category and to upload
the WSDL documentor to specify the WSDL URI. Within the system, the categorization
schemes adopted by the crawled Web service repositories have been pre-loaded (see, for
example, Fig. 9). The WSDL documents can be referenced within the W-DREAM Web ser-
vice specification or locally stored (see, for instance, the FindHotel WSDL document on
Fig. 9).

After publishing or collecting the WSDL documents, the W-DREAM-Registry Man-
ager is in charge of updating the transaction service dataset S (step 3). The Intensional
Knowledge Manager works off-line and extracts the intensional answers from the W-
DREAM-Registry (step 4). Intensional answers are therefore stored within the Intensional
Knowledge Repository. Finally, the Intensional Query Execution Engine is able to serve the
queries submitted by the designer (step 5).

Orchestrated invocation of composed Web services from the application will be per-
formed later on based on the WSDL documents (step 7a). However, we recall that our goal
consists in allowing designers to easily find Web services of their interest through an explo-
rative search within available repositories and not on composing or invoking them through
our system. Hence, the W-DREAM architecture is only in charge of supporting the selection
phase, while the other ones will be developed as future work. Figure 8 also shows addi-
tional steps when the collection of Web service invocation logs is enabled. These steps are
described in the following.

Recording Web service invocation logs As underlined in the previous sections, the
exploitation of Web service invocation logs to extract intensional answers may improve
the quality of suggestions provided through the summarized representation of Web service
repository contents. In fact, it may enable additional kinds of searches that designers can

@ Springer

394 J Intell Inf Syst (2016) 47:375-401

perform allowing them to focus their attention on a subset of interesting services. Nev-
ertheless, for Web services concerning business activities or subject to privacy issues, the
registration of Web service invocation logs should be avoided. Within the W-DREAM archi-
tecture, we leave this decision to the Web service providers themselves, who are the owners
of service invocation logs: during step 2 (see Fig. 8), the service provider may enable the
system to store the invocation logs. Let consider the case in which the provider of a Web
service WV enables to store the invocation logs of the service. In this case, a Web service
proxy is instantiated by the W-DREAM-Registry Manager (step 8). The proxy is in charge
of collecting the SOAP requests (step 7b), forwarding them to the Web service W (step 9),
collecting the WV responses and sending them back to the application. In this way, SOAP
messages between the application and the Web service VV are caught by the proxy, that can
store invocation logs within the W-DREAM Registry (step 10). To this aim, within the W-
DREAM Registry the interface of the Web service WV refers to the proxy, while the WSDL
of WV is used to generate the classes of the proxy to interact with the ¥} implementation
(step 9).

6 Experiments

We performed a set of experiments to evaluate: (i) the quality of the extracted patterns and
their possible use in a real scenario, (ii) the recall and precision of intensional answers, and
(iii) the scalability of the proposed approach.

We used a real Web service repository*, called OWLS-TC, and a set of synthetically
generated datasets. The real public available repository OWLS-TC is composed of 1013
services, associated with their descriptions.

Since the log files are not available for the considered repository, and they are not
normally explicitly collected for the other publicly available repositories, the experiments
on real data are exclusively focused on signature patterns. The other two types of pat-
terns have been extracted from synthetic datasets, also used to evaluate the scalability
of our approach. We implemented a dataset generator that randomly generates a set of
services and the relative log files. The generator allows specifying the number of Web
services, the maximum number of parameters for each service and the total number of
invocations.

All the experiments were performed on a laptop with a 2.2-GHz AMD Turion Dual-Core
RM-75 processor and 4.0 Gbytes of main memory, running Kubuntu 10.04.

6.1 Qualitative analysis of the extracted patterns

We extracted signature patterns from the Web service descriptions of the OWLS-TC collec-
tion. We performed an initial set of experiments by setting the minimum support threshold
to 0.5 %. Table 2 reports some of the most interesting extracted patterns. In the following,
we will discuss how they can be used to perform exploratory searches over services and/or
give a summary of the main characteristics of classes of services.

Patterns P1-P3 in Table 2 are signature patterns related to books. They highlight which
are the common input parameters for the services returning books and can be exploited to
refine user’s queries. Suppose Alice is in charge of designing an application that allows end

“http://projects.semwebcentral.org/projects/owls-tc/

@ Springer

http://projects.semwebcentral.org/projects/owls-tc/

J Intell Inf Syst (2016) 47:375-401 395

Table 2 A subset of the signature patterns mined from OWLS-TC

PID Pattern sup conf

P1 outputParameterType=Book = inputParameterType=Author 05% 208 %
P2 outputParameterType=Book = inputParameterType=Title 06% 250%
P3 outputParameterType=Book = inputParameterType=Publication-Number ~ 0.5% 20.8 %
P4 ServiceCategory=Communication = outputParameterType=Film 1.1% 19.0%
P5 ServiceCategory=Communication = outputParameterType=Media 06% 103 %
P6 ServiceCategory=Communication = outputParameterType=Price 07% 12.1%
P7 ServiceCategory=Communication = outputParameterType=Quality 30% 51.7%

users to look for new books to read. Alice knows that, usually, end users do not exactly
know which book they are looking for.

Alice queries the W-DREAM by executing a generic query “select services where
the output parameter type is book” in order to find a service to include in her appli-
cation. Together with the extensional answer composed of all the services returning a
book, she also obtains the SMP composed of patterns P1-P3. Alice can exploit the pat-
terns in SMP to focus her research on a set of services which are more suitable to her
application’s needs. By exploiting P1-P3, she learns that there are three main types of
services returning books, based on the specification of the book author, title and publica-
tion number, respectively. Since Alice knows that end users are usually not aware of the
exact book they are looking for, the services based on the publication number are not of
interest, because end users, probably, do not know that information. End users are prob-
ably more interested in services allowing to search for a book by specifying its author
or title. Hence, exploiting intensional knowledge, Alice can refine her initial query as
“select services where the output parameter type is book and the input parameter type is
author or title”, obtaining a smaller set of services, more suitable to her needs. Finally,
she selects, among the services returned by the refined query, the one to include in her
application. She can also decide to select more services, characterized by different param-
eters, in order to include in her application different book searching forms. Each form,
based on a different web service, allows performing a different type of book searching
operation.

Patterns can also be useful to summarize the main characteristics of a service cate-
gory. The set of frequent patterns associated with a specific service category can be used
to provide a high view on the available services to designers. Consider the set of patterns
P4-P7. They highlight that when the service category is “Communication”, then the fre-
quent output types are the following: Film, Media, Price and Quality. This summary can
be shown to designers and it allows learning which are the types of information (output
data) they can obtain by invoking Communication services, and hence in which applica-
tions they can be used. Similar knowledge has been extracted for all the available service
categories.

6.2 Recall and precision analysis
Recall and precision are two commonly used measures for Information Retrieval. Suppose

a query engine executes a query ¢ on a dataset D. The set of retrieved data Dy srieped (i-€.,
the set of data returned by the query engine for the given query ¢) and the set of relevant

@ Springer

396 J Intell Inf Syst (2016) 47:375-401

data Dyeevant (i-€., the set of data in D that is relevant with respect to the given query g) are
used to define recall and precision.

Recall measures the fraction of relevant data (or services) that is actually returned by the
query engine:
|Drelevant N Dretrieved|

Recall =

|Drelev(mt|
Precision measures the fraction of retrieved data (or services) that is relevant:

.. |Dretrieved N Dreleuam'
Precision =

| Dretrieved|

Both measures take values in the range [0 %,100 %].

We want to use recall and precision to evaluate the quality of intensional answers. Given a
query g, the extensional answer corresponds to the relevant set, while the intensional answer
is the retrieved set. However, an intensional answer is a set of patterns (i.e., properties of
the data and services of interest) and not data or service descriptions. Hence, a different
definition of recall and precision is needed.

Similarly to Mazuran et al. (2012), we define recall and precision, for intensional answer
evaluation, as follows.

Recall measures the fraction of relevant data (or services) matched/represented by at least
one of the returned patterns:

|d € Dyelevan: matched by at least one pattern p € Prerricved|

Recall =

|Drelevant|
Precision measures the fraction of returned patterns matching/representing at least one
relevant data (or service):

|P € Pretrieved Mmatching at least one data d € Dy ejevant |

Precision =
|Pretrieved|

where Petrieved 1S the set of patterns SMP (i.e., the intensional answer) retrieved by query-
ing the frequent pattern set and Dy,jepans the set of data of interest (i.e., the extensional
answer).

We performed a set of experiments by considering the four general (high level) queries
reported in Table 3. We used a set of queries similar to those we suppose a designer exe-
cutes when starting to look for Web services tailored to her needs. The experiments were
performed on the OWLS-TC, where only signature patterns are available.

For all the queries reported in Table 3 precision is always equal to 100 %, because
patterns are extracted from the service dataset, then they are used to answer a query

Table 3 Queries

Query ID Natural language query Query as a set of predicates

Ql Select the services of the travel category ServiceCategory=travel

Q2 Select the services of the travel category ServiceCategory=travel
which are characterized by an input and inputParameterType=City

parameter of type City

Q3 Select the services returning a hotel outputParameterType=Hotel
Q4 Select the services returning outputParameterType=Hotel
a hotel and allowing to specify and inputParameterType=City

a City as input parameter

@ Springer

J Intell Inf Syst (2016) 47:375-401 397

only if they match the query condition, thus, there are no “false positive” patterns.
On the contrary, recall depends on the minimum support threshold enforced during
the pattern mining step. Figure 10a, c, e and g report the obtained recall values.
Since by lowering the minimum support threshold the number of extracted frequent
patterns increases, as expected, also recall increases (a larger set of patterns is poten-
tially returned in response to the user’s query). However, one of our goal consists
in providing summarized and manageable knowledge to users by means of inten-
sional answers. Hence, we need to pay attention to the cardinality of the intensional
answers (i.e., the number of returned patterns). The cardinality of the intensional answer
should be lower than the cardinality of the extensional answer (number of retrieved
data/services).

For the four considered queries, the cardinality of the intensional and the extensional
answers, when varying the minimum support threshold, are shown in Fig. 10b, d, f and h.
The reported charts show that the cardinality of the intensional answer is lower than that of
the extensional answer. However, the conciseness of intensional answer is more significant
for high support values. The conciseness of intensional answer is indispensable when the
extensional answer contains many records. For example, the number of services returned by
executing Q1 is 163, while the number of returned patterns ranges from 1 to 41 depending
on the enforced threshold (see Fig. 10b). Hence, the intensional answer is more manageable
than the extensional one.

6.3 Scalability

As discussed in the paper, the proposed approach can exploit log files, storing the per-
formed invocations, if available. Since the dimension of the log file can be potentially large
for frequently used web services, we decided to analyze the scalability of our approach.
In particular, due to the lack of real datasets, we used a set of synthetically generated
datasets to evaluate the scalability of our approach with respect to the size of the log file
(i.e., number of invocations) and the maximum number of parameters of the Web service
operations. From the synthetic datasets, we extracted all the pattern types described in
Section 3.

We initially generated a set of datasets by setting the number of services to 1000, the
maximum number of parameters per service to 10, and by varying the number of invoca-
tions from 100,000 to 1,000,000. We used these datasets to analyze the execution time with
respect to the cardinality of the log file (i.e., the number of Web service invocations). We
repeated the experiment by setting different minimum support threshold values. Figure 11a
reports the obtained results. In particular, in Fig. 11a there is one line for each enforced min-
imum support threshold value. Since the mining step is based on an association rule mining
algorithm, as expected, the execution time increases almost linearly with respect to the car-
dinality of the log file. The enforced minimum support impacts exclusively on the slope of
the curve.

Another dimension of interest is the number of parameters per service. The dataset gen-
erator allows setting the maximum number of parameters per service (max_pars). In the
generated dataset, each synthetically generated Web service is characterized by a number
of parameters in the range [1, max_pars]. We generated a set of datasets by varying the
maximum number of parameters from 5 to 15. The cardinality of the generated datasets is
set to 1,000,000. The obtained results, reported in Fig. 11b, show that the execution time
increases not linearly with respect to the number of parameters. This is related to the num-
ber of extracted patterns. In fact, the number of patterns increases not linearly with respect

@ Springer

398 J Intell Inf Syst (2016) 47:375-401

100 T T T T T T 180 T T T T T T
160 [=
80 - E 140 i
s 120 [E
£ 60 - - g 100 - -
T“; 5 80 |- —
& 40 n = 60 |- u
40 -
20 a 20 M .
(o] L K
0.5 1 1.5 2 25 3 35 4
o I I L L L * .
0.5 1 15 2 25 3 35 a4 Minimum support (%)
Minimum support (%) signature patterns (intensional answer) —x—
services (extensional answer) ------
(a) Q1: Recall. (b) Q1: Cardinality of the result set.
100 T T T T T T 30 T T T T T T
25 - -
80 - .
5 20| 4
i: 60 - h é 15 | B
E =
£ 40 |- n = 10 | m
5 .
20 I 7 M
[} 1 sk
L N L . . " 0.5 1 1.5 2 2.5 3 3.5 4
00.5 1 1.5 2 25 3 3.5 4 Minimum support (%)
Minimum support (%) signature patterns (intensional answer) —%—
services (extensional answer) ------
(C) Q2: Recall. (d) Q2: Cardinality of the result set.
100 T T T 25 T T T T T T
80 |- a 20 i
= T s | i
¥ 60 - — 2
& 40 4 i
5 -
20 -
[} k
0.5 1 1.5 2 2.5 3 3.5 4
0 1 1 L * X sk L
0.5 1 1.5 2 25 3 35 4 Minimum support (%)
Minimum support (%) signature patterns (intensional answer) —%—
services (extensional answer) ------
(e) Q3: Recall. (f) Q3: Cardinality of the result set.
100 T T T T T 14 T T T T T T
12 - -
or 7 10 i
k=]
£ 60 - - g 8 B
& 40f B 4l .
E
2 -\ -
20 -
[} L e
. " 0.5 1 1.5 2 2.5 3 3.5 4
00.5 1 1.5 2 2.5 3 3.5 4 Minimum support (%)
Minimum support (%) signature patterns (intensional answer) —&—
services (extensional answer) ------
(g) Q4: Recall. (h) Q4: Cardinality of the result set.

Fig. 10 (Exact matching) Effect of the minimum support threshold on recall and result set cardinality

to the number of parameters. However, the proposed approach scales well also with 15
parameters. Real Web services are usually characterized by few parameters. Hence, we
argue that our approach can efficiently mine patterns from real service repositories. For
example, for the real Web service repository OWLS-TC, described in the previous sec-
tion, the average number of parameters per service is 2.7, while the maximum number of

@ Springer

J Intell Inf Syst (2016) 47:375-401 399

250 T T T 1400 T T T T T T T F
- I
L 1200 | H
200 | A _ !
e “ 1000 |- /4
[e) /
£ 1501 T £ soof s
s e 5 i
% 100 b L = % 600 | E
b X 400 -
or i 200
g
0 = 1 1 I 0 L
0 250000 500000 750000 1e+06 0 2 4 6 8 10 12 14
Cardinality of the log file Maximum number of parameters
minsup=0.5% —+— minsup=0.25% --%-- minsup=0.5% minsup=0.25% ------

(a) Effect of the cardinality of the log (b) Effect of the maximum number of
file. Maximum number of parameters parameters. Cardinality of the log file
= 10. = 1,000,000.

Fig. 11 Execution time of the pattern mining algorithm

parameters is 10. Moreover, only 2 of the 1013 real Web services are characterized by 10
parameters.

7 Related work

Web service discovery and matchmaking Web service discovery and matchmaking
systems have been studied to help the designer finding Web services that fit the requirements
of the application under development, out of the large amount of available components.
Initially web service discovery and search systems were usually based on keyword-based
search engines. The proposed approaches analyzed the descriptions of the available Web ser-
vices, usually in terms of their interfaces, and exploited similarity measures to select the set
of services that best match the human proved search-keywords. To overcome the limitations
of purely keyword-based matching search engines, semantic Web service discovery tech-
niques have been proposed (e.g., Dong et al. (2004), Chen and Xu (2010), Kiefer and
Bernstein (2006), Stern et al. (2007), Plebani and Pernici (2009), Di Sciascio et al. (2007),
and Horrocks and Li (2004)). Semantic web service discovery techniques exploit semanti-
cally enriched descriptions of Web services to improve precision and recall of traditional
systems by means of more precise similarity-based approaches (Dong et al. 2004; Chen
and Xu 2010; Kiefer and Bernstein 2006; Stern et al. 2007; Plebani and Pernici 2009) and
allow also reasoning on service semantics by means of logical inferencing (Di Sciascio et al.
2007; Horrocks and Li 2004). Differently from the cited works, in our paper we address the
Web service search problem from a different prospective. Our approach aims at providing
a succinct representation of the available Web services. The extracted (intensional) knowl-
edge can be used to characterize the content of Web service repositories and support an
exploratory search approach. This kind of search has been declared as a missing feature in
Web service repositories (Sabou and Pan 2005), but not yest properly addressed.

Data mining for Web service discovery The problem of extracting implicit and pos-
sibly useful knowledge from data by means of pattern mining algorithms is a well-known
problem (Agrawal and Srikant 1994). Algorithms for pattern extraction (e.g., supervised
classification (Nayak 2008), clustering (Nayak and Lee 2007)) have been used to mine use-
ful knowledge, not directly deducible by a human being. In Baralis et al. (2007) a lossy

@ Springer

400 J Intell Inf Syst (2016) 47:375-401

summarization technique for XML data, based on itemsets and association rules, have been
proposed. The proposed approach mines the most frequent patterns and uses them for (pos-
sibly approximately) answering queries, either when very large XML documents have to
be queried (currently unfeasible by means of traditional XQuery engines even when indices
are used), or when the actual XML document is not available. The efficiency is achieved by
querying instance patterns, which provide a summarized representation of XML documents
in the style of materialized views for data warehouses (Harinarayan et al. 1996), rather than
traditional indexing techniques. Data mining techniques in the context of Web services have
been used in Rouached et al. (2006), where they are applied on execution logs in order to
discover and verify Web service properties. Also in Liang et al. (2006) Web service usage
patterns are treated through mining techniques at three different levels: user’s request, tem-
plate and instance level. In Nayak and Lee (2007) and Nayak (2008) clustering techniques
have been used to group similar Web services in order to improve the service discovery.
In these approaches, data mining techniques have not been applied to provide intensional
representation of available services for discovery purposes according to an exploratory per-
spective. To the best of our knowledge, the application of data mining techniques performed
within the W-DREAM infrastructure constitutes an innovative perspective, enabling more
efficient and effective decision support for the user during the service discovery process.

8 Final remarks

In this paper we proposed W-DREAM, an infrastructure for intensional data and service rep-
resentation and querying. Within W-DREAM, data mining techniques are applied to infer
patterns representing a summarized representation of data and services, that can be directly
queried. An experimental evaluation on available and synthetically generated datasets has
also been presented, showing the effectiveness and the scalability of the approach. As future
work, the adoption of semantic-enriched Web service specifications (e.g., SAWSDL) and
the introduction of semantics at the intensional knowledge representation level will be stud-
ied to evaluate the positive effects of semantics within the W-DREAM infrastructure. The
application of the W-DREAM approach in a real pervasive environment, related to the
promotion of artistic and cultural heritage, is currently under development.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large data-bases. In
Proceeding of the 20th International Conference on Very Large Data Bases (VLDB’94) (pp. 487-499).

Baralis, E., Garza, P., Quintarelli, E., & Tanca, L. (2007). Answering XML queries by means of data
summaries. ACM Transactions on Information Systems, 25(3), 1-33.

Chen, L., & Xu, L. (2010). A framework for web service discovery based on ontology similarity. In SOSE
(p. 197201).

Di Sciascio, E., Di Noia, T., & Donini, F. (2007). Semantic Matchmaking as Non-Monotonic Reasoning: A
Description Logic Approach. Journal of Artificial Intelligence Research, 29, 269-307.

Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity Search for Web Services. In
Proceeding of the 30th International Conference on Very Large Data Bases (VLDB’04), (pp. 372-383).
Toronto, Canada.

Harinarayan, V., Rajaraman, A., & Ullman, J. (1996). Implementing data cubes efficiently. In Proceeding of
ACM SIGMOD International Conference on Management of Data (pp. 205-216).

Horrocks, I., & Li, L. (2004). A software framework for matchmaking based on semantic web technology.
Int. Journal of Electronic Commerce (IJEC), 8, 331339.

@ Springer

J Intell Inf Syst (2016) 47:375-401 401

Hull, R. (2005). Web services composition: A story of models, automata, and logics. In Proceedings of the
IEEE International Conference on Services Computing, pp. xviii—-xix. IEEE Computer Society (2005).
doi:10.1109/SCC.2005.108.

Kiefer, C., & Bernstein, A. (2006). Imprecise RDQL: Towards Generic Retrieval in Ontologies Using
Similarity Joins. In Proceeding of 2006 ACM Symposium on Applied Computing (pp. 1984—1689).
Liang, Q., Chung, J., Miller, S., & Ouyang, Y. (2006). Service Pattern Discovery of Web Service Mining in
Web Service Registry-Repository. In Proceeding of the IEEE International Conference on e-Business

Engineering (pp. 286-293).

Mazuran, M., Quintarelli, E., & Tanca, L. (2012). Data Mining for XML Query-Answering Support. [EEE
Transactions on Knowledge and Data Engineering, 24, 1393-1407.

Motro, A. (1994). Intensional answers to database queries. IEEE Transactions on Knowledge and Data
Engineering, 6(3), 444-454.

Nayak, R. (2008). Data Mining in Web Service Discovery and Monitoring. International Journal of Web
Services Research, 5(1), 63-81.

Nayak, R., & Lee, B. (2007). Web Service Discovery with additional Semantics and Clustering. In
Proceeding of IEEE/WIC/ACM International Conference on Web Intelligence (pp. 555-558).

Pirotte, A., Roelants, D., & Zimdnyi, E. (1991). Controlled generation of intensional answers. IEEE
Transactions on Knowledge and Data Engineering, 3(2), 221-236.

Plebani, P., & Pernici, B. (2009). URBE: Web service retrieval based on similarity evaluation. IEEE TKDE,
21(11), 1629-1642.

Rao, J., & Su, X. (2005). A Survey of Automated Web Service Composition Methods. In Proceed-
ing of First Int. Workshop on Semantic Web Services and Web Process Composition (SWSWPC’04)
(pp. 43-54).

Rouached, M., Gaaloul, W., van der Aalst, W., Bhiri, S., & Godart, C. (2006). Web Service Mining and
Verification of Properties: An Approach Based on Event Calculus. In OTM Conferences (pp. 408—425).

Sabou, M., & Pan, J. (2005). Towards Improving Web Service Repositories through Semantic Web Tech-
niques. In ISWC 2005 Workshop on Semantic Web Enabled Software Engineering (SWESE’05), (p. 15).
Galway, Ireland.

Stern, M., Klein, M., Kiister, U., & Konig-Ries, B. (2007). Diane: An integrated approach to automated
service discovery, matchmaking and composition. In Proceeding of the 16th World Wide Web Conference
(pp- 1033-1042).

@ Springer

http://dx.doi.org/10.1109/SCC.2005.108

	Characterization and search of web services through intensional knowledge
	Abstract
	Introduction
	Background
	Running example
	Itemset and association rule mining problem
	Transactional representation of web service repository

	Intensional knowledge management
	Interestingness measures
	Rule mining algorithm
	Physical representation of association rules

	Intensional knowledge querying
	Architecture
	Recording Web service invocation logs

	Experiments
	Qualitative analysis of the extracted patterns
	Recall and precision analysis
	Scalability

	Related work
	Web service discovery and matchmaking
	Data mining for Web service discovery

	Final remarks
	References

