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Case-Base Maintenance with Multi-Objective
Evolutionary Algorithms

Eduardo Lupiani · Stewart Massie ·
Susan Craw · Jose M. Juarez · Jose
Palma

Abstract Case-Base Reasoning is a problem-solving methodology that uses
old solved problems, called cases, to solve new problems. The case-base is the
knowledge source where the cases are stored, and the amount of stored cases
is critical to the problem-solving ability of the Case-Base Reasoning system.
However, when the case-base has many cases, then performance problems arise
due to the time needed to find those similar cases to the input problem. At this
point, Case-Base Maintenance algorithms can be used to reduce the number
of cases and maintain the accuracy of the Case-Base Reasoning system at
the same time. Whereas Case-Base Maintenance algorithms typically use a
particular heuristic to remove (or select) cases from the case-base, the resulting
maintained case-base relies on the proportion of redundant and noisy cases
that are present in the case-base, among other factors. That is, a particular
Case-Base Maintenance algorithm is suitable for certain types of case-bases
that share some indicators, such as redundancy and noise levels.

In the present work, we consider Case-Base Maintenance as a multi-objec-
tive optimization problem, which is solved with a Multi-Objective Evolution-
ary Algorithm. To this end, a fitness function is introduced to measure three
different objectives based on the Complexity Profile model. Our hypothesis is
that the Multi-Objective Evolutionary Algorithm performing Case-Base Main-
tenance may be used in a wider set of case-bases, achieving a good balance
between the reduction of cases and the problem-solving ability of the Case-
Based Reasoning system. Finally, from a set of the experiments, our proposed
Multi-Objective Evolutionary Algorithm performing Case-Base Maintenance
shows regularly good results with different sets of case-bases with different
proportion of redundant and noisy cases.
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1 Introduction

Case-Base Reasoning (henceforth CBR) is a problem-solving methodology that
solves new problems by adapting solutions that were used to solve previous
problems (Riesbeck (1989); Watson (1998)). CBR uses independent pieces of
knowledge, called cases, to represent past solved problems. As time goes by
and new problems are solved, then new cases are created and stored in a
knowledge source known as the case-base. In this way, CBR reuses the solution
of solved problems in the solving of future problems. The CBR cycle is a
framework that establishes the steps required to perform the complete case-
base reasoning process (Aamodt and Plaza (1994)). This cycle consists of four
sequential steps. First, the retrieve step returns the most similar cases to the
new problem. Second, the reuse step proposes a new solution based on the
retrieved cases. Third, the revise step verifies the returned solution if this is
necessary. Finally, the forth step is the creation of a new case that may be
retained in the case-base. This last step is one of the advantages of the CBR
methodology, because retaining new cases as problems are solved, increases
the case-base size and has the potential of improve the problem-solving ability
of the CBR system.

However, retaining a large number of cases may cause performance prob-
lems, and may even damage the problem-solving ability of the CBR system
(Pan et al (2007); Smyth and Keane (1995)). Given an input problem, the
retrieval time to look for similar cases could be large enough to outweigh
the benefits of applying this knowledge. In addition, a large number of cases
may also complicate the adaptation process unnecessarily (Smyth and Keane
(1995)).

Unfortunately, the use of brute force for searching for the best case-base
with both low number of cases and error rate is not possible due to the huge
amount of possible combinations of cases. Moreover, finding that case-base in
this way from the existing data is at best representative of the type of problems
that will be faced, but actual problems will be different and systems change
over time further challenges the representative assumption of the problem
domain. Consequently, the use of brute-force may well find over-fitted case-
bases.

Instead of brute force, it is possible to use Case-Base Maintenance al-
gorithms (henceforth CBM algorithms). The CBM algorithms have, among
their objectives, finding a case-base smaller than the original, but with simi-
lar problem-solving capabilities (Leake and Wilson (1998)). Nonetheless, the
maintenance domain is a weak theory domain and it is difficult to determine
what is the ideal or optimum number of cases to achieve the best results (Leake
and Wilson (2011)). For this reason, the CBM algorithms use heuristics to se-
lect those cases that will be part of the maintained case-base, where these
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heuristics are designed to remove (or select) either redundant or noisy cases
(Massie et al (2005, 2006)). Therefore, whereas some more aggressive CBM
algorithms try to find case-bases within or close to the knee bend area, other
more conservative CBM algorithms search for a case-base within the stable
error region.

The suitability of one particular CBM algorithm relies on how well the
heuristic suits the characteristics of the domain, such as, the proportion of
redundant and noisy cases within the case-base. In addition, the order in which
the cases are explored may also affect the resulting maintained case-base (Pan
et al (2007); Wilson and Martinez (2000, 1997)), even when the same CBM
heuristic is applied. With this in mind, usually an evaluation is done to study
the maintained case-bases for the considered CBM algorithms, and to chose
the most suitable maintained case-base for the particular problem domains.

Our approach is to consider CBM as a multi-objective optimization prob-
lem, in such a way that the proposed algorithm may be used with any type
of case-base. The purpose of this CBM is to generate a case-base with low
number of redundant cases and few noisy cases, minimizing three objectives
based on Complexity Profiling (Massie et al (2005, 2006)). In the last decades,
Multi-Objective Evolutionary Algorithms (MOEAs) have been applied suc-
cessfully in multi-objective optimization problems (Coello et al (2007); Eiben
and Smith (2003); Yu and Gen (2010)). Therefore, our approach is to solve
the optimization problem with MOEA in order to get an effective and well-
maintained case-base irrespective of the redundancy and noise levels present
in the original case-base.

The rest of the paper is organised as follows. The next section gives an
overview of existing work. Section 3 describes how to represent the levels of
redundant and noisy cases of a case-base. Section 4 explains how to perform
CBM with a MOEA that optimises three different types of objectives. In sec-
tion 5, we evaluate the MOEA with different case-bases, and other CBM algo-
rithms. Lastly, sections 6 and 7 discuss the experimental results and highlight
our conclusions, respectively.

2 Background

2.1 Case-Base Reasoning

Case-Based Reasoning (CBR) is a methodology that makes use of past expe-
riences to solve new problems (Lopez de Mantaras et al (2005)). In a CBR
system the atomic unit of knowledge is the case, the knowledge of previously
experienced, specific problem situations (Aamodt and Plaza (1994)). The rep-
resentation of a case is basically a tuple composed of two descriptions that
characterise a problem and its solution. When multiple cases are created to
solve problems in a given domain, they together form the knowledge base from
which the CBR system can perform its problem-solving process (Aamodt and
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Fig. 1 The CBR cycle and its four steps (adopted from Aamodt and Plaza (1994)). The
CBR system using analogy-based reasoning to either build or adapt a solution to solve the
input problem.

Plaza (1994)). Within the CBR community, the knowledge base is known as
the case-base.

Despite the fact that multiple alternative representations of a case are
possible, the simplest case representation is based on a vector of attributes,
which describes the problem, and a single attribute describing the solution.
Other complex representations are possible, such as workflows (Gil (2012)),
signals (Montani et al (2006); Olsson et al (2004)), time sequences (Juarez
et al (2009)) or graphs (Bunke et al (2005)) among others.

The most commonly used implementation of a CBR system was proposed
in (Aamodt and Plaza (1994); Lopez de Mantaras et al (2005)). Figure 1
depicts this process, which consists of a four-step process: (1) Retrieve: the
system searches for those cases that have a problem description with high
similarity to the input problem description, for instance using a k -nearest
neighbour algorithm (Cover and Hart (1967)); (2) Reuse: using the cases re-
trieved, the system builds a solution to solve the input problem; (3) Revise:
the system checks whether the solution proposed in the previous step is correct
and, finally, (4) Retain: a new case is created with the description of the input
problem and the output solution, and this is stored in the case-base.

One of the most important characteristic of this CBR model is that its
learning process is incremental and continuous, since new solved cases are
added to the case-base, thus the learning step is integrated into the problem
solving process itself.
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Fig. 2 Evolution of the error rate for a sample dataset.

2.2 Utility Problem

Retaining new cases in the case-base is one straightforward approach to im-
prove the system’s expertise while solving problems of the domain. However,
if too many of them are retained, the retrieval time may be negatively affected
when fetching the most similar cases to the input problem. This scenario ex-
hibits aspects of the utility problem (Francis and Ram (1993)), which appears
when the size of the case-base is detrimental to the scalability of the system.
On top of that, when only redundant cases are retained in the case-base, the
accuracy of the system is not improved.

Figure 2 shows the error rate on a sample CBR system as the number of
cases in the case-base increases. To build the figure, we have created 1000 case-
bases for each case-base size by selecting cases randomly from the set of all the
known cases. Therefore, we have 1000 case-bases of 5 cases, 1000 cases-bases
of 6 cases, and so on. The error rate of each case-base is measured, using 40%
of the data as the test set. Finally, for each set of 1000 cases-bases the test
set error rate is averaged. The axes represent the error rate and the number
of cases in the case-base. The top and bottom lines represent the worst and
best error rate for the particular number of cases, respectively, and the middle
line is the average error rate. The shading part of the graph is the error rates
given by the different combinations of cases for the corresponding case-base
size. Finally, the vertical dashed lines represent each time that the minimum
observed error rate from the sample is reached.

According to the figure, whereas increasing the number of cases results in
a reduction of the error up to certain limit, it is not clear at what number of
cases the error rate stops falling. In addition, the variance of the error rate,
represented as the distance between the maximum and minimum observed
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error rate, reduces as the number of cases increases. Hence, even though it is
possible to find case-bases with both low number of cases and error, those case-
bases are in the region of high variance of the error rate and are likely to be
over-fitted to the known set of cases. Actually, they may not be good choices
to solve future unseen problems in this domain. In this way, the case-bases
located within or close to the knee bend area in Figure 2 are less consistent
and minor changes may have a big impact on error rates, hence the over-fitting
to the existing case-base. In contrast, the more stable error rate region with
more cases contains maintained case-bases that are representative of the full
problem domain. On top of that, despite of the fact that the error rate of the
system is lower with higher number of case within the case base, simultaneously
with the larger case-bases the CBR system has higher retrieval time to fetch
the most similar cases, thus retaining new cases may end in a utility problem.

2.3 Case-Base Maintenance

According to Leake & Wilsons definition of maintenance: “Case-Base Mainte-
nance implements policies for revising the organization or contents (e.g. rep-
resentations, domain content or accounting information) of the case-base in
order to simplify the future problem-solving process subjected to a particular
set of performance objectives” (Leake and Wilson (1998)). In particular, CBM
may be used to reduce the case-base size or to improve the quality of the so-
lutions provided by the CBR system (Pan et al (2007); Wilson and Martinez
(2000)), and the maintenance may be done either by hand, where an expert of
the domain edits the case-base, or automatically by using CBM algorithms.

The importance of CBM is reflected by its inclusion into some CBR-cycles,
like the proposed in (Göker and Roth-Berghofer (1999)), where the traditional
cycle is divided into two different cycles, the Application and Maintenance
cycles. Whereas the Application cycle contains the traditional steps Retrieve,
Reuse and Revise, the Maintenance Cycle substitutes the Retain step with the
maintenance tasks as well as the retain step. Usually the Application cycle is
executed every time that an input problem is solved, and the Maintenance
cycle is executed when the case-base need to be improved.

CBM algorithms has been studied in depth in Machine Learning disciplines
such as Instance-based Learning, Exemplar-based Learning, as well as in Case-
Based Reasoning. There are a wealth of approaches to perform CBM, such as
those published in (Brighton and Mellish (1999); Gates (1972); Massie et al
(2006); Pan et al (2007); Smyth and Keane (1995); Wilson (1972); Wilson and
Martinez (2000)). These algorithms usually try to classify the cases within
the case-base as redundant or noisy, and delete them according to a specific
deletion policy. A case could be considered as noisy when most of its neigh-
bours have different solutions, otherwise it would be considered as redundant
(Massie et al (2005)). The task of identifying a redundant case is easier than
determining whether a case is noisy. A case surrounded by cases with a dif-
ferent solution could be due to an error in the description, or it could simply
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be an exception (Rissland (2009)). For example, in a case-base that contains
cases describing birds, we can describe a swan as a bird with white feathers,
although there are infrequent black swans as well. In this way, it is incorrect
to delete those cases that describe a swan as a bird with black feathers.

Some authors have proposed different taxonomies of CBM algorithms in
an attempt to enhance our understanding of them. For example, (Pan et al
(2007)) classify the different CBM algorithms according to the following fea-
tures: (i) Case Search Direction: to build a maintained case-base, a CBM
algorithm may start with an empty case-base and continues adding cases to
it from the original case-base until a termination condition is reached. This
is known as Incremental CBM; otherwise, the CBM algorithm is known as
Decremental. (ii) Order sensitive: when the case-base is sorted in some way
and this order determines the sequence in which cases are processed then the
CBM is Order Sensitive; otherwise the CBM algorithm is known as Order
Insensitive. (iii) Selection Criteria: when the decision to include a case in the
case-base or not relies only on the local case parameters. For example, consid-
ering the solution given to its neighbours, then the criteria is local, however
when all the cases are involved then it is global. Wilson and Martinez (Wilson
and Martinez (2000)) propose an additional feature: (iv) Type of cases to
retain: here, there are two approaches: retain those cases that have at least
one case within their nearest neighbourhood with a different solution (border
cases), or retain cases that have all their nearest neighbours with the same
solution as themselves (central cases). In the first scenario, the maintained
case-base retains cases to mark out borders, while in the second, the CBM
algorithm is aimed at deleting the redundant cases.

Other classifications can be made according to whether a CBM algorithm
is deterministic or non-deterministic. Whereas a deterministic CBM always
generates the same maintained case-base from a given case-base, a non-de-
terministic CBM builds different maintained case-bases each time that the
algorithm is executed. Most of the CBM algorithms in the literature are de-
terministic because their deletion policy is fixed and constrained by the order
of cases in the original case-base, and because they always apply the same
action (removal) when they classify a case as noisy or redundant.

2.4 The CBM Algorithms

The simplest CBM algorithm consists of a random deletion of cases until the
case-base reaches a certain number of cases (Markovitch and Scott (1988)).
However, CBM algorithms generally try to select cases in such a way that
the CBR system using the maintained case-base has better or equal problem-
solving capabilities than when the original case-base is used. To summarize the
CBM algorithms proposed in the literature, we propose a classification based
on four families: NN algorithms, Instance-based algorithms, DROP family,
Competence and Complexity models.
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Some algorithms are actually composite methods, whereby the mainte-
nance task is divided into two steps. The first step is usually aimed at reducing
the amount of noisy cases, and the second step aims to remove unnecessary or
redundant cases.

Algorithms from the NN family select cases according to a nearest neigh-
bour policy. One of the first attempts to reduce case-base size was CNN (Hart
(1968)). Starting with a random case of each existing solution as initial case-
base, the algorithm uses the rest of them as a test set and classifies them using
the selected cases with a k-NN classifier. If a case is misclassified then it is
added to the final case-base. The process stops when all the original cases are
correctly classified. Although size reduction is possible, this algorithm does
not check for noisy cases. RNN (Gates (1972)) was introduced as an extension
of CNN to remove noisy instances from the resulting case-base after the use
of CNN. Each case of the final case-base is removed, and if no case from the
original case-base is misclassified then the candidate is finally removed, oth-
erwise the case is added again. ENN removes misclassified cases according to
the solutions of their three nearest neighbours (Wilson (1972)). When ENN
is executed multiple times, taking each output as input of the next execution,
then the method is called RENN. All-KNN consists of executing ENN k times,
where each execution uses from 1 to k neighbours respectively to flag a case
for no selection (Tomek (1976)). Some authors claim ENN and its variations
are actually noise removal techniques (Wilson and Martinez (2000)).

The Instance-based family consists of algorithms that represent cases as
instances (a data structure with a vector of features and an attribute class),
and could be understood as a simplified representation of a case. IB2 and IB3
algorithms modify the IB1 classifier to perform CBM (Aha et al (1991); Aha
(1992)). In the IB2 algorithm, if a case is misclassified by its nearest neighbours
then this case is added to the final case-base. The IB3 algorithm includes a
more restrictive condition to keep a selected case inside the final case-base by
reducing noise. Shrink algorithm executes CNN and, finally, it removes from
the resulting case-base those cases misclassified by their nearest neighbours
(Kibler and Aha (1987)).

The CBM algorithms DROP1, DROP2 and DROP3 belong to the DROP
family (Wilson and Martinez (2000)). All these methods introduce the concept
of associate case, which is a case within the set of nearest neighbour cases with
the same solution. In DROP1, a case is removed if most of its associates already
in the maintained case-base are solved correctly by the CBR system with the
case-base without it. In DROP2, a case is removed if most of its associates
in the original case-base are solved correctly without it. DROP3 uses ENN to
remove the noisy cases before executing DROP1.

The algorithms from the Competence Model and the Complexity Profiling
Family are distinguished from the aforementioned families because they ex-
plore the implicit information of the case-base to build a maintenance model.
The Competence Model (Smyth and Keane (1995)) defines concepts as Cov-
erage, Reachability and Relative Coverage (Smyth and Mckenna (1999)). For
each concept, a new CBM algorithm is proposed. COV and RFD use Coverage
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Set and Reachability cardinality, respectively, to sort the case-base, and RC
uses the Relative Coverage model. Finally, the sorted case-base is the input
to CNN, which performs the maintenance. Another approach based on the
competence model is the ICF algorithm, which uses the concepts coverage
and reachability among cases to decide whether to remove a case from the
case-base or not (Brighton and Mellish (1999)).Complexity Profiling estimates
the proportion of redundant and noisy cases, as well as the existing error rate
in the case-base (Massie et al (2005, 2006)). The basis of this approach is a
local complexity measure that provides the probability of finding another case
in the nearest neighbourhood of a case with the same solution. Although the
local complexity measure is useful for case discovery (Massie et al (2005)), it
does not provide enough information to evaluate the case-base competence.

2.5 Evolutionary Approach to perform CBM

The main objective of the CBM algorithms is to find the smallest subset of
cases that provides the CBR system with a good problem-solving capability,
usually through the removal of irrelevant or redundant cases. This problem
can be modelled as a multi-objective optimization problem: minimising the
number of cases within the case-base and maximising the CBR system ac-
curacy. In this sense, Evolutionary Algorithms (EA) have been recognised as
appropriate techniques for multi-objective optimisation because they perform
a search for multiple solutions in parallel (Coello et al (2007)). Current evo-
lutionary approaches for multi-objective optimisation include multi-objective
EAs based on the Pareto optimality notion, in which all objectives are opti-
mised simultaneously to find multiple non-dominated solutions in a single run
of the EA. For example, in the works (Ahn et al (2007); Ishibuchi et al (2001);
Kim and Han (2001)), the authors use Evolutionary Algorithms to perform
CBM. Such evolutionary approaches are non-deterministic CBM algorithms,
because each execution generates a different maintained case-base from the
original case-base.

2.6 Evolutionary Algorithms

The Evolutionary Algorithms (EAs) are inspired in biological evolution (Hol-
land (1975)), since they simulate biological processes to search for a solution
to an optimization problem. According to (Yu and Gen (2010)), the main
features of this type of algorithms are:

(i) Population-based: every EA has a population, which is a set of individu-
als that represent solutions to the given optimization problem, and these
individuals contain genes to represent one particular solution. The popu-
lation is important because it allows the EA to work with many solutions
of the problem at the same time.
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(ii) Fitness-oriented: every individual in the population have assigned a fit-
ness value given by a fitness function, where this value is computed ac-
cording to the genes of the individual. The fitness value is critical be-
cause of the fact that the individuals with better fitness values are better
solutions to the optimization problem. Once the EA finishes, the final
solution is typically one of the individuals of the population, although
the solution may be proposed using all the final individuals.

(iii) Variation-driven: through the simulation of biological processes, such as
crossing between individuals and mutation of genes, the EA creates a
new generation of individuals that could solve the optimization problem
in a better way. These two processes are important because they create
new solutions to the problem.

Whereas there are many ways for representing the solution within an in-
dividual, a basic approach is representing the problem with a string of binary
values (Eiben and Smith (2003); Yu and Gen (2010)). Hence, the string is
known as an individual, and each of its binary values are the genes. For each
individual the EA applies a function known as the fitness function, which in-
dicates the suitability of the individual to resolve the optimization problem.
The search for the best individual is an iterative process. Starting with a set of
individuals known as the population, an EA uses three operations on it to cre-
ate the next generation of individuals: reproduction, crossover and mutation.
The reproduction operation aims to select the better individuals according to
their fitness values. Crossover is applied only to selected individuals to create
new individuals, usually exchanging their genes. Mutation flips randomly the
genes of the individual to increase the diversity of individuals. At the end of
the iteration process, the individuals within the final population are potential
solutions to the optimization problem. Hence, a strategy is needed to choose
the final solution as well.

Multi-Objective Evolutionary Algorithm (MOEA) is an EA that searches
for a solution to a problem according to two or more optimization objectives
(Coello et al (2007)). Unlike an EA, a MOEA’s fitness function returns a value
per each objective (Zitzler and Thiele (1999)). Expression 1 defines formally
the optimization problem to minimize n objectives:

minimize(Φ(x)) = minimize(φ1(x), φ2(x), . . . , φn(x)), (1)

where x is an individual, Φ is the fitness function, and each φn is the fitness
function associated with an objective. Given the fitness values of two indi-
viduals, it is possible to define a relation of dominance between them (Deb
et al (2002)). This dominance determines which individual is closer to the
optimization objectives. Expression 2 defines formally the relation:

x ≺ y ⇐⇒
∀φi(x), φi(y) ∈ Φ(x) : φi(x) ≤ φi(y) ∧ (2)

∃φj(x), φj(y) ∈ Φ(x) : φj(x) < φj(y),
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where x and y are the individuals, x ≺ y expresses that x dominates y, and
n is the number of objectives. MOEA generates generations of individuals,
where non dominated individuals have higher odds of survival.

3 Representing the Redundancy and Noise Levels of a Case-Base

Massie et al (2006) introduced Complexity Profiling to estimate the proportion
of redundant and noisy cases, as well as the existing error rate in the case-base.
The foundation of this approach is a local complexity, which is an approxi-
mation to find the proportion of cases with the same solution in the nearest
neighbour set of the case. Expression 3 describes the complexity function for
a case:

complexity(c, k) = 1− 1

k

k∑
i=1

p(c, i), (3)

where k is the number of nearest neighbours to consider and p(c, i) is the
proportion of cases within the case’s i-nearest neighbours that belong to the
same solution as c. The co-domain for complexity function is [0, 1]. The more
the complexity of a case is, the more likely the case would be noisy.

Complexity Profiling is a global measure of the case-base, and it is com-
posed by three different indicators:

1. the error rate is the average of all the local complexities measures;
2. the noise is the proportion of all the complexity measures with values

greater than ε; and
3. the redundancy is the proportion of all the complexity measures with values

equal to ρ.

The error, noise and redundancy are defined formally as follow:

error(M,k) =
1

|M |
∑
c∈M

complexity(c, k). (4)

noise(M,k) =
|{c ∈M |complexity(c, k) ≥ ε}|

|M |
. (5)

redundancy(M,k) =
|{c ∈M |complexity(c, k) = ρ}|

|M |
, (6)

where M is a case-base, c ∈ M is a case within M, and k is the number of
neighbours of c. Experiments with ε = 0.5 and ρ = 0 confirm that Complexity
Profiling is correlated with the accuracy of the CBR system (Massie et al
(2006)).

From the local complexities it is possible to create graphically the com-
plexity profile of a given case-base. The cases are ranked in ascending order of
complexity along the horizontal axis and the local complexity of each is plotted
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Fig. 3 Complexity Profile of Case-Base

on the vertical axis. Figure 3 shows a typical profile. With ε = 0.5 and ρ = 0,
the distance between 0 and where the curve breaks from the axis (x1) is the
proportion of redundant cases. The shaded area under the curve corresponds
to average case complexity and estimates expected error rate. The proportion
of potentially noisy cases is the distance between x2 and 1.

4 Perfoming CBM with a MOEA

So to perform CBM with a MOEA, we need to set up two important objects.
On the one hand, we need to represent a case-base as an individual of the
population. On the other hand, we need to define a fitness function to evaluate
the suitability of the individual for being an adequate maintained case-base.

4.1 Case-base Representation

Every individual in the population is a string of genes of binary type (so each
gene may have either the values true of false), and the length of the string
is equal to the number of cases in the original case-base. In this way, all the
cases in the original case-base are assigned with an index value i, and the i-th
gene of the individual represents whether the case with index i in the original
case-base is retained in the maintained case-base that is represented by the
individual.

Formally, let M be the original case-base, denoted by M = {c1, c2, . . . , cn},
where ci is the i-th case of M (|M | = n), and ℘(M) be the set of all the possible
sub-case-bases that may be built from M . An individual x = x1x2 . . . xn−1xn
is a string of genes with the same length as M , where each gene xi, with
values of xi ∈ {true, false}, represent whether the case ci is retained or not,
respectively, in the maintained case-base. Let X be the set of all the possible
individuals, so x ∈ X.

In order to map the cases from the original case-base (M) to the elements
of the individual, we introduce the following function:
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c1 c2 c3 c4x = c1 c3 c4y = c1 c4z =

x = {x1, x2, x3, x4}=
= {true, true, true, true}

y = {y1, y2, y3, y4}=
= {true, false, true, true}

z = {z1, z2, z3, z4}=
= {true, false, false, true}

Fig. 4 Three case-bases x, y and z and their corresponding individuals x, y and z.

M : X → ℘(M)

M(x) = x = {ci ∈M |xi = true}. (7)

For example, given the individual x with all elements set to true, M(x) =
M , otherwise if all elements are set to false then M(x) = ∅. For the sake of
clarity, we use the notation x, y, z as the case-base equivalent to the individuals
x, y, z, respectively. Figure 4 depicts graphically how three different cases-bases
x, y, z and their respective individuals x, y, z that represent them, where x is
the original case-base M , and the case-bases y and z are sub-case-bases of x.

4.2 Fitness Function to Perform CBM

We propose a fitness function based on Complexity Profiling to solve an opti-
mization problem with three objectives:

– Osize: to minimize the difference between the current number of cases in
the solution and the estimated number of non-redundant cases;

– Oreduncancy: to minimize the number of redundant cases; and
– Oerror: to minimize the error rate level.

First, the objective Osize aims to estimate the minimum number of cases.
Second, the objective Oredundancy is focused on avoiding case-bases with re-
dundant cases. Finally the third objective Oerror leads the search to find a
case-base with the minimum error rate. According to these objectives, the re-
sulting case-base is expected to have lower proportion of redundant and noisy
cases.

At this point, given the set X of all the feasible individuals, and a number
of neighbours k ∈ N, the formal description of the fitness function Φ is shown
as follows:

Φ : X,N→ R3 (8)

Φ(x, k) = (Ox
size, O

x
redundancy, O

x
error) =

=


(Ox

size = fsize(x, k),
Ox

redundancy = redundancy(x, k),

Ox
error = error(x, k))
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Note, that we use the notation Ox to refer to the fitness values of the individual
x. For instance, Ox

error denotes the fitness value of the objective Oerror for the
individual x.

The functions that assign the fitness values to each objective needs to be
defined too. Therefore, the function fsize is defined as follows:

fsize : X,N→ R

fsize(x, k) = (threshold(M)− length(x))
2
, (9)

threshold(M) = (|M | ∗ (1− redundancy(M,k)).

where length(x) is the number of genes of x set to true and threshold(M) is
the estimation of number of non-redundant cases in the original case-base M ,
which we call redundancy threshold and it is always constant for every main-
tained case-base from the original case-base. Therefore, the function fsize is the
distance between the current number of cases in the case-base x and the redun-
dancy threshold. This objective is squared to penalize those individuals with
a greater number of cases. The values returned by functions redundancy(x, k)
and error(x, k) in the fitness function (expression 8) oppose each other since
a lower error rate often results in a higher redundancy and vice versa.

4.3 Dominance between Individuals.

Because we are introducing CBM as a multi-objective optimization problem
in which the objectives conflict with each other, that is, improving one of
the objectives may cause the worsening of the rest, then it is complicated
to determine which individuals is the best for solving the problem. With the
dominance operator ≺ between individuals, the MOEA has a mechanism to
discern the closer individuals to the optimal solution. Given two individuals x
and y representing two case-bases, and the fitness function Φ, the dominance
relation for NSGA-II is defined as:

Φ(x) ≺ Φ(y) ⇐⇒ (10)

⇐⇒


(
Ox

size ≤ O
y
size ∧Ox

redundancy ≤ O
y
redundancy ∧Ox

error ≤ Oy
error

)
∧

∧
(
Ox

size < Oy
size ∨Ox

redundancy < Oy
redundancy ∨Ox

error < Oy
error

)
For the sake of clarity we have omitted the parameter k from the function

Φ .

4.4 NSGA-II

In this work we use the MOEA NSGA-II (Deb et al (2002)) to perform CBM.
The main contributions of NSGA-II are a fast non-dominated sorting function
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and two operators to sort the individuals: a density estimation of the individ-
uals in the population covering the same solution, and a crowded comparison
operator.

The fast-nondominated-sort algorithm, details shown in Algorithm 1, given
a population P returns a list of the non-dominated fronts F , where the in-
dividuals in front Fi dominate those individuals in front Fi+1. That is, the
first front contains the non-dominated individuals, the second front has those
individuals dominated only once, the third contains individuals dominated
up to twice, and so on. The individuals in the same front could have simi-
lar case-bases; to avoid this situation NSGA-II uses the crowded comparison
operator ≥n, where are preferred those individuals that represent infrequent
solutions in the population set. That is, if the algorithm has to choose among
two individuals of the same front, the individual with the the most infre-
quent case-base in the population is chosen, even if that individuals repre-
sents a worst maintained case-base. The purpose is to increment the sight of
the algorithm in order to find alternative individuals, which could steer the
search to better maintained case-base in the future. To define formally the
operator ≥n, let x, y be two individuals, then x ≥n y if (xrank < yrank)
or ((xrank = yrank) ∧ (xdensity > ydensity), where xrank represents the front
where the individual belongs. The crowding-distance-assignment procedure
calculates the density per each individual (Algorithm 2).

Some parameters have to be set up at the beginning, such as the number
of generations and the number N of individuals in a population. Each genera-
tion t implies an iteration of the algorithm, where two populations Pt and Qt

of N individuals are used. When NSGA-II starts, the initial population P0 is
generated randomly. Binary tournament selection, recombination, and muta-
tion operators are used with individuals from P0 to create a child population
Q0. Once P0 and Q0 are initialized, NSGA-II runs its main loop, which we
can see in Algorithm 3. In each iteration, population Pt and Qt are joined
to create the population Rt, whose number of individuals is 2N . After that,
the individuals in Rt are sorted according to their dominance and crowding
distances. The sorted individuals are added to population Pt+1. At the end of
each iteration Pt+1 is truncated to N individuals, and Qt+1 is generated using
binary tournament selection, recombination, and mutation operators. These
operations are explained below, in subsection 4.5.

Once NSGA-II finishes, the final population Pt will contain as many indi-
viduals as potential solutions, and the non-dominated individuals are mapped
to their corresponding case-bases. The case-base with the minimum error rate
is chosen as the solution of the CBM algorithm. If two or more case-bases have
the same error rate, then the algorithm chooses the first case-base found.

Figure 5 depicts graphically the process for creating a new generation
of individuals. From the population Rt, the individuals are sorted by non-
dominance between them. Later the set F of fronts are created, where F1 are
non dominated individuals, F2 are dominated by the individuals in F1 and
so on. Finally, the population Pt+1 is used to create the population Qt. For
further details of NSGA-II algorithms see (Deb et al (2002)).
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Algorithm 1 fast-nondominated-sort(P )

Require: A population P , a fitness func-
tion Φ

Ensure: list of the non-dominated fronts
F

1: for x ∈ P do
2: for y ∈ P do
3: if Φ(x) ≺ Φ(y) then
4: Sx ← Sx

⋃
{q}

5: else
6: if Φ(y) ≺ Φ(x) then
7: nx ← nx + 1
8: end if
9: end if

10: end for
11: if nx = 0 then
12: F1 ← F1

⋃
{x}

13: end if

14: end for
15: i = 1
16: while Fi 6= ∅ do
17: H ← ∅
18: for x ∈ Fi do
19: for y ∈ Sx do
20: ny ← ny − 1
21: if ny = 0 then
22: H ← H

⋃
{y}

23: end if
24: end for
25: end for
26: i = i+ 1
27: Fi ←H
28: end while
29: return F

Algorithm 2 crowding-distance-assignment(I)

Require: A set of individuals I
Ensure: Each individual within I with a

density measure.
1: l← |I|
2: for i ∈ [1, N ] do
3: I[i]← 0
4: end for
5: for each objective m do

6: I ← sort(I,m)
7: I[1]density ←∞
8: I[l]density ←∞
9: for i ∈ [2, (l − 1)] do

10: I[i]density ← I[i]density + (I[i+

1].m− I[i− 1].m)
11: end for
12: end for

Algorithm 3 NSGA-II main loop

Require: A fitness function Φ, N as pop-
ulation size, g as the number of genera-
tions, probmut as probability mutation
and probcross as crossover probability.

Ensure: a population Pt of potential solu-
tions

1: P0 ← initial population, and Q0 ← ∅
2: for t = 0 to g do
3: Rt ← Pt

⋃
Qt

4: i← 1
5: F ← fast-nondominated-sort(Rt, Φ)

6: while |Pt+1| < N do
7: crowding-distance-assignment(Fi)
8: Pt+1 ← Pt+1

⋃
Fi

9: i← i+ 1
10: end while
11: sort(Pt+1,≥n)
12: Pt+1 ← Pt+1[0 : N ]
13: Qt+1 ←

←new-pop(Pt+1, probmut, probcross)
14: end for
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dominated
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Fig. 5 This figure depicts the basic NSGA-II operation to create the next population Pt+1.
The non dominated sorting process is performed on the population Rt to generate the
fronts. Later, the next population Pt+1 is created from the fronts until the population size
is reached. If the size is exceeded, then the individuals from the last included front are not
selected for being included in Pt+1.

4.5 Creation of a new Population and the Mutation and Crossover
Operations

EAs, like MOEAs, imitate the natural reproduction with a procedure that
creates a mating pool, which contains the fittest and lucky individuals that
became parents of a new generation of individuals.

The mutation and crossover operations are two of the main processes to
create a new individuals, and they broaden the space of solutions. Whereas
the mutation only involves one individual, the crossover involves two different
individuals. Both crossover and mutations operations have many different im-
plementations. Nonetheless, here we explain only the operator that the MOEA
algorithm is using to perform CBM. Our MOEA uses, as mutation operator,
the bit-flip mutation; as crossover, the single-point crossover; and as selection
strategy, the binary tournament.

To implement the binary tournament selection, two individuals are ran-
domly chosen from the current population. This selection is with replacement,
so the same individual may be selected repeatedly. Once two individuals are
selected, only the fittest individual is stored in the population Qt+1. In draw
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case, then one of them is chosen randomly. The binary tournament is repeated
until Qt+1 reaches the limit population.

Given an individual x = x1x2 . . . xn, the mutation operator flips the value
of each gene xi with probability probmut. Subsequently, if the gene had a true
value then it became false and vice versa. For instance, if probmut = 0.01 then
1 out of 100 genes will be flipped by the mutation operator every time that a
new population is created.

With individual x and, given a second individual y = y1y2 . . . yn, the
crossover mixes the genes of both individuals to create two new individu-
als with a probability probcross. Every time that two individuals are selected
to cross over, an index l is randomly generated in the range (1, n). The genes
after the index l in the individuals x, y are swapped. Formally, given l as the
single-point to crossover, and the individuals x, y, then the children x′, y′ are
generated as follows:

parents=

{
x = x1x2 . . . xl−1xlxl+1 . . . xn
y = y1y2 . . . yl−1ylyl+1 . . . yn

;

childrens=

{
x′ = x1x2 . . . xl−1

︷ ︸︸ ︷
ylyl+1 . . . yn

y′ = y1y2 . . . yl−1 xlxl+1 . . . xn︸ ︷︷ ︸
where the symbols ︷︸︸︷ and ︸︷︷︸ point out to the swapped genes between the

parents.

4.6 Interpreting the MOEA approach

A MOEA using our proposed fitness function tends to search for the minimum
error rate and to delete the maximum number of cases, without exceeding a
threshold of number of non-redundant cases that corresponds to |M | ∗ (1 −
redundancy(M,k)) (expression 8). Figure 6 depicts the target cases-bases of
the fitness function for Iris dataset. That is, case-bases with a lower number
of cases and with a similar error rate to the original case-base. To build the
figure, we have created 100 case-bases selecting from 3 to 130 random cases
from Iris. Therefore, we have 100 case-bases of 3 cases, 100 cases-bases of 4
cases, and so on. Finally, a ten folds Cross-Validation evaluation is used to
measure the error rate of each case-base. For each set of 100 cases-bases the
error rate given by the Cross-Validation is averaged. Every evaluation use the
3 -NN classifier.

The plot shows for each case-base size the average values of the three
objectives Osize, Oredundancy and Oerror. Additionally, the actual error rate
is shown as well. The purpose of the fitness function is to find a case-base
located in shadowed area, where the case-bases have still error and redundancy
levels similar to the original case-base. The search of the maintained case-base
will push forward to smaller case-base sizes, but at the same time, there must
be a balance between the values of the objectives Oredundancy and Oerror.
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Fig. 6 Evolution of the objectives values for Iris dataset.

5 Experimentation

5.1 Selected Datasets and Characteristics

In order to study if the CBM algorithms are able to cope with noisy and
redundant case-bases, we have selected a set of twelve datasets from the UCI
repository (Frank and Asuncion (2010)). We have performed a pre-processing
of the data in each dataset to ease the experiments. Pre-processing includes
the deletion of duplicate cases, the replacing missing values with the mean of
the attribute values, and finally, all the features values in each case-base are
normalised in the interval [0, 1].

In order to build the case-bases from the datasets, every instance attribute
will be part of the problem description, and the class attribute will be the
solution.

Later, we have clustered the case-bases according to their level of noise and
redundancy given by the complexity profile measure. The reason is to study
how our proposal work with different types of cases-bases. The details of each
case-base is shown in the Table 1, and the Figure 7 depicts three clusters of
case-bases: redundancy, noisy and mix. Redundant cases-base are those case-
bases with redundancy higher than 0.5, noisy are the case-bases with noise
level higher than 0.5, and mix are those case-bases with redundancy and noise
levels lower than 0.5.

5.2 Multi-Objective Evolutionary Algorithm Settings

For each case-base,the following parameters of the evolutionary algorithm are
used:
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Table 1 A summary of relevant information of the datasets, such as the number of instances,
features and classes, before and after the processing, as well as their complexity profile
values, where the labels Insts., Feats. stands for the number of instances and features of
the dataset.

Original After Complexity Profile

Dataset Insts. Feats. Classes Insts. Error Noise Redundancy

R
ed

u
n
d
. anneal 898 39 6 886 0.1243 0.1185 0.7709

breast-w 699 10 2 463 0.1788 0.1749 0.7387

ionosphere 351 35 2 350 0.2929 0.3057 0.6057

soybean 683 36 19 631 0.3054 0.29 0.5087

N
o
is
y

bridges 105 13 6 105 0.7029 0.7238 0.1238

contraceptive 1473 10 3 1425 0.9042 0.9614 0.0049

yeast 1484 10 10 1453 0.8385 0.8809 0.0344

vehicle 846 19 4 846 0.6566 0.6891 0.1785

M
ix

australian 690 15 2 690 0.4809 0.4913 0.3304

hepatitis 155 20 2 155 0.4561 0.471 0.4129

sonar 208 61 2 208 0.5048 0.4615 0.1971

vowel 990 14 11 990 0.568 0.3444 0

Redundancy: anneal, breast-w, ionosphere, soybean
Noisy: bridges, contraceptive, yeast, vehicles
Mix: australian, hepatitis, sonar, vowel

– Population size ∈ {30, 50}
– Cross-over probability ∈ {0.9, 0.925, 0.95}
– Mutation-probability ∈ {0.03, 0.05}
– The number of generations is 100.
– 10 executions with every parameter settings.
– The implementation of the MOEA is NSGA-II.
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Fig. 7 Clustering of case-bases in relation to redundancy and noise levels. There are three
clusters: redundant, noisy, and mix.
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Fig. 8 Accuracy results for the redundant case-bases for all the possible settings combina-
tions.

The MOEA NSGA-II algorithms are executed with all the parameter set-
tings proposed earlier. Later the highest accuracy achieved by the different
parameters tuning is chosen to compare the results against other CBM algo-
rithms.

Figures 8 to 13 show the results gathered by NSGA-II over each set of case-
bases: redundant, mix and noisy case-bases. The purpose of the figures 8,10
and 12 is to show that the NSGA-II algorithm converges to a set of solutions
that have similar accuracies. While the figures 9, 11 and 13 show the relation
between the accuracy and the achieved reduction rate. So as to compare the
result of NSGA-II algorithm against those given by other CBM algorithms,
among all the setting results, we are selecting the configuration that returns
the best accuracy average.
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Fig. 9 Distribution of Accuracy against reduction rate for the redundant case-bases for all
the possible settings combinations.
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Fig. 10 Accuracy results for the mix case-bases for all the possible settings combinations.

Table 2 contains the accuracy averages for each parameter tuning combi-
nation. The bold results are the selected results to compare against the rest
of the algorithms results. Although the parameters tuning may affect the re-
sults, it seems that a population of 30 individuals is enough obtain maintained
case-bases that converge to a stable accuracy and reduction rates.

5.3 Results

All the experiments share the same CBR system configuration, that is, only
the case-base is different for each experiment. The CBR system retrieves the
most similar cases using a k-NN approach with k = 3. A voting system is used
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Fig. 11 Distribution of Accuracy against reduction rate for the mix case-bases for all the
possible settings combinations.
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Fig. 12 Accuracy results for the noisy case-bases for all the possible settings combinations.

to build the solution from the retrieved set of similar cases, whereby the most
common solution in the nearest neighbours is returned by the CBR system.

The purpose of the experiments is not to identify the best CBM algorithm,
but to show how the different algorithms react to the types of case-bases.
We have selected four existing CBM algorithms: from the NN family, CNN
and RENN algorithms; DROP3 from the DROP family; and the Competence
Model family is represented by RC-FP.

The average accuracy and reduction rate results for the algorithms CNN,
RENN, DROP1, RC FP and NSGA-II are shown in the Figures 14, 15 and
16, where each shape represent a particular CBM algorithm. The results are
normalized in the interval [0, 1], so a reduction rate of 0 means no reduction
at all, and 1 that the complete case-base has been deleted. Values close to 1
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Fig. 13 Distribution of Accuracy against reduction rate for the noisy case-bases for all the
possible settings combinations.
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Table 2 Each cell is the average accuracy result for the 10 executions with the given
parameter settings: cross-over and mutation probabilities and population size. The best
accuracy results are highlight with bold letters.

Population=30

Cross-Over=0.9 Cross-Over=0.925

Case-Base Mut=0.03 Mut=0.05 Mut=0.03 Mut=0.05

anneal 0.95408 0.9594 0.95428 0.95678

breast 0.9442 0.9443 0.94818 0.94426

ionosphere 0.84828 0.84344 0.84256 0.83945

soybean 0.88338 0.8873 0.88336 0.88381

australian 0.84566 0.84188 0.85043 0.84694

hepatitis 0.8142 0.82952 0.838 0.82959

sonar 0.7656 0.77 0.76227 0.73898

vowel 0.76151 0.77505 0.76717 0.76576

bridges 0.54455 0.55254 0.56026 0.55353

contraceptive 0.44148 0.44548 0.44798 0.44196

vehicle 0.6768 0.67108 0.67506 0.66165

yeast 0.53564 0.53806 0.53952 0.53148

Population=50

Cross-Over=0.9 Cross-Over=0.925

Case-Base Mut=0.03 Mut=0.05 Mut=0.03 Mut=0.05

anneal 0.95634 0.95531 0.9552 0.95621

breast 0.94514 0.94601 0.94406 0.9464

ionosphere 0.8397 0.84201 0.84373 0.8417

soybean 0.88353 0.88401 0.88243 0.88684

australian 0.84637 0.84347 0.8484 0.84726

hepatiti 0.82197 0.83967 0.81846 0.82079

sonar 0.75725 0.75171 0.761 0.76076

vowel 0.76848 0.76747 0.76394 0.76324

bridges 0.56998 0.57235 0.55799 0.54718

contraceptive 0.44765 0.43999 0.44303 0.44296

vehicle 0.65833 0.66607 0.66974 0.66916

yeast 0.53035 0.53348 0.53245 0.53227

for accuracy means that the CBR system is returning frequently the correct
solution to the input problem. NONE represents the results of the original
case-base, hence it is possible to check visually whether the CBM algorithms
either improve or worsen the original accuracy. The dashed line represent the
average accuracy results of executing 100 times a random selection of cases for
the given case-base size.

6 Discussion

As can be seen in Figure 14, regarding the redundancy case-bases, all the CBM
algorithms generate maintained case-bases with similar accuracies. Because of
low noisy levels, RENN removes few cases from the case-base, in contrast to
CNN and DROP3 algorithms, which remove a great number of cases. Despite
of the fact that having a greater reduction rate may be good, the number of
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Fig. 14 Accuracy and reduction rate distribution for all the studied CBM algorithms for
the redundant case-bases: anneal, breast, ionosphere and soybean.
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Fig. 15 Accuracy and reduction rate distribution for all the studied CBM algorithms for
the mix case-bases: australian, hepatitis, sonar and vowel.
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Fig. 16 Accuracy and reduction rate distribution for all the studied CBM algorithms for
the noisy case-bases: bridges, contraceptive, vehicle and yeast.

deleted cases is so high that is likely that the maintained case-bases will be
over-fitted given the great variance of accuracy results typically found with
a lower amount of cases. The NSGA-II and RC FP achieve similar reduction
rates, around half of the case-bases, but NSGA-II is the only one that always
achieve higher accuracy than the estimated mean accuracy in every case-base.

Regarding the mix case-bases from Figure 15, the RENN is the algorithm
with the lowest reduction rate for all the studied case-bases, and it is able
of improve the original accuracy of the system when the redundancy and
noisy levels of the case-base are large enough, such as hepatitis and australian.
Nonetheless, with sonar and vowel case-bases, RENN gets lower accuracy than
the estimated mean, in contrast to CNN and RC FP, which get better results
for these case-bases, and achieve good reduction rates in this type of case-base.
In case-bases with low redundancy and noise level lower than 0.5, both CNN
and RC FP seem to create maintained case-bases with much better accuracy
than the estimated accuracy mean. DROP3 algorithm achieve a reduction of
bigger than half of the cases and similar accuracy to the estimated accuracy
mean. NSGA-II creates maintained case-bases with similar accuracy to the
estimated accuracy mean, and with a reduction rate slightly above half of the
cases, excepting for the vowel case-base.

The noisy case-bases (16) have high levels of noise and low redundancy
levels. With these case-bases type, the RENN algorithm achieves greater re-
duction rates than in the previous case-bases. Nonetheless, this algorithm is
designed to remove noisy cases. CNN does not reduce the size of the case-base
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as much as in the case of the redundant and mix case-bases, and its accuracy
results are under the estimated mean. DROP3 produces the smallest main-
tained case-bases for this type of case-bases, thus again it is possible that the
maintained cases-bases would be over-fitted. RC-FP removes around half of
the cases, but the accuracy is lower than the estimated mean in all the case-
bases. NSGA-II is the only algorithm that produces a case-base with better
accuracy than the estimated accuracy on all the case-bases. Regarding the
reduction rate, it removes around half of the cases on three case-bases but for
the bridges case-base.

According to the experiment results, there is no best CBM algorithm for
reducing the size of all the considered case-bases. However, MOEA NSGA-
II algorithm performs consistently with redundant, mix and noisy case-bases
alike, because it is able to create case-bases with similar accuracies to the
original case-bases, reducing the number of cases to around half of the initial
size. With a maintained case-base size as given using our approach, it is not
likely to have an over-fitted CBR system. The only exception seems to be those
case-bases with low redundancy and noisy levels, such as the vowel case-base.
However, in these types of case-bases CBM is complex without worsening the
error rate, because there are insufficient amount of redundant or noisy cases
to be deleted from the case-bases.

7 Conclusion

Finding a well-maintained case-base is a complex problem because we are
working in a theoretically weak domain. On the one hand, experimental results
show that lower number of cases in the maintained case-base often decreases
the problem-solving ability of the system. On the other hand, it is not pos-
sible to determine the exact amount and selection of cases that produces the
optimal case-base. Furthermore, finding the lowest error rate and the smallest
maintained case-base may not be the best solution, because it may be that
existing cases are not fully representative of future problems and that the
case-base would be over-fitted to the existing cases.

In this work we have approached the Case-Base Maintenance task as a
multi-objective optimization problem that may be solved with a Multi-Objec-
tive Evolutionary Algorithm. In particular, the optimization problem is di-
vided into three different and simultaneous objectives: (1) minimizing the
distance of the current number of cases in the case-base to an estimation of
the amount of non-redundant cases in the initial case-base; (2) reducing the
proportion of redundant cases and; (3) minimizing the estimation of the error
rate achieved with the maintained case-base. With this optimization problem,
our purpose is to find a case-base, with a lower proportion of no redundant
and noisy cases, that is still able to solve problems at a similar level to the
original case-base. In order to solve the optimization problem, we have chosen
the MOEA NSGA-II, but other MOEA may also be suitable.
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We have tested the suitability of our approach with different case-bases
and compared the results achieved to those given by other existing CBM al-
gorithms from the literature. The case-bases were classified according to their
redundancy and noise levels into three different types: redundant, mix and
noisy. Regardless of the type of case-base, the MOEA NSGA-II is the most
consistent algorithm, because it performs well with all of them, creating main-
tained case-bases with similar accuracy to the original case-base and with
maintained case-base sizes that avoid the over-fitting problem. Furthermore,
given the number of cases of the returned maintained cases-bases, it is likely
that the accuracy is higher than the estimated mean accuracy for that amount
of cases. The only exception to this behaviour is vowel which has low redun-
dancy and appears to be noisy.

However, there are some drawbacks of using MOEA to perform CBM.
Firstly, like the rest of the CBM algorithms, there is no guarantee of find-
ing an optimal solution within finite time, and other CBM algorithms may
create better maintained case-bases. This problem is relative though, because
none of the studied CBM algorithm is able to find an optimal solution either.
Secondly, the runtime could be a limitation, in particular where CBM cannot
be performed off-line and the CBR system is stopped until the CBM process
finishes. For this reason MOEAs are not suitable in all scenarios. Nonetheless,
using a MOEA could be suitable when the case-base is built for the first time
from a raw set of data, and where time is not the most important restric-
tion. Finally, the use of a MOEA may require the tuning of the parameters
related to the size of the population and the crossover and mutation operator,
although it is possible to use some recommended parameters as given in (Jong
and Spears (1990); Grefenstette (1986); Laumanns et al (2001)), and achieve
good maintained case-bases.
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Göker MH, Roth-Berghofer T (1999) The development and utilization of the
case-based help-desk support system HOMER. Engineering Applications of
Artificial Intelligence 12(6):665 – 680

Grefenstette J (1986) Optimization of control parameters for genetic
algorithms. IEEE Trans Syst Man Cybern 16(1):122–128, DOI
10.1109/TSMC.1986.289288

Hart P (1968) Condensed nearest neighbor rule. IEEE Transactions on Infor-
mation Theory 14(3):515+

Holland JH (1975) Adaptation in Natural And Artificial Systems. MIT Press
Ishibuchi H, Nakashima T, Nii M (2001) Genetic-algorithm-based instance and

feature selection. In: Instance Selection and Construction for Data Mining,
vol 608, pp 95–112

Jong KAD, Spears WM (1990) An analysis of the interacting roles of popula-
tion size and crossover in genetic algorithms. In: PPSN, pp 38–47

Juarez JM, Guil F, Palma J, Marin R (2009) Temporal similarity by measuring
possibilistic uncertainty in CBR. Fuzzy Sets And Systems 160(2):214–230

Kibler D, Aha D (1987) Learning representative exemplars of concepts: An
initial case study. In: Proceedings of the Fourth International Workshop on
Machine Learning, pp 24–30



30 E. Lupiani et al.

Kim K, Han I (2001) Maintaining case-based reasoning systems using a genetic
algorithms approach. Expert Systems With Applications 21(3):139–145

Laumanns M, Zitzler E, Thiele L (2001) On the effects of archiving, elitism,
and density based selection in evolutionary multi-objective optimization. In:
EMO, pp 181–196

Leake D, Wilson D (1998) Categorizing case-base maintenance: Dimensions
and directions. In: Advances in Case-Based Reasoning, LNAI, vol 1488, pp
196–207

Leake D, Wilson M (2011) How many cases do you need? assessing and pre-
dicting case-base coverage. In: 19th international conference on Case-Based
Reasoning Research and Development, ICCBR’11, pp 92–106

Lopez de Mantaras R, McSherry D, Bridge D, Leake D, Smyth B, Craw S,
Faltings B, Maher ML, Cox MT, Forbus K, Keane M, Aamodt A, Watson I
(2005) Retrieval, reuse, revision and retention in case-based reasoning. The
Knowledge Engineering Review 20:215–240

Markovitch S, Scott P (1988) The role of forgetting in learning. In: Proceedings
of The Fifth International Conference on Machine Learning, pp 459–465

Massie S, Craw S, Wiratunga N (2005) Complexity-guided case discovery for
case based reasoning. In: 20th National Conference on Artificial Intelligence
- Volume 1, AAAI’05, pp 216–221

Massie S, Craw S, Wiratunga N (2006) Complexity profiling for informed
case-base editing. In: Advances in Case-Based Reasoning, LNAI, vol 4106,
pp 325–339

Montani S, Portinale L, Leonardi G, Bellazzi R, Bellazzi R (2006) Case-based
retrieval to support the treatment of end stage renal failure patients. Arti-
ficial Intelligence in Medicine 37(1):31–42

Olsson E, Funk P, Xiong N (2004) Fault diagnosis in industry using sensor
readings and case-based reasoning. Journal of Intelligent and Fuzzy Systems
15(1):41–46

Pan R, Yang Q, Pan S (2007) Mining competent case bases for case-based
reasoning. Artificial Intelligence 171(16-17):1039–1068

Riesbeck RSC (1989) Inside Case-Based Reasoning. Lawrence Erlbaum
Rissland EL (2009) Black swans, gray cygnets and other rare birds. In: Pro-

ceedings of the 8th International Conference on Case-Based Reasoning:
Case-Based Reasoning Research And Development, ICCBR ’09, pp 6–13

Smyth B, Keane M (1995) Remembering to forget - a competence-preserving
case deletion policy for case-based reasoning systems. In: IJCAI’95, Inter-
national Joint Conference on Artificial Intelligence, pp 377–382

Smyth B, Mckenna E (1999) Building compact competent case-bases. In: Case-
Based Reasoning Research And Development, Lecture Notes in Artificial
Intelligence, vol 1650, pp 329–342

Tomek I (1976) Experiment with edited nearest-neighbor rule. IEEE Transac-
tions On Systems Man And Cybernetics 6(6):448–452

Watson I (1998) Is cbr a technology or a methodology? In: Tasks and Methods
in Applied Artificial Intelligence, LNCS, vol 1416, pp 525–534



Case-Base Maintenance with Multi-Objective Evolutionary Algorithms 31

Wilson D (1972) Asymptotic properties of nearest neighbor rules using edited
data. IEEE Transactions on Systems Man and Cybernetics SMC2(3):408–&

Wilson D, Martinez T (2000) Reduction techniques for instance-based learning
algorithms. Machine Learning 38(3):257–286

Wilson DR, Martinez TR (1997) Instance pruning techniques. In: Ma-
chine Learning: Proceedings Of The Fourteenth International Conference
(ICML97), Morgan Kaufmann, pp 404–411

Yu X, Gen M (2010) Introduction to Evolutionary Algorithms, Decision En-
gineering. Springer, DOI 10.1007/978-1-84996-129-5

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation 3(4):257–271


	Craw Journal of intelligent information systems covernote
	Craw Case-based maintenance with multi-objective evolutionary algorithms

