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Abstract
Process Management techniques are useful in domains where the availability of a (formal)
process model can be leveraged to monitor, supervise, and control a production process.
While their classical application is in the business and industrial fields, other domains may
profitably exploit Process Management techniques. Some of these domains (e.g., people’s
behavior, General Game Playing) are much more flexible and variable than classical ones,
and, thus, raise the problem of predicting which activities will be carried out next, a problem
that is not so compelling in classical fields. When the process model is learned automatically
from examples of process executions, which is the task of Process Mining, the prediction
performance may also provide indirect indications on the correctness and reliability of the
learned model. This paper proposes and compares two strategies for activity prediction
using the WoMan framework for workflow management. The former proved to be able to
handle complex processes, the latter is based on the classic and consolidated Naı̈ve Bayes
approach. An experimental validation allows us to draw considerations on the pros and cons
of each, used both in isolation and in combination.

Keywords Process mining · Activity prediction · Process model

1 Introduction

Process Management techniques are useful in domains where a production process must be
monitored (e.g. in the industry) in order to check whether the actual behavior is compliant
with a desired one. When a process model is available, new process enactments can be
automatically supervised. The complexity of some domains requires to learn automatically
the process models, because building them manually would be very complex, costly, and
error-prone. Process Mining (Weijters and van der Aalst 2001; IEEE Task Force on Process
Mining 2012) approaches aim at solving this problem.
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A relevant issue in Process Management in general, and in Process Mining in particular,
is to assess how well can a model provide hints about what is going on in the process execu-
tion, and what will happen next. Indeed, given an intermediate status of a process execution,
knowing how the execution will proceed might allow the (human or automatic) supervisor
to take suitable actions that facilitate the next activities. This task, known as activity predic-
tion, may be stated as follows: given a process model and the current (partial) status of a
new process execution, guess which will be the next activity that will take place in the exe-
cution. In industrial environments, the rules that determine how the process must be carried
out are quite strict; so, predicting the process evolutions is a trivial consequence of con-
formance checking. Other, less traditional application domains (e.g., the daily routines of
people at home or at work, seen as a process), involve much more variability, and obtaining
reliable predictions becomes both more difficult and more useful. Another, very important
and interesting, application of process-related predictions is in the assessment of the qual-
ity of a model. Indeed, since models are learned automatically exactly because the correct
model is not available, only an empirical validation can be run. In literature, this is typically
done by applying the learned model to new process enactments.

Given these motivations, we focused on the activity prediction task and developed two
approaches to carry it out. Both are based on the WoMan framework for workflow man-
agement (Ferilli and Esposito 2013; Ferilli 2014), which proved able to outperform other
state-of-the-art systems when dealing with very complex processes. The former (the heuris-
tic approach) is the one originally adopted by WoMan (Ferilli et al. 2016). The latter (the
Bayesian approach) is a novel contribution of this paper: based on the Naı̈ve Bayes algo-
rithm, it was developed in order to check whether and how this classical and consolidated
Machine Learning technique can improve activity prediction performance. Other original
contributions of this paper are the following: first, the WoMan’s process model represen-
tation is extended by introducing additional information aimed at improving the prediction
performance; second, the detailed prediction algorithms (especially the Bayesian one) are
reported for the first time; third, an implementation of the two approaches in WoMan is used
to compare their performance on several real-world datasets.

This paper is organized as follows. Section 2 reports some basics on process mining
and related works. The next two sections present WoMan, its (extended) formalism and its
approach to activity prediction. Then, Section 5 reports the details of the novel Bayesian
approach. Section 6 reports and comments about the experimental outcomes. Finally, in the
last section, some conclusions are drawn and future work issues outlined.

2 Basics & related work

A process consists of actions performed by agents (Agrawal et al. 1998; Cook and Wolf
1996). A workflow or process model is a formal specification of a process. It may involve
sequential, parallel, conditional, or iterative execution (van der Aalst 1998). A process exe-
cution, compliant to a given workflow, is called a case. It can be described as a sequence of
events (i.e., identifiable, instantaneous actions, including decisions upon the next activity to
be performed), associated to steps (time points) and collected in traces (van der Aalst et al.
2004). Relevant events are the start and end of process executions, or of activities (Cook
and Wolf 1996). Traces may, in turn, be collected in logs. A task is a generic piece of work,
defined to be executed for many cases of the same type. An activity is the actual execution
of a task by a resource (an agent that can carry it out).



Journal of Intelligent Information Systems (2019) 53:93–112 95

Process models (i.e., workflows) are usually expressed as some kind of graph, where
vertexes are associated to tasks and edges represent causal connections among tasks. While
several specialized formalisms have been proposed in the literature, Petri Nets are a classical
and widespread representation used for process models. In particular, Workflow Nets (van
der Aalst 1998) are a restriction of Petri Nets purposely defined for workflow models, that
allows to express XOR and AND splits/joins, representing, respectively, alternative and
concurrent executions. Declarative process mining approaches (Pesic and van der Aalst
2006) learn models expressed as a set of constraints, rather than a monolithic model.

Various process mining algorithms have been proposed in literature for the discovery of
process models. Cook and Wolf (1996) proposed an inference method which combines a
statistical and an algorithmic approach to discover process models with a trade-off between
accuracy and robustness to noise. Greco et al. (2005) proposed a hierarchical clustering-
based method to partition the event log and discover a process model for each element of the
partition, after which all the models are merged in a single one. A method that finds the best
Hidden Markov Model (HMM) that reflects the process model was proposed by Herbst and
Karagiannis (1998). van der Aalst et al. (2004) introduced the α-algorithm that generates
Workflow Nets based on the relations found in the event log. Since the α-algorithm can not
handle all constructs, an extended version that overcomes this problem has been proposed by
Wen et al. (2006). van der Aalst et al. (2005) exploited genetic algorithms to build Petri nets
from causal matrixes. This approach tackles problems such as noise, incomplete data, non-
free-choice constructs, hidden activities, concurrency, and duplicate activities. However, the
need to set parameters and long runtimes are significant drawbacks of this technique.

Specifically, activity prediction, classified as an operational support task, received very
little attention in literature so far. Schonenberg et al. (2008) cast it as a recommendation
problem. The process model is used to provide a ranked list of the currently enabled activ-
ities, given the partial execution of the enacted process and historical information. The
experimental results they report show that the more historical information used, the better
the quality of the recommendation. A limitation of their approach is that it considers traces
that are simple sequences of activities. A Bayesian approach was used by Cook and Wolf
(1996) to guess the next activity in a process case, as a function of its frequency. Starting
from a Markov approach used to infer a formal model, the authors move towards a Bayesian
problem to infer activities. However, this approach was not thoroughly investigated. Other
approaches naturally fit very well-structured process, but suffer from problems related to
incompleteness, noise, underfitting and overfitting. The approach considered in Ceci et al.
(2014) overcomes these problems using a customized sequential pattern mining algorithm.
Unfortunately, it can only handle sequences, and concurrent behavior is not considered.

The WoMan framework (Ferilli and Esposito 2013; Ferilli 2014) lies at the intersection
between Declarative Process Mining and Inductive Logic Programming (ILP) (Muggleton
1991). Indeed, it pervasively uses First-Order Logic as a representation formalism, that
provides a great expressiveness potential and allows one to describe contextual information
using relationships. Experiments proved that WoMan can handle efficiently and effectively
very complex processes, involving:

– a very large number of tasks,
– high concurrency (i.e., tasks whose execution occurs simultaneously),
– duplicated tasks (i.e., multiple tasks with the same label),
– hidden tasks (i.e., tasks that exist in the model but not in its event log),
– short loops (i.e., loops involving just one or two tasks),
– and nested loops,
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thanks to its powerful representation formalism and process handling operators. Differently
from all previous approaches in the literature, it is fully incremental: not only can it refine
an existing model according to new cases whenever they become available, it can even start
learning from an empty model and a single case, while others need a (large) number of cases
to draw significant statistics before learning starts. This allows to carry out continuous adap-
tation of the learned model to the actual practice efficiently, effectively and transparently
to the users (Ferilli 2014). In particular, very good performance was obtained by WoMan
on the activity prediction task (Ferilli et al. 2017a) (such as in predicting the next chess
move, outperforming other state-of-the-art techniques proposed and discussed in Lai (2015)
and Oshri and Khandwala (2016)) for which reason we took it as the basis for the research
presented in this paper.

3 TheWoMan formalism

WoMan representations are based on the Logic Programming formalism (Lloyd 1987), and
specifically on Datalog (Ceri et al. 1990), where only constants or variables are allowed
as terms. Following foundational literature (Agrawal et al. 1998; Herbst and Karagiannis
1999), trace elements in WoMan are n-tuples, represented in WoMan as facts

entry(T , E,W,P,A,O[,R]).

that report information about relevant events for the case they refer to.

T is the event timestamp;1

E is the type of the event, whose allowed values are:

– begin process,
– begin activity,
– end activity,
– end process,
– context description;

W is the name of the workflow the process refers to;
P is a unique identifier for each process execution;
A is:

– start (a reserved fictitious activity), when E = begin process,
– the name of the activity that is being initiated, when E = begin activity,
– the name of the activity that is being terminated, when E = end activity,
– stop (a reserved fictitious activity), when E = end process,
– a description of contextual information at time T , in the form of a conjunction of

FOL atoms built on domain-specific predicates, when E = context description;

O is the progressive number of occurrence of that activity in that process execution;
R (an optional field) can be used to specify the agent that carries out activity A.

Activity begin and end events are needed to properly handle time span and parallelism of
tasks (van der Aalst et al. 2004). Since parallelism among activities is explicit, there is no

1It can be of any representation of time points (e.g., milliseconds from process case start, date-time in
YYYYMMDDHHMMSS format, progressive integers, etc).
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need for inferring it by means of statistical (possibly wrong) considerations. In each case,
the activities are uniquely identified by a progressive number called step.

Given a set of training cases C, WoMan learns a model consisting of a set of atoms built
on several predicates, each expressing a different kind of constraint (Ferilli et al. 2017b).
The core of the model, established in its very first version, is expressed by predicates2

task/2 and transition/4.

– task(t, Ct) : task t ∈ T (where T is the set of possible tasks for the process under
consideration) occurred in training cases Ct ⊆ C.

– transition(I, O, t, Ct) : transition3 t , occurred in training cases Ct ⊆ C, is
enabled if all input tasks I = [i1, . . . , in] are running; if fired, after stopping the execu-
tion of all tasks in I (in any order), the execution of all output tasks O = [o1, . . . , om]
is started (again, in any order). If several instances of a task can be running at the same
time, I and O are multisets, and application of a transition consists in closing as many
instances of running tasks as specified in I and starting as many executions of new tasks
as specified in O. A transition is completed when the execution of all of its output tasks
terminates.

task/2 atoms express the tasks that are allowed in the process. transition/4 atoms
express the allowed connections between activities in a very modular way. A convenient
notation for expressing transitions is

t : I ⇒ O [Ct ]
where the Ct parameter can be omitted if irrelevant. Let us denote by P the set of transitions
for the process under consideration.

Compared to classical representations, in which the overall topology of the graph is fixed,
this representation breaks the process models in several small pieces, that might in principle
be recombined together in many ways. The recombination occurs when the input multisets
of different transitions have non-empty intersection with the output multisets of other tran-
sitions. This mechanism can lead to non-determinism or unexpected behaviors, never seen
before. These issues are tackled by extending the model with suitable predicates (reported
below) that constrain the allowed combinations during the supervision phase as specified in
Section 4.1. To enforce irredundancy, WoMan exploits a number of additional information
items. A fundamental one is the Ct parameter. First, and most important, it allows WoMan
to check that all transitions involved in a new execution were all involved in the same (at
least one) training case (Ferilli 2014). Second, it allows WoMan to compute the probabil-
ity of a task or transition t , as the relative frequency |St |/n where n = |C| is the number
of training cases and St is the set of different elements in Ct . This can be used for process
simulation, for activity prediction and for noise handling (ignoring all tasks/transition in the
model whose probability does not pass a specified noise threshold). Third, it allows WoMan
to bound the number of repetitions of loops. Indeed, Ct is a multiset, because if a task or
transition t was executed k times in case c, then Ct includes k occurrences of c. So, WoMan
knows the maximum number of times that a task or transition can be executed in the same
case.

Transitions can be seen as ‘consumers’ of their input tasks, and ‘producers’ of their
output tasks. In this perspective, the completion of an activity during a case can be seen as

2In First-order logic, the p/n notation is used to denote an n-ary predicate symbol p.
3Note that this is a different meaning than in Petri Nets.
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the production of a resource4 that is to be consumed by some transition. So, a first kind
of limitation to the possible combinations of transitions is expressed by WoMan using the
following predicate:

– transition provider([τ1, . . . , τn], t, q) : transition t , involving input tasks I =
[i1, . . . , in], is enabled provided that each task ik ∈ I, k = 1, . . . , n was ‘produced’ as
an output of transition τk , where the τk’s are placeholders (variables) to be interpreted
according to the Object Identity assumption (“terms (even variables) denoted with dif-
ferent symbols must be distinct (i.e., they must refer to different objects)”); several
combinations of transition providers can be allowed, numbered by progressive q.

It partitions the input multiset of a transition according to the producers of the activities to
be consumed. Let us see this through an example.

Example 1 Consider a model that includes, among others, the following transitions:

t1 : {x, y, z} ⇒ {a, b} ; t2 : {x, y} ⇒ {a} ; t3 : {x} ⇒ {a, d}
and suppose that the current set of activities to be ‘consumed’ is {x, y, z}. If an activity a

is started, any of the above transitions might be the ‘consumer’. Suppose that WoMan also
knows the producers of these activities: {x/p22, y/p21, z/p22}, and that the model includes the
following atoms related to transitions t1, t2 and t3:

transition provider([τ1, τ1, τ2], t1, 1).
transition provider([τ1, τ2, τ2], t1, 2).
transition provider([τ1, τ2, τ1], t1, 3).
transition provider([τ1, τ1], t2, 1).
transition provider([τ1], t3, 1).

In this case, transition t2 is not a valid consumer, since it would require that both x and y were
produced by the same transition τ1, while they were actually produced by two different transitions
(p22 and p21, respectively). Conversely, pattern #3 of transition t1 is compliant with the available
producers, which makes it an eligible candidate. Also transition t3 is enabled.

Additional constraints concern the agents that may run the activities:

– task agent(t, A) : an agent, matching the roles A, can carry out task t .
– transition agent([A′

1, . . . , A
′
n], [A′′

1, . . . , A
′′
m], t, Ctq , q) : transition t , involv-

ing input tasks I = [i1, . . . , in] and output tasks O = [o1, . . . , om], may occur provided
that each task ik ∈ I, k = 1, . . . , n is carried out by an agent matching roles A′

k , and
that each task oj ∈ O, j = 1, . . . , m is carried out by an agent matching roles A′′

j ; sev-
eral combinations of transition agents can be allowed, numbered by progressive q, each
encountered in cases Ctq .

WoMan can handle taxonomies of agent roles. Each A′
k or A′′

j is an expression in disjunctive
normal form:

(r11 ∧ · · · ∧ r1n1) ∨ · · · ∨ (rm1 ∧ · · · ∧ rmnm)

where each rij is an individual or a role in the taxonomy, meaning that the agent must match
all roles in at least one disjunct. The conjuncts are introduced to handle multiple inheri-
tance. The generalization/specialization relationship is handled, in that a role is considered

4In this perspective the term resource assumes a general meaning, which is not relative to the event resource
R that executes an activity in a process case.
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as matched by an agent if the agent matches any of its subclasses in the taxonomy. Dur-
ing the mining phase, generalizing means replacing one or more roles/instances with one of
their superclasses.

More recent versions of the WoMan formalism (Ferilli et al. 2017a, b) added the
following predicates to deal with time constraints:

– task time(t, [b′, b′′], [e′, e′′]) : task t must begin at a time ib ∈ [b′, b′′] and end at
a time ie ∈ [e′, e′′];

– transition time(t, [b′, b′′], [e′, e′′]) : transition t must begin at a time ib ∈
[b′, b′′] and end at a time ie ∈ [e′, e′′];

– task in transition time(t, p, [b′, b′′], [e′, e′′]) : task t , when run in the output
set of transition p, must begin at a time ib ∈ [b′, b′′] and end at a time ie ∈ [e′, e′′];

where ib, b′, b′′, ie, e′, and e′′ are relative to the start of the process execution, i.e. they are
computed as the timestamp difference between the begin process event and the event they
refer to.

In addition to the exact timestamp of events, WoMan internally associates each activity
in a case to a unique integer identifier, called step, assigned by progressive start timestamp.
So, the above constraints may be expressed also in terms of steps, as follows:

– task step(t, [b′, b′′], [e′, e′′]) : task t must start at a step sb ∈ [b′, b′′] and end at a
step se ∈ [e′, e′′];

– transition step(t, [b′, b′′], [e′, e′′]) : transition t must start at a step sb ∈ [b′, b′′]
and end at a step se ∈ [e′, e′′];

– task in transition step(t, p, [b′, b′′], [e′, e′′]) : task t , when run in the output
set of transition p, must start at a step sb ∈ [b′, b′′] and end at a step se ∈ [e′, e′′];

These temporal constraints are mined on the entire training set. Begin and end times
are relative to the start of the process execution, computed as the timestamp difference
between the begin of process and the event they refer to. Step information is computed on
the progressive number s on which a task t is executed.

Example 2 Consider, for instance, task act Meal P reparation and transition

p23 : {act Meal P reparation} ⇒ {act Meal P reparation, act Relax}
An example of the new components for them might be:

task time(act Meal P reparation,[5,10],[10,21])
transition time(p23,[6,8],[20,25])
task step(act Meal P reparation,[s3,s5],[s7,s12])
transition step(p23,[s4,s5],[s10,s13])
task in transition step(act Meal P reparation, p23,[s10,s11],[s11,s12])
task in transition time(act Meal P reparation, p23,[10,12],[18,21])

Finally, WoMan can express pre- and post-conditions for tasks (in general), transitions,
and tasks in the context of a specific transition. Specifically, conditions on transitions define
when a transition may take place; task conditions define what must be true for a given task
in general, task in transition conditions define further constraints for allowing a task to be
run in the context of a specific transition (provided that its general conditions are met). They
are defined as FOL rules of the following form:

– act T (A, S,R) :- ... meaning that “activity A, corresponding to task T , can be
run by agent R at step S of a case execution provided that . . . ”;
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– trans T (S) :- ... meaning that “transition T can be run at step S of a case
execution provided that . . . ”;

– act T in trans P(A, S, R) :- ... meaning that “activity A, of type T , can be
run by agent R in the context of transition P at step S of a case execution provided that
. . . ”;

where the premises ‘. . . ’ are conjunctions of atoms based on contextual and control flow
information. Conditions are not limited to the current status of execution. They may involve
the status at several steps using two predicates:

– activity(s, t) : at step s (unique identifier), t ∈ T is executed;
– after(s′, s′′,[n′, n′′],[m′,m′′]) : step s′′ follows step s′ after a number of steps

ranging between n′ and n′′ and after a time ranging between m′ and m′′.

Due to concurrency, predicate after/3 induces a partial ordering on the set of steps. The
difference between pre- and post- conditions is that premises in the former refer only to
steps up to S, while in the latter they may refer to any step, both before and after S.

4 Heuristic activity prediction inWoMan

In order to describe WoMan’s activity prediction functionality, we must first introduce
WoMan’s supervision module, called WEST. Indeed, predictions are based on the current
status of the process enactment as computed by this module.

4.1 Supervision procedure

WEST (Workflow Enactment Supervisor and Trainer) (Ferilli et al. 2016) checks whether
new cases are compliant with a given process model M. More specifically, given the current
status S and a new event e, the compliance check of the latter to the former may yield 3
possible outcomes:

ok : e is compliant with S;
error : e causes a syntactic inconsistency (e.g., it terminates an activity that was never

started, or completes a case while activities are still running); or
warning : indicating a deviation from the model that does not violate syntactic con-

straints; more specifically, the following types of warnings are available:

1. the pre-/post-conditions of a task, a transition or a task in the context of a transition
are not fulfilled;

2. unexpected agent running a certain activity, in general or in the context of a specific
transition;

3. a known task or transition, not expected at the current point of process execution,
was run;

4. a new task or transition was run;
5. a task or transition was run more times than expected;
6. a task, transition or task in the context of a specific transition started or ended out of

the expected time or step bounds.

Each warning carries a different degree of severity, expressed as a numeric weight. E.g.,
an unexpected task or transition also implies that the agent that runs it was not expected,
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and so has a greater severity degree than the unexpected agent alone. The degrees of
severity currently embedded in WoMan for each type of warning were heuristically deter-
mined (a discussion and experimentation on how to determine these weights in order to
improve performance is outside the scope of this paper).

Algorithm 1 Maintenance of the structure recording valid statuses in WEST

Require: : process model
Require: : set of currently compliant statuses compatible with the case
Require: Running : set of currently running activities
Require: Transitions: list of transitions actually carried out so far
Require: : log entry
1: Activities /* Multiset of started activities */
2: if = begin activity then
3: Activities Activities
4: Running Running
5: for all do
6:

7: if then
8:

9: for all : : do
10: if transition provider : matches then
11: /* warnings raised by running in given

*/
12:

13:

14: if = end activity then
15: if Running then
16: Error
17: else
18: Running Running
19: for all do
20: select transition : that produced
21:

22: if a transition has been fully carried out then
23: Transitions Transitions &
24: for all do
25: if Transitions then
26:
where matches checks that provider constraint is fulfilled by marking .

It is easy to note that different transitions in a model may be composed in different ways
with each other. So, a partial process execution might be compliant to several different
exploitations of the model. As a consequence, many transitions may be eligible for appli-
cation at any moment, and when a new activity takes place there may be some ambiguity
about which one is actually being fired. This is clear from Example 1, where each of the
two proposed options would change in a different way the status of the process, as follows:
firing t1 would consume x, y and z, leaving no activity to be consumed and causing the sys-
tem to wait for a later activation of b, ‘produced’ by t1; firing t2 is inhibited, because the
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transition providers do not match the required pattern of variables (if it were enabled, fir-
ing it would consume x and y, leaving {z/p22} to be consumed and causing the completion
of transition t2); firing t3 would consume x, leaving {y/p21, z/p22} to be consumed and
causing WoMan to wait for a later activation of d, ‘produced’ by t3.

We call each of these alternatives a status. This ambiguity about different statuses that
are compliant with a model at a given time of process enactment must be properly handled
when supervising the process enactment. Since it can be resolved only at a later time, all the
corresponding alternate evolutions of the status must be carried on by the system, and each
new event must be handled with respect to each alternate status. Then, in some cases, the
same ambiguity issues will arise, and more alternate evolutions will be generated; in other
cases, the new event will point out that some current alternate statuses were wrong, and will
cause them to be dropped. So, as long as the process enactment proceeds, the set of alternate
statuses that are compliant with the activities carried out so far can be both expanded with
new branches, and pruned of all alternatives that become incompatible with the activities
carried out so far.

To handle this ambiguity, WEST maintains the set S of statuses, each represented as a
5-tuple of sets 〈M, R,C, T , W 〉 recording the following information:

M the marking, i.e., terminated activities, not yet used to fire a transition;
R (for ‘Ready’) the output activities of fired transitions in the status, and that the system

is waiting for in order to complete them;
C training cases that are compliant with that status;
T (hypothesized) transitions that have been fired to reach that status;
W multiset of warnings raised by the various events that led to that status.

As long as the process executions proceeds, new alternative statuses may be added to S ,
and statuses that are not compliant with the model may be removed. The way in which
WoMan maintains S is specified in Algorithm 1, which requires a process model M to
be exploited, the list of actually fired transitions Transitions, the set S of currently valid
statuses, the set of currently running tasks Running, and the entry 〈T , E,W,P,A, O,R〉
of the new case event to be checked. The algorithm works in two settings, depending on
the event type E. If E concerns the begin of activity A, then it is stored in the multiset
of started activities Activities,5 and each status S = 〈M, R,C, T , P 〉 ∈ S is removed and
evaluated. The evaluation of a status S occurs in two ways and it can lead to the generation
of more alternate statuses. The first way is to generate an evolution from the removal of
an occurrence of activity A from the R component of S, if it was already waiting A as an
exptected output of a previous applied transition. The second way is to generate an evolution
for each marked transition p : I ⇒ O of the model M, that involves activity A in its output
set O. A transition p is marked if there exists at least one transition provider q whose set
Q (containing input tasks with producer placeholders) matches, under the Object Identity
assumption, the M component of S. Status S is pruned if there is no way to evolve it. If
E concerns the end of activity A, then the set of the running activities Running is updated
by removing A and for each status S in S the M component is updated by adding A and
its provider t , since it is a new token. If t is completed, the list of transitions Transitions is
updated by adding t . In order to avoid uncompliant statuses, WEST checks for each status S

in the updated S whether the list of transitions T of S is compliant with the list Transitions,
otherwise it prunes the status S from S .

5It is a multiset since an activity could occur more than once.
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4.2 Statistics maintenance

The activity prediction module of WoMan, SNAP (Suggester of Next Activity in Process),
exploits S (maintained by WEST) to compute statistics that are useful to determine which
are the expected next activities and to rank them by some sort of likelihood according to
Algorithm 2. For each surviving status S ∈ S at a given moment of process execution, its
discrepancy from the model, δ(S), can be computed based on W, to be used in the prediction
procedure. Since each status may be associated with different activities to be performed
next, there is also an ambiguity about which activities will be carried out. In a preliminary
phase each S ∈ S is removed and evaluated. For each transition in the model enabled by the
M (Marking) component of S, according to the transition provider constraint, the evolution
S′ of S is added to S , and W is updated if inconsistency from observed and learned behavior
is encountered. Then, the discrepancy δ(S) of each S ∈ S is measured, and statuses that
exceed a certain discrepancy tolerance threshold ε are removed. Based on the statuses with
a low discrepancy only, the set N of activities that may be carried out next, with their
transition provider, is selected from the R (Ready) component of each S ∈ S . The aim is
ranking the tasks in N by decreasing likelihood, so that the resulting ranking can be used
as a prediction.

Algorithm 2 Activity Prediction in WoMan using SNAP

Require: : process model

Require: : set of currently compliant statuses compatible with the case

Require: : current event of trace

Require: : threshold to filter only more compliant statuses

1: if = end activity = begin process then

2:

3: for all do

4: for all do

5: if transition provider matches then

6: warnings raised by firing given */

7:

8: if = begin activity then

9:
/* multiset of candidate next activities */

10:

11: rankingAlgorithm
12: score,b,a score,a such that

task in transition step(

where matches checks that provider constraint is fulfilled by marking

.

Finally, in case of ties in the ranking, i.e., activities with equal score, they are further dis-
criminated using statistics about their starting step. Since a task t in the ranking is expected
to be executed in the context of a certain transition p, a step score is computed on its
task in transition step(t, p, [b′, b′′], [e′, e′′]). The underlying idea is that the lower the
sum b of the minimum and maximum begin steps b’ and b”, the higher the chances of being
executed before the others (this is especially true for parallel tasks). In the following we
describe in detail two approaches to obtain the final ranking of predictions, the Heuristic
one in Section 4.3 and the Bayesian one in Section 5.
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4.3 Heuristic approach

The traditional way in which WoMan produces activity predictions works as specified
in Algorithm 3. Specifically, activities in N are scored and ranked based on a heuristic
combination of the following parameters, computed over S:

1. μa(S), multiplicity of a across the various statuses S (activities that appear in more
statuses are more likely to be carried out next);

2. Ca , number of cases with which the status that includes a is compliant (activities
expected in the statuses supported by more training cases are more likely to be carried
out next);

3. δa(S), sum of weights of warnings raised by the status in which the activity is included
(activities expected in statuses that raised less warnings are more likely to be carried
out next).

Algorithm 3 Heuristic Ranking

Require: : set of compliant statuses evolved by SNAP

Require: : set of ready to be enabled activities

1:

2: for all do

3:

4: /* overall discrepancy of all statuses involving */

5: /* cases set supporting the ’s execution in all statuses */

6: score
7:

Ensure:

where:

– denotes the cardinality of a set or multiset;

– denotes the number of occurrences of an element in a multiset ;

– is the discrepancy of a status, computed as the sum of the weights of the

warnings raised by the status.

5 Bayesian approach

The Bayesian approach we propose is inspired by the classical Naı̈ve Bayes algorithm used
in Machine Learning (Mitchell 1997), according to which

P(θ |F) = P(θ)
P (F|θ)

P (F)
= P(θ)

∏
f ∈F P(f |θ)

∏
f ∈F P(f )

(1)

(assuming independence between items in F). It consists of two phases: the learning of
the Bayesian model and a Maximum A Posteriori (MAP) estimation of the most plausible
activity to be carried out next. In our case, the aim is computing the likelihood that an
activity θ will be carried out next at a given moment of a process execution, given the values
of the features F that describe the current status of process execution. So, we must define
both the possible θ ’s and the set of features F that affect the posterior probability of θ .
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Let us first define the set T ×N of all possible pairs 〈t, o〉 where t is a task in the process
model, and o is the progressive number of occurrence of that task in an execution.6 We
consider as θ ’s the set � of all the 〈t, o〉 ∈ T ×N that make sense in the current status of the
process execution, i.e., such that t ∈ N (activity t is a candidate next activity) and running
activity t at this point would be its o-th occurrence in the current process execution.

Concerning the features, we focus on control-flow based ones. Let us define the set
� ⊂ (T ∪ P) × N of all possible pairs 〈t, o〉 where t can be either a task or transition
in the model, and o is the progressive number of occurrence of t during the control-flow
supervision (as shown in Algorithm 1). For each γ ∈ �, we consider a set R = {p,m, c} of
3 types of relationships between a θ and a γ in a process case:

p (Parallel γ ) occurrences of running tasks/transitions when θ was started:

if γ is a task, it was not terminated yet;
if γ is a transition, it is not completed yet;

m (Marked γ ) occurrences of tasks/transitions that were terminated but not yet consumed
before θ was started:

if γ is a task, it was not yet consumed by any transition;
if γ is a transition, it was fired but still has marked output tasks;

c (Consumed γ ) occurrences of tasks/transitions that are terminated and have already
been used, before θ was started:

if γ is a task, it has been used by some fired transition;
if γ is a transition, all its output tasks have already been used.

So, we define the set of features as F = R ×�, and the value of each f ∈ F as its frequency
in the training cases. Let us see this through an example.

Example 3 Consider the process case c1 in Fig. 1, where nodes represent steps (unique iden-
tifiers associated to activities based on their progressive order of execution), labeled with pairs
〈t, o〉 (indicating that they are associated to the the o-th occurrence of task t), and edges repre-
sent the next relation between pairs of steps. Suppose that the model includes, among others, the
following transitions:

t0 : {start} ⇒ {a}
t1 : {a} ⇒ {b, c, d}
t2 : {b} ⇒ {e}
t3 : {e} ⇒ {b, c}
t4 : {b, c, c} ⇒ {f }
t5 : {d, f } ⇒ {stop}

For each step, information about relationships is maintained. Suppose c1 was partially executed
up to s8 (not included, i.e., before 〈f, 1〉 is started); then, F would contain:

(p) Parallel γ ’s :

6This is a relevant difference with respect to the heuristic approach, where there is no distinction about
different occurrences of the same task. Our expectation is that, by considering such a more fine-grained
information, predictions may be more accurate.
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Fig. 1 c1: Example of process case c1

for tasks = {〈d, 1〉}
for transitions = {〈t1, 1〉}

(c) Consumed γ ’s :

for tasks = {〈a, 1〉 〈b, 1〉 〈e, 1〉}
for transitions = {〈t0, 1〉 〈t2, 1〉}

(m) Marked γ ’s :

for tasks = {〈c, 1〉 〈b, 2〉 〈c, 2〉}
for transitions = {〈t1, 1〉 〈t3, 1〉}

In this case, the first occurrence of transition t1 is both parallel and marked, since 〈d, 1〉 is a
running task and 〈c, 1〉 is a token to enable something (in this case 〈f, 1〉). The first occurrence
of transition t3 (〈t3, 1〉) is marked, since 〈b, 2〉 and 〈c, 2〉 should be consumed by the activation
of 〈f, 1〉. Transitions 〈t0, 1〉 and 〈t2, 1〉 are terminated and consumed since their output tasks
({〈a, 1〉} and {〈e, 1〉}) are all consumed. Task {〈b, 1〉} is consumed, because it was used to fire
transition {〈t2, 1〉}. And so on.

After the case terminates, features F are used to train the Bayesian model by updating
their frequencies. In the classification step, they will be used by extracting from the model the
corresponding frequency value.

Thus, learning the control-flow based Bayesian model corresponds to compute a 3-
dimensional tensor B ∈ R

|R|×|�|×|�|, where | · | denotes the cardinality of a set. A point
(r, θ, γ ) ∈ B is the frequency with which relationship r occurs between θ and γ over the
historical cases. Since the occurrence (firing/termination) of transitions is known during the
process discovery phase, we compute/update the frequencies (i.e., the feature values) as long
as the discovery algorithm, applied to a case, proceeds as described in (Ferilli 2014). For
each step s in the process case, the associated pair 〈t, o〉 is considered as a θ , each pair 〈t, o〉
associated to a previous step is considered as a γ , and the tensor is updated by incrementing
all points (r, θ, γ ) such that relationship r holds between θ and γ .7

So, the components of (1), at a certain partial status of the process execution, can be
computed as follows:

P(θ) is the prior probability of θ ; it is trivially defined as the fraction of all cases in which
θ was observed.

7In each case, a relationship between a γ and a θ occurs at most once, if any.
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P(f |θ) is the likelihood that feature f = (r, γ ) is observed if θ were executed; it is
obtained as the value at coordinates (r, θ, γ ) in tensor B with the triple (r, θ, γ ).

P(f ) is the evidence of feature f , regardless of θ ; this probability is obtained by query-
ing the matrix A ∈ R

|R|×|�|, obtained by applying the aggregation operator to remove
dimension � from B, with the pair (r, γ ).

In our case, many values would be 0, which would make 0 also the product on the
right-hand-side of (1), and thus also its left-hand-side. To avoid this, we consider in our
computation only non-0 probabilities, which leads to the following final form of (1):

P(θ |F) = P(θ)

∏
f ∈F P(f |θ)

∏
f ∈F P(f )

= P(θ)

∏
(r,γ )∈F,Br,θ,γ �=0 Br,θ,γ
∏

(r,γ )∈F,Ar,γ
Ar,γ

(2)

The learned Bayesian model can be exploited during the supervision task for the opera-
tional support, i.e., the prediction of the next activity. Given the current status S of a partial
process execution, and the set �S of next plausible activities associated to S, the next most
plausible activity θ is chosen by applying the MAP strategy:

θ = arg max
θ∈�S

P (θ |F) (3)

This approach can be easily embedded in SNAP, using the complementary of the nor-
malized computed posterior probability as the score to rank the candidate ready activities in
decreasing order.

6 Evaluation

The performance of the proposed activity prediction approaches was evaluated on several
datasets, concerning different kinds of processes associated with different kinds and levels
of complexity. The datasets related to Ambient Intelligence concern typical user behavior.
Thus, they involve much more variability and subjectivity than in industrial processes, and
there is no ‘correct’ underlying model, just some kind of ‘typicality’ can be expected:

Aruba from the CASAS benchmark repository.8 It includes continuous recordings of
home activities of an elderly person, visited from time to time by her children, in a time
span of 220 days. Each day is mapped to a case of the process representing the daily
routine of the elderly person. Transitions correspond to terminating some activities and
starting new activities. The resources (persons) that perform activities are unknown.

GPItaly from one of the Italian use cases of the GiraffPlus project9 (Coradeschi et al.
2013). It concerns the movements of an elderly person (and occasionally other people)
in the various rooms of her home along 253 days. Each day is a case of the process
representing the typical movements of people in the home. Tasks correspond to rooms;
transitions correspond to leaving a room and entering another.

The other concerns chess playing as a General Game Playing, where again the ‘correct’
model is not available:

8http://ailab.wsu.edu/casas/datasets.html
9http://www.giraffplus.eu

http://ailab.wsu.edu/casas/datasets.html
http://www.giraffplus.eu
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Table 1 Dataset statistics

Cases Events Activities Tasks Transitions

overall avg overall avg overall avg overall avg

Aruba 220 13788 62.67 6674 30.34 10 0.05 92 0.42

GPItaly 253 185844 369.47 92669 366.28 8 0.03 79 0.31

White 994 239104 240.55 118566 119.28 724 0.73 11694 11.76

Black 527 129794 246.29 64370 122.14 725 1.37 8934 16.95

Draw 1408 302634 214.94 149909 106.47 731 0.52 11938 8.48

Chess from the Italian Chess Federation website.10 2929 reports of actual top-level
matches were downloaded. Each match is a case, belonging to one of 3 processes asso-
ciated to the possible match outcomes: white wins, black wins, or draw. A task is the
occupation of a square by a specific kind of piece (e.g., “black rook in a8”). Transitions
correspond to moves: each move of a player terminates some activities (since it moves
pieces away from the squares they currently occupy) and starts new activities (that is, the
occupation by pieces of their destination squares). The involved resources are the two
players: ‘white’ and ‘black’.

Table 1 reports statistics on the experimental datasets: number of cases and number of
events, activities, tasks and transitions, also on average per case. There are more cases for the
chess datasets than for the Ambient Intelligence ones. However, the chess datasets involve
many more different tasks and transitions, many of which are rare or even unique. The
datasets are different also from a qualitative viewpoint. Aruba cases feature many short
loops and some concurrency (involving up to 2 activities), optional and duplicated activities.
The same holds for GPItaly, except for concurrency. The chess datasets are characterized by
very high concurrency: each game starts with 32 concurrent activities, a number which is
beyond the reach of many current process mining systems (Ferilli and Esposito 2013). This
number progressively decreases (but remains still high) as long as the game proceeds. Short
and nested loops, optional and duplicated tasks are present as well. The number of agents
and temporal constraints is not shown, since the former is at least equal, and the latter is
exactly equal, to the number of tasks and transitions.

The experimental procedure was as follows. First, each dataset was translated from its
original representation to the input format of WoMan. Then, a 10-fold cross-validation pro-
cedure was run for each dataset, using the learning functionality of WoMan proposed in
Ferilli (2014) to learn models for all training sets. Finally, each model was used as a refer-
ence to call WEST and SNAP on each event in the test sets: the former checked compliance
of the new event and suitably updated the set of statuses associated to the current case, while
the latter used the resulting set of statuses to make a prediction about the next activity that
is expected in that case. Specifically, the following settings were tried:

H Heuristic ranking only;
B Bayesian ranking only;
H-B Heuristic ranking, followed by Bayesian ranking to resolve ties;
B-H Bayesian ranking, followed by Heuristic ranking to resolve ties.

10http://scacchi.qnet.it

http://scacchi.qnet.it
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Table 2 Activity prediction statistics (10-fold Cross Validation)

P R Rank Tasks

H vs B H B H-B B-H

Aruba 0.89 0.94 0.72 0.72 0.77 0.77 5.4

GPItaly 1.0 0.98 0.53 0.66 0.63 0.66 7.57

black 0.62 0.90 0.97 0.96 0.96 0.96 10.18

white 0.69 0.90 0.95 0.94 0.95 0.95 9.8

draw 0.79 0.93 0.96 0.95 0.96 0.96 9.55

chess 0.70 0.91 0.96 0.95 0.96 0.96 9.84

Table 2 reports the processes on the row headings (‘chess’ referring to the average of
the chess sub-datasets), and corresponding average performance for several settings and
measures on the columns. Column P (for Predictions) reports the ratio of cases in which
SNAP returned a prediction. Indeed, when tasks or transitions not present in the model are
executed in the current enactment, WoMan assumes a new kind of process is enacted, and
avoids making predictions. Column R (for Recall) reports the ratio of cases in which the
correct activity (i.e., the activity that is actually carried out next) is present in the ranking,
among those in which a prediction was made. Finally, column Rank reports how close it is
to the first element of the ranking (1.0 meaning it is the first in the ranking, and 0.0 meaning
it is the last in the ranking), and Tasks is the average length of the ranking (the lower, the
better). Note that values of P , R and Tasks are independent from the involved approaches
(H or B). To provide an immediate indication of the overall activity prediction performance,
Table 3 reports the values of a global index, called Quality and defined as:

Quality = Pred · Recall · Rank ∈ [0, 1]

Quality = 0 means that predictions are completely unreliable; Quality = 1 means that
WoMan always makes a prediction, and that such a prediction is correct (i.e., the correct
activity is at the top of the ranking). In Tables 2 and 3 the winning settings are reported in
bold.

First, note that Quality index in the hybrid approaches (H-B or B-H) is not worse than
in the single approaches in 5 out 6 cases. This is due to the combination’s ability to better
discriminate the suggested tasks in the ranking. As regards the Rank measure, the Heuristic
approach outperforms the Bayesian one in all datasets except for GPItaly. Since the GPI-
taly dataset involves much more events and activities than the Aruba one, on a comparable
number of cases, tasks, and transitions, it is more profitable for the Naı̈ve Bayes model to
collect more meaningful statistics. However, the heuristic approach works very well even if
the dataset has a lower distribution. As regards performance on the chess dataset, there’s no
difference among all approaches. This is probably due to the large volume of available data.

WoMan is extremely reliable because the correct next activity (measured by R) is almost
always present in the ranking (90-98% of the times), and often in the top section of it: more
specifically, it is in the top 10% items for the chess processes, and in the top 30% items for
the Aruba dataset. This confirms that WoMan is effective under very different conditions
as regards the complexity of the models to be handled. In the Ambient Intelligence domain,
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Table 3 Activity prediction
quality (10-fold Cross Validation) H vs B H B H-B B-H

Aruba 0.60 0.60 0.62 0.62

GPItaly 0.51 0.64 0.65 0.4

black 0.54 0.53 0.53 0.53

white 0.59 0.59 0.59 0.59

draw 0.71 0.70 0.71 0.71

chess 0.61 0.61 0.61 0.61

this means that it may be worth spending some effort to prepare the environment in order
to facilitate that activity, or to provide the user with suitable support for that activity. In the
chess domain, this provides a first tool to make the machine able to play autonomously. The
number of predictions is proportional to the number of tasks and transitions in the model.
This was expected, because, the more variability in behaviors, the more likely it is that the
test sets contain behaviors that were not present in the training sets. Compared to previous
results, the number of predictions, in all domains, increased, due to the fact that the 10-
fold cross-validation procedure involves larger training sets, providing more information
to the learning step. WoMan is almost always able to make a prediction in the Ambient
Intelligence domain, which is extremely important in order to provide continuous support
to the users. While neatly lower, the percentage of predictions in the chess domain was
clearly improved, and covers more than half of the match. Interestingly, albeit the evaluation
metrics are different and not directly comparable, the Quality is neatly above the state-of-
the-art performance obtained using Deep Learning (Lai 2015) and Neural Networks (Oshri
and Khandwala 2016). The nice thing is that WoMan reaches this percentage by being able
to distinguish cases in which it can make an extremely reliable prediction from cases in
which it prefers not to make a prediction at all.

7 Conclusions

In addition to other classical exploitations, process models may be used to predict the next
activities that will take place. This would allow to take suitable actions to help accom-
plishing those activities, which is particularly important when the processes involve very
variable and flexible behavior. This paper proposed and compared two approaches to make
these kinds of predictions using the WoMan framework for workflow management. Exper-
imental results on different tasks and domains suggest that the proposed approaches can
successfully perform such predictions, and highlighting the pros and cons of each and the
advantages of using them in combination. This further confirms that WoMan is suitable to
handle several process-related tasks in complex domains.

Future work will concern the application of the proposed framework and approaches to
other domains, e.g. Industry 4.0 ones, and the embedding of the prediction module in other
applications, in order to guide their behavior.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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