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Abstract
Kleinberg introduced an axiomatic system for clustering functions. Out of three axioms, he
proposed, two (scale invariance and consistency) are concerned with data transformations
that should produce the same clustering under the same clustering function. The so-called
consistency axiom provides the broadest range of transformations of the data set. Kleinberg
claims that one of the most popular clustering algorithms, k-means does not have the prop-
erty of consistency. We challenge this claim by pointing at invalid assumptions of his proof
(infinite dimensionality) and show that in one dimension in Euclidean space the k-means
algorithm has the consistency property. We also prove that in higher dimensional space, k-
means is, in fact, inconsistent. This result is of practical importance when choosing testbeds
for implementation of clustering algorithms while it tells under which circumstances clus-
tering after consistency transformation shall return the same clusters. Two types of remedy
are proposed: gravitational consistency property and dataset consistency property which
both hold for k-means and hence are suitable when developing the mentioned testbeds.

Keywords Cluster analysis · Consistency property · Gravitational consistency property ·
Fixed dimensional Euclidean space consistency · k-Means algorithm

1 Introduction

In his heavily cited paper (Kleinberg, 2002), Kleinberg introduced an axiomatic system for
clustering functions. A clustering function applied to a dataset S produces a partition Γ .
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A partition Γ of a set S into k subsets (clusters) is to be understood as the set of subsets
Γ = {C1, C2, ..., Ck} such that ∪k

i=1Ci = S, Ci ∩ Cj = ∅ for any i �= j , Ci ⊆ S and
Ci �= ∅ for any i. Kleinberg (2002, Section 2) defines clustering function as:

Definition 1 A clustering function is a function f that takes a distance function d on [set]
S [of size n ≥ 2] and returns a partition Γ of S. The sets in Γ will be called its clusters.

where the distance is understood by him as

Definition 2 With the set S = {1, 2, . . . , n} [...] we define a distance function to be any
function d : S × S → R such that for distinct i, j ∈ S we have d(i, j) ≥ 0, d(i, j) = 0 if
and only if i = j , and d(i, j) = d(j, i).

Out of three axioms, he proposed, two are concerned with data transformations that
should produce the same clustering (partition) under the same clustering function. We can
speak here about “clustering preserving transformations” induced by these axioms. The so-
called consistency axiom, mentioned below, shall be of interest to us here as it provides
the broadest range of transformations. Note that, following literature, we use here terms
“property” and “axiom” interchangeably.

Property 1 Let Γ be a partition of S, and d and d ′ two distance functions on S. We say
that d ′ is a Γ -transformation of d if (a) for all i, j ∈ S belonging to the same cluster of Γ ,
we have d ′(i, j) ≤ d(i, j) and (b) for all i, j ∈ S belonging to different clusters of Γ , we
have d ′(i, j) ≥ d(i, j). The clustering function f has the consistency property if for each
distance function d and its Γ -transformation d ′ the following holds: if f (d) = Γ , then
f (d ′) = Γ

Subsequently, we will talk about Γ -transformation exchangeably with Γ -based con-
sistency transformation or just consistency transformation. Let us mention also the other
clustering preservation axiom of Kleinberg, that is the scale-invariance axiom.

Property 2 A function f has the scale-invariance property if for any distance function d

and any α > 0, we have f (d) = f (α · d).

The validity or non-validity of any clustering preserving axiom for a given clustering
function is of vital practical importance, as it may serve as a foundation for a testbed of
the correctness of the function. Any modern software developing firm creates tests for its
software in order to ensure its proper quality. Generators providing versatile test data are
therefore of significance because they may detect errors unforeseen by the developers. Thus
the consistency axiom may be used to generate new test data from existent one knowing a
priori what the true result of clustering should be. The scale-invariance axiom may be used
too, but obviously, the diversity of derived sets is much smaller.

Kleinberg defined a class of clustering functions, called the centroid functions as follows:
for any natural number k ≥ 2, and any continuous, non-decreasing, and unbounded function
g : R+ → R

+, the (k; g)-centroid clustering consists of: (1) choosing the set of k centroid
points T ⊆ S for which the objective function �

g
d(T ) = ∑

i∈S g(d(i, T )) is minimized,
where d(i, T ) = minj∈T d(i, j). (2) a partition of S into k clusters is obtained by assigning
each point to the element of T closest to it. He claims that the objective function underlying
k-means clustering is obtained by setting g(d) = d2. This is not quite correct because
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cluster centers in k-means do not necessarily belong to S, though with a dense set S, the
approximation may be relatively good. It would be more appropriate if Kleinberg would
speak about k-medoid algorithm

Note that his distance definition (Def. 2) is not a Euclidean one and not even metric, as
he stresses. This is of vital importance because based on this he formulates and proves a
theorem (his Theorem 4.1)

Theorem 1 Theorem 4.1 from Kleinberg (2002). For every k ≥ 2 and every function g

[...] and for [data set size] n sufficiently large relative to k, the (k; g)-centroid clustering
function [this term encompassing k-means] does not satisfy the Consistency property.

which we claim is wrong with respect to k-means for a number of reasons as we will show
below. The reasons are:

– The objective function underlying k-means clustering is not obtained by setting g(d) =
d2 contrary to Kleinberg’s assumption (k-medoid is obtained).

– k-means always works in fixed-dimensional space while his proof relies on unlimited
dimensional space.

– Unlimited dimensionality implies a serious software testing problem because the algo-
rithm’s correctness cannot be established by testing as the number of tests is too
vast.

– The consistency property holds for k-means in one-dimensional space.

The last result opens the problem of whether or not the consistency also holds for higher
dimensions.

We begin our presentation with recalling basics of the k-means algorithms in Section 2.
We recall the Kleinberg’s proof of k-means inconsistency and point at its weak points in
Section 3. Then we investigate the impact of dimensionality of k-means consistency in
Section 4. In Section 5 we discuss the reasons for inconsistency in multi-dimensional spaces
and propose a remedy in terms of gravitational consistency and generalized gravitational
consistency. In Section 6, we suggest still a different way around the problem by proposing
dataset consistency property. Section 7 reports on some experiments illustrating selected
insights from the paper. Conclusions are presented in Section 8.

2 k-Means algorithm

The popular clustering algorithm, k-means (MacQueen, 1967) strives to minimize the
partition quality function (called also partition cost function)

Q(U,M) =
m∑

i=1

k∑

j=1

uij‖xi − μj‖2 (1)

where xi , i = 1, . . . , m are the data points, M is the matrix of cluster centers μj , j =
1, . . . , k, and U is the cluster membership indicator matrix, consisting of entries uij , where
uij is equal to 1 if among all of cluster (gravity) centers μj is the closest to xi , and is 0
otherwise.
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It can be rewritten in various ways while the following are of interest to us here. Let the
partition Γ = {C1, . . . , Ck} b a partition of the data set onto k clusters C1, . . . , Ck . Then

Q(Γ ) =
k∑

j=1

∑

xi∈Cj

‖xi − μ(Cj )‖2 (2)

where μ(C) = 1
|C|

∑
xi∈C xi is the gravity center of the cluster C. The above can be

presented also as

Q(Γ ) = 1

2

k∑

j=1

1

|Cj |
∑

xi∈Cj

∑

xl∈Cj

‖xi − xl‖2 (3)

The problem of seeking the pair (U,M) minimizing J from equation (1) is called k-
means-problem. This problem is known as NP-hard. We will call k-means-ideal such an
algorithm that finds a pair (U, M) minimizing Q from equation (1). Practical implemen-
tations of k-means usually find some local minima of Q(). There exist various variants
of this algorithm. For an overview of many of them, see, e.g., Wierzchoń and Kłopotek
(2018). An algorithm is said to be from the k-means family if it has the structure described
by Algorithm 1. We will use a version with random initialization (randomly chosen initial
seeds) as well as an artificial one initialized close to the true cluster center, which mimics
k-means-ideal.

3 Kleinberg’s proof of Theorem 1 and its unlimited dimensionality
deficiency

Kleinberg’s proof, delimited to the case of k = 2 only, runs as follows: Consider a set of
points S = X∪Y where X, Y are disjoint and |X| = m, |Y | = γm, where γ > 0 is “small”.
∀i,j∈Xd(i, j) = r , ∀i,j∈Y d(i, j) = ε < r , ∀i∈X,j∈Y d(i, j) = r + δ where δ > 0 and δ

is “small”. By choosing γ, ε, r, δ appropriately, the optimal choice of k = 2 centroids will
consist of one point from X and one from Y . The resulting partition is Γ = {X, Y }. Let
divide X into X = X0 ∪ X1 with X0, X1 of equal cardinality. Reduce the distances so that
∀c=1,2∀i,j∈Xcd

′(i, j) = r ′ < r and d ′ = d otherwise. If r ′ is “sufficiently small”, then the
optimal choice of two centroids for S will now consist of one point from each Xc, yielding
a different partition of S. But d ′ is a Γ -transform of d so that a violation of consistency
occurs. So far the proof of Kleinberg of the Theorem 1.

The proof cited above is a bit excentric because the clusters are heavily unbalanced
(k-means tends to produce rather balanced clusters). Furthermore, the distance function
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is awkward because Kleinberg’s counter-example would require an embedding in a very
high dimensional space, non-typical for k-means applications. It needs to be mentioned that
Kleinberg’s proof, sketchy in nature, omitted many details. Kleinberg uses a distance defini-
tion that is broader than Euclidean and therefore he does not consider space dimensionality.
k-means, on the other hand, in its basic version, explicitly assumes an Euclidean space. This
is the reason, why we consider Kleinberg’s proof in the light of Euclidean space embedding.

We claim in brief:

Theorem 2 Kleinberg’s proof of Kleinberg (2002) Theorem 4.1 that k-means (k = 2) is
not consistent, is not valid in R

p for data sets of cardinality n > 2(p + 1).

Proof In terms of the concepts used in the Kleinberg’s proof, either the set X or the set Y

is of cardinality p + 2 or higher. Kleinberg requires that distances between p + 2 points are
all identical which is impossible in R

p (only up to p + 1 points may be equidistant).

Furthermore Kleinberg’s minimized target function

�
g
d(T ) =

∑

i∈S

g(d(i, T )) (4)

where d(i, T ) = minj∈T d(i, j), differs significantly from the formula (3). For the original
set X, the formula (3) would return 1

2 (m − 1)r2, while Kleinberg’s would produce (m −
1)r2. For a combination of a elements from X and b elements from Y in one cluster we

get a(a−1)r2/2+b(b−1)ε2/2+ab(r+δ)2

a+b
from (2) or the minimum of (a − 1)r2 + b(r + δ)2 and

(b − 1)ε2 + a(r + δ)2 for Kleinberg’s �
g
d(T ). The discrepancy between these formulas is

shown in Fig. 1. We assumed there r = 10, ε = 8, δ = 1 and m = 1000.
We see immediately that

Theorem 3 Kleinberg’s target function does not match the real k-means target function.

4 The impact of dimensionality of consistency property

As visible from Theorem 2, the dimensionlity of the space impacts the validity of Klein-
berg’s proof of inconsistency of k-means. However, this does not answer the question
whether or not k-means is actually consistent in a fixed dimensional space. In this section we
will show that in fact k-means is consistent in one-dimensional space (Theorem 4), but it is
inconsistent in 3 or more dimensions (Theorem 5) and also it is inconsistent in 2 dimensions
(Theorem 6).

Theorem 4 k-means is consistent in one dimensional Euclidean space.

The proof is postponed to the Appendix A.1.
But what about higher dimensions?

Theorem 5 k-means in 3D is not consistent.

The proof, by example, is postponed to the Appendix A.2. The example used in that proof
is more realistic (balanced, in Euclidean space) than that of Kleinberg and shows that incon-
sistency of k-means in R

m is a real problem. With the example used in the proof of Theorem
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Fig. 1 Quotient of Kleinberg’s k-means target (formula (4)) and the real k-means target (formula formula
(3))

5 not only consistency violation is shown, but also refinement-consistency violation. Not
only in 3D, but also in higher dimensions (as 3D example may always be embedded in n

dimensions, n > 3). So what about the case of two dimensions - 2D?

Theorem 6 k-means in 2D is not consistent.

Proof The proof of Theorem 6 uses a less realistic example than in Theorem 5, hence
Theorem 5 was worthy considering in spite of the fact that it is implied by Theorem 6.
Imagine a unit circle with data points arranged as follows (Fig. 2 left): one data point in the
center, and the remaining points arranged on the circle with the following angular positions
with respect to the circle center.
Set A={13o, 14o, . . . , 22o, −13o,−14o, . . . , −22o}.
Set B={133o, 134o, . . . , 142o,−133o, −134o, . . . , −142o}.
k-means with k = 2 will merge points of the set B and the circle middle
point as one cluster, and the set A as the other cluster. After a Γ transforma-
tion (Fig. 2 right) let A turn to A′ identical with A and and let B change to B ′
B ′={162o, 163o, . . . , 171o,−162o, −163o, . . . , −171o}, while the point in the center of the
circle remains in its position. Now k-means with k = 2 yields one cluster consisting of
points of the set B ′ and the second cluster consisting of the circle middle point and the
set A′. The center point of the circle switches the clusters upon Γ transformation (Fig. 2
right).
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Fig. 2 Inconsistency of k-means in 2D Euclidean space. Left picture - data partition before consistency
transform. Right picture - data partition after consistency transform. Cluster elements are marked with blue
and green. Red points indicate cluster centers

5 Reasons for multidimensional inconsistency

In order to investigate the reasons for k-means inconsistency in higher dimensions, in anal-
ogy to the proof of Theorem 4 from Section 4, let us consider two alternative partitions in a
multi-dimensional space:

– the partition Γ 1 = {C1., . . . , Ck.} which will be base for the Γ -transform
– and the competing partition Γ 2 = {C.1, . . . , C.k′ }.

Assume further that Cij = Ci. ∩ C.j are non-empty intersections of clusters Ci. ∈
Γ 1, C.j ∈ Γ 2, of both partitions. Define minind(Ci.), resp. maxind(Ci.) as the mini-
mal/maximal index j such that Cij is not empty. The Q(Γ 1) will be the sum of centered
sums of squares over all Cij plus the squared distances of centers of all Cij to the center of
Ci. times cardinality of Cij .

We can derive the formula for Q(Γ 1) in the same way as in the proof of Theorem 4 in
Appendix A.1 (8)

Q(Γ 1) =
⎛

⎝
∑

i,j ;Cij �=∅

∑

x∈Cij

‖x − μ(Cij )‖2

⎞

⎠

+
⎛

⎝
∑

Ci.∈Γ 1

∑

j ;Cij �=∅
|Cij |‖μ(Cij ) − μ(Ci.)‖2

⎞

⎠

=
⎛

⎝
∑

i,j ;Cij �=∅

∑

x∈Cij

‖x − μ(Cij )‖2

⎞

⎠

+
⎛

⎝
∑

Ci.∈Γ 1

0.5
∑

j ;Cij �=∅

∑

j ′;Cij ′ �=∅

|Cij | · |Cij ′ |
|Ci.| ‖μ(Cij ) − μ(Cij ′)‖2

⎞

⎠ (5)
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The Q(Γ 2) can be derived also in analogy to equation (8) in the proof of Theorem 4 in
Appendix A.1 as:

Q(Γ 2) =
⎛

⎝
∑

i,j ;Cij �=∅

|Cij |
|C.j |

∑

x∈Cij

‖x − μ(Cij )‖2

⎞

⎠

+
∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

‖x − y‖2

⎞

⎠

The first summand of Q(Γ 1), that is
(∑

i,j ;Cij �=∅
∑

x∈Cij
‖x − μ(Cij )‖2)

)
will decrease

upon Γ1 based consistency transformation. The reason is that
∑

x∈Cij
‖x − μ(Cij )‖2 is

equivalent to 0.5
|Cij |

(∑
x∈Cij ,y∈Cij

‖x − y‖2
)

which decreases because the distances between

elements of Cij decreases as they are all in the same cluster Ci.. As summands of Q(Γ 2)

are concerned, the first, equal
(∑

i,j ;Cij �=∅
|Cij |
|C.j |

∑
x∈Cij

‖x − μ(Cij )‖2
)

, will therefore also

decrease upon Γ1 transformation. But not by the same absolute value as the first one of
Q(Γ 1), that is(∑

i,j ;Cij �=∅
∑

x∈Cij
‖x − μ(Cij )‖2

)
, because always |Cij | ≤ |C.j |. The second summand

of Q(Γ 2) , that is

∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

‖x − y‖2

⎞

⎠

will increase because x, y stem from different clusters of Γ 1. If Γ 1 was the optimal cluster-
ing for k-means cost function prior to Γ 1 transformation, it would remain so afterward if the

second summand of Q(Γ 1), that is
∑

Ci.∈Γ 1
0.5

∑
j ;Cij �=∅

∑
j ′;Cij ′ �=∅

|Cij |·|Cij ′ |
|Ci.| ‖μ(Cij ) −

μ(Cij ′)‖2 , would decrease. However, in a multidimensional space, this is not granted any-
more, because ‖μ(Cij ) − μ(Cij ′)‖2 may increase when the points of the cluster Ci.′ are
getting closer to one another. An immediate remedy would be then to require that for any
two convex subsets Cij , Cij ′ of Ci., ‖μ(Cij )−μ(Cij ′)‖2 is non-increasing upon Γ1 transfor-
mation. This condition is not easy to check. However, if one decreases all distances within
one cluster Ci. by the very same factor, then this condition holds. It also holds if, within an
orthogonal coordinate system, one decreases all distances within one cluster Ci. along each
dimension by a factor specific for the dimension and the cluster. Under such circumstances,
the distances within a cluster will not be necessarily changed by the same factor.

So, define the gravitational consistency as follows:

Property 3 Let Γ be a partition of S, and d and d ′ two distance functions on S. We say
that d ′ is a Γ -gravitational-transformation of d if (a) for all i, j ∈ S belonging to the same
cluster of Γ , we have d ′(i, j) = αd(i, j) where 0 < α ≤ 1 and α is specified for a given
cluster (may be different for different clusters) and (b) for all i, j ∈ S belonging to different
clusters of Γ , we have d ′(i, j) ≥ d(i, j). The clustering function f has the gravitational
consistency property if for each distance function d and its Γ -gravitational-transformation
d ′ the following holds: if f (d) = Γ , then f (d ′) = Γ
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Theorem 7 k-means ideal has the gravitational consistency property.

Proof Straightforward from the above.

Define also the generalized gravitational consistency as follows:

Property 4 Let Γ be a partition of S, and d and d ′ two distance functions on S. We say
that d ′ is a Γ -generalized-gravitational-transformation of d if (a) for all i ∈ S belonging
to the same cluster C of Γ , with μ(C) being its gravity center, and for an orthogo-
nal coordinate CS specific for this cluster, for each coordinate axis a ∈ CS we have
d ′
a(i,μ(C)) = α(C, a)da(i,μ(C)) where 0 < α(C, a) ≤ 1, da being the length of projec-

tion of the vector (i,μ(C) on the coordinate axis a (same for d ′) and α(C, a) is specified for
a given cluster and coordinate (may be different for different clusters and different coordi-
nates) and (b) for all i, j ∈ S belonging to different clusters of Γ , we have d ′(i, j) ≥ d(i, j).
The clustering function f has the generalized gravitational consistency property if for each
distance function d and its Γ -generalized-gravitational-transformation d ′ the following
holds: if f (d) = Γ , then f (d ′) = Γ

Theorem 8 k-means ideal has the generalized gravitational consistency property.

Proof Straightforward from the above.

6 Dataset consistency

The gravitational consistency can be viewed as too rigid as there exists a very strict
limitation on how the distances between data elements can change. Though generalized
gravitational consistency is less restrictive, the variations of distances within a cluster are
nonetheless quite restricted, determined by as many factors only as there are dimensions.

Note that we had considered so far the case when any data was clustered by the clus-
tering algorithm. Let us now investigate whether or not we can define data set properties
for which Kleinberg’s consistency property would hold for k-means. We would speak then
about dataset consistency.

The idea we present here is quite simplistic, but nonetheless, it demonstrates that
clustering algorithm properties may be implied by data set properties.

Assume we know what properties a dataset needs to possess so that we would know in
advance partition Γ0 for which the absolute minimum of k-means quality function Q(Γ )

(3) is obtained. Assume that this property depends on the distances between cluster centers,
among others. When performing Γ -transformation, the cluster centers can move by at most
the distance between the cluster center and the most distant point of the cluster. So it is
sufficient to add to the distances between the clusters the maximum relocation for each
cluster. Hence after Γ transformation, the distances are still sufficient to ensure the absolute
minimum of the k-means target function.

The only task to do now is to identify this property of a dataset, allowing to know in
advance the aforementioned absolute minimum of k-means Q-function.

So we will investigate below under what circumstances it is possible to tell, without
exhaustive check, that the well-separated clusters are the global minimum of k-means. We
will see that the ratio between the largest and the smallest cluster cardinality plays here an
important role.
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Definition 3 There is a gap g between two clusters A, B, if the distance between
(hyper)balls centered at gravity centers of these clusters and enclosing each cluster amounts
to g.

Let us consider a set of clusters Γ = {C1, . . . , Ck}, where k is the number of clusters,
ni is the number of elements in cluster Ci , ri is the radius of the (hyper)ball centered at
gravity center of cluster Ci and containing all the datapoints of the cluster Ci , M = maxi ni ,
m = mini ni . Let g be the gap between every two clusters Ci, Cj fulfilling the conditions
(6) and (7)

∀p,q;p �=q;p,q=1,...,k g ≥ k
√

np + nq + n

√
∑k

i=1 nir
2
i

npnq
(6)

∀i=1,...,k g ≥ ri

√

k
M + n

m
(7)

Theorem 9 A clustering Γ0 for which conditions (6) and (7) imposing constraints on the
gap between clusters g hold, is optimal clustering that is with the lowest value of Q(Γ )

among all the partitions of the same cardinality as Γ0.

Proof has been postponed to Appendix A.3.
Therefore we may call the above-mentioned well-separatedness as absolute clustering.

Definition 4 A clustering is called absolute if conditions (6) and (7) imposing constraints
on the gap between clusters g hold.

One sees immediately that inner cluster consistency is kept, this time in terms of global
optimum, under the restraint to k clusters.

Theorem 10 k-means ideal, applied to a dataset with gaps between intrinsic clusters
amounting to the g plus the radii of the clusters between which the gap is measured, has the
Kleinberg’s consistency property.

The proof is straightforward.

7 Experiments

7.1 Theorem 4 related experiments

Experiments have been performed to check whether or not the Theorem 4 that denies
Kleinberg’s findings for one-dimensional space really holds. Samples were generated
from uniform distribution (sample size 100, 200, 400, 1000, 2000, 4000, 10000) for each
k = 2, . . . , f loor(

√
samplesize). Then the respective sample was clustered into k clusters

(k = 2, . . . , f loor(
√

samplesize)) and k-means clustering (R package) was performed
with 100k restarts. Subsequently, Γ transformation was performed where the distances
within a cluster were decreased by a randomly chosen factor (a separate factor for each pair
of neighboring data points), and at the same time, the clusters were moved away so that the
distance between cluster elements of distinct clusters is not decreased. Then k-means clus-
tering was performed with 100k restarts in two variants. The first variant was with random
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initialization. The second variant was with the initialization of the midpoint of the origi-
nal (rescaled) cluster interval. Additionally, for control purposes, the original samples were
reclustered. The number of partitions was counted for which errors in restoring the original
clustering was observed. Experiments were repeated ten times. Table 1 presents the average
results obtained.

In this table, looking at the errors for variant 1, we see that more errors are committed
with the increasing sample size (and hence increasing the maximum of k). This contrasts
with the variant 2 where the number of errors is negligible. The second variant differs from
the first in that seeds are distributed so that there is one in each intrinsic cluster.

Clearly the Theorem 4 holds (as visible from the variant 2). At the same time, how-
ever, the table shows that k-means with random initialization is unable to initialize properly
for a larger number k of clusters in spite of a large number of restarts (variant 1). This is
confirmed by the experiments with reclustering original data.

This study also shows how a test data generator may work when comparing variants of
k-means algorithm (for one-dimensional data)

7.2 Theorem 5 related experiments

A simulation was performed concerning the relocation of points of the line segments
AB,AC from the proof of Theorem 5.

The results are presented in Table 2 The top row, named �C′AB ′ represents the angle
between line segments C′a and AB ′ after rotation of AB and AC line segments upon Γ

transformation. The effects of this rotating transformation are measured by the following
quantities

– wrong Γ - number of k-means clustering errors compared to the original clustering
before Γ transformation (consisting in the rotation of AB,AC) (out of 4000 data points
in both clusters).

Initially, the angle �CAB between the line segments AB,AC was a right angle (π/2).
As shown in Table 2, the angle between these line segments was decreased in steps of π/20
down to π/20 and the clustering using k-means (with 50 restarts) was performed.

k-means algorithm, applied to the data set AB ∪ AC ∪ DE ∪ DF returned, as expected
two clusters: AB ∪ AC and DE ∪ DF (the column π

2 ). As visible in the row wrong Γ , the
number of clustering errors compared to the original clustering was increasing up to over
4% of data points being misclassified upon rotation. It is apparent that in fact k-means is
not consistent in three dimensions, as claimed in Theorem 5.

In order to illustrate better the importance of the concept of gravitational consistency,
an experiment was performed related to equation (5) (first line). As previously, a data set
related to AB ′ ∪ AC′ subsets of the data for appropriate rotations of the line segments

Table 1 Validation of the Theorem 4

sample size 100 200 400 1000 2000 4000 10000

max. k 10 14 20 31 44 63 100

errors variant 1 0 0 0 2.4 10.2 21.5 62.4

errors variant 2 0 0 0 0 0 0.5 2.0

errors reclustering 0 0 2.3 14.1 30.2 49.5 86.2
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Table 2 Validation of the Theorem 5 Explanations of row labels provided in the text

�C′AB ′ π
2 0.9 π

2 0.8 π
2 0.7 π

2 0.6 π
2 0.5 π

2 0.4 π
2 0.3 π

2 0.2 π
2 0.1 π

2

wrong Γ 0 0.0 27.0 65.0 100.0 118.0 138.0 153.0 172.0 174.0

μ sc 1 10.97 11.18 11.39 11.58 11.75 11.90 12.03 12.13 12.20 12.25

μ sc2 24.04 22.47 20.82 19.13 17.42 15.74 14.15 12.73 11.57 10.81

SS sc1 69098 71207 73264 75218 77022 78631 80004 81110 81919 82413

SS sc2 350319 310149 270968 233741 199385 168745 142576 121523 106103 96696

AB,AC was considered. This data set was split into two parts: 1) subcluster Z1 consisting
of points with distance to A not higher than 20, 2) subcluster Z2 consisting of the remaining
points. Z1 ∪ Z2 = AB ∪ AC. While the rotation was performed, the following statistics of
Z′

1, Z
′
2, that is images of Z1, Z2 after rotation were observed:

– μ sc 1 - distance between means of the cluster AB ′ ∪ AC′ and the mean of subcluster
Z′

1,
– μsc 2 - distance between means of the cluster AB ′ ∪ AC′ and the mean of subcluster

Z′
2,

– SS sc 1 - contribution of subcluster Z′
1 to the sum of squares of the AB ′ ∪ AC′. SS sc 2

- contribution of subcluster Z′
2 to the sum of squares of the AB ′ ∪ AC′.

When the angle �C′AB ′ was decreased (Γ transformation), the distances between points
within both subsets Z′

1, Z
′
2 as well as between both subsets Z′

1, Z
′
2 were decreased. So was

the distance between the gravity center of the entire data set A′B ′ ∪ A′C′ and the gravity
center of the second subset Z′

2 was decreasing, as visible in the row μ sc 2 of the Table 2.
However, the distance between the gravity center of the entire data set A′B ′ ∪ A′C′ and
the gravity center of the first subset Z1 was increasing, as visible in the row μ sc 1 of the
Table 2. Also the contribution of this subset to the overall sum of squares of the entire set
was increasing, as visible from the row SS sc 1 of the Table 2. This demonstrates that the
Γ transformation, though decreasing the distances between cluster data points, does not
necessarily decrease the distance between sub-cluster centers and the cluster center which
results in the inconsistency of k-means under Kleinberg’s Γ transformation.

7.3 Theorem 7 related experiments

Experiments were also performed referring to the Theorem 7 and the results are summarized
in Table 3. The following metrics were used.

– α - the contraction coefficient from Theorem 7
– wrong α - number of k-means clustering errors compared to the original clustering

before Γ -gravitational transformation of the AB,AC cluster.

The experiments were performed for the same data as in previous subsection. the Γ -
gravitational transformation was performed for the (original) cluster AB ∪ AC with α as
indicated in the row α. The choice of α was based on the requirement that the Γ transfor-
mation and the Γ -gravitational transformation should yield a resulting cluster with the same
variance of the data points in the cluster after transformation. As visible in the row wrong
α, no error in data clustering was induced by Γ -gravitational transformation, as expected
from the Theorem 7.
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Table 3 Validation of the Theorem 7. Explanations of row labels provided in the text

α 1.00 0.95 0.90 0.85 0.80 0.76 0.71 0.68 0.65 0.64

wrong α 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 Conclusions

In this paper, we have provided a definite answer to the problem of whether or not k-
means algorithm possesses the consistency property. The answer is negative except for
one-dimensional space. Settling this problem was necessary because the proof of Klein-
berg of this property was inappropriate for real application areas of k-means that it is a
fixed-dimensional Euclidean space. The result precludes usage of consistency axiom as
a generator of test examples for k-means clustering function (except for one-dimensional
data) and implies the need to seek alternatives.

We proposed gravitational consistency, generalized gravitational consistency and dataset
consistency as an alternative to Kleinberg’s consistency property. Γ -gravitational transfor-
mation, as an alternative to Γ transformation, preserves the k-means clustering, but it is a
bit rigid, because it keeps the proportions between distances in a single cluster. Generalized
Γ -gravitational transformation does not have this disadvantage though there is still some
rigidness as the changes in distances are concerned. The dataset consistency transformation
is more flexible but requires quite large distances between the clusters. We believe, how-
ever, that these three alternatives can still generate a sufficient set of datasets for software
tests. Note that an orientation on k-means is not a too serious limitation of usefulness as
quite a large number of modern clustering algorithms encompass k-means clustering, just
to mention the whole branch of spectral clustering.

Kleinberg’s consistency was subject of strong criticism and new variants were pro-
posed like Monotonic consistency (Strazzeri & Sánchez-Garcı́a, 2018) or MST-consistency
(Zadeh, 2010). See also criticism in Carlsson and Mémoli (2010) and Correa-Morrisa
(2013). The mentioned new definitions of consistency are apparently restrictions of Γ -
consistency, and therefore the Theorem 4 would be valid. The Monotonic consistency seems
not to impose restrictions on Kleinberg’s proof on k-means violating consistency. Therefore
in those cases, the consistency of k-means under higher dimensionality needs to be investi-
gated. Note that we have also challenged the result (Wei, 2017), who claims that Kleinberg’s
consistency may be achieved by k-means with random initialization (see our Theorem 5).
The shift of axioms from clustering function to quality measure (Ben-David & Ackerman,
2008) was suggested to the problems with consistency, but this approach fails to tell what
the outcome of clustering should be, which is not useful for the mentioned test generator
application.

It should be noted that, beside the Kleinberg axiomatic system, other axiomatic frame-
works have been proposed, which may serve as foundations of development of new test data
sets from existent ones. For example for unsharp partitioning there was a proposal of an
axiomatic system by Wright (1973), for graph clustering by van Laarhoven and Marchiori
(2014), for cost function driven algorithms by Ben-David and Ackerman (2009), for linkage
algorithms by Ackerman et al. (2010), for hierarchical algorithms by Carlsson and Mémoli
(2010), Gower (1990), and Thomann et al. (2015), for multiscale clustering by Carlsson and
Mémoli (2008). for settings with increasing sample sizes by (Hopcroft & Kannan, 2012), for
community detection by Zeng et al. (2016), for pattern clustering by Shekar (1988). They
were not investigated here and are a bit hard to compare because they were proposed for
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different classes of clustering algorithms that do not cover the settings relevnt for k-means
that is the embedding in the Euclidean space and partition of not only the sample but of the
sample space.

Appendix A: Proofs of selected theorems

A.1 Proof of Theorem 4

Proof Consider two alternative partitions in one dimensional space:

– the partition Γ 1 = {C1., . . . , Ck.} which will be base for the Γ -transform
– and the competing partition Γ 2 = {C.1, . . . , C.k′ }.
Due to the nature of k-means let each cluster of each partition after Γ -transform be repre-
sented as an interval not intersecting with any other cluster of the same partition. For Γ1, it
holds before the transform; therefore, it holds afterward. Γ2 shall be the competing optimal
transform; therefore, it holds for sure afterward. We intend to demonstrate that under the Γ1
transformation, that is, assuming that the intrinsic partition is Γ 1, the target function of k-
means for Γ 1 will decrease not less than that for Γ 2. For simplicity, assume that the indices
of clusters grow with the growing value of the cluster center.

For this purpose assume that Cij = Ci. ∩ C.j are non-empty intersections of clusters
Ci. ∈ Γ 1, C.j ∈ Γ 2, of both partitions. Define minind(Ci.), resp. maxind(Ci.) as the
minimal/maximal index j such that Cij is not empty. The Q(Γ 1) will be the sum of centered
sums of squares over all Cij plus the squared distances of centers of all Cij to the center of
Ci. times cardinality of Cij (easily derived from formula (2)).

Q(Γ 1) =
∑

Ci.∈Γ 1

∑

j ;Cij �=∅

⎛

⎝|Cij |(μ(Cij ) − μ(Ci.))
2 +

∑

x∈Cij

(x − μ(Cij ))
2

⎞

⎠

=
⎛

⎝
∑

i,j ;Cij �=∅

∑

x∈Cij

(x − μ(Cij ))
2

⎞

⎠ +
⎛

⎝
∑

Ci.∈Γ 1

∑

j ;Cij �=∅
|Cij |(μ(Cij ) − μ(Ci.))

2

⎞

⎠

(8)

Please note that

∑

j ;Cij �=∅
|Cij |

(
μ(Cij ) − μ(Ci.)

)2 =
∑

j ;Cij �=∅
|Cij |

⎛

⎝μ(Cij ) −
∑

j ′;Cij ′ �=∅

|Cij ′ |
|Ci.| μ(Cij ′ )

⎞

⎠

2

=
∑

j ;Cij �=∅
|Cij |

⎛

⎝
∑

j ′;Cij ′ �=∅

( |Cij ′ |
|Ci.| μ(Cij ) − |Cij ′ |

|Ci.| μ(Cij ′ )

)
⎞

⎠

2

=
∑

j ;Cij �=∅
|Cij |

⎛

⎝
∑

j ′;Cij ′ �=∅

|Cij ′ |
|Ci.|

(
μ(Cij ) − μ(Cij ′ )

)
⎞

⎠

2

= 0.5
∑

j ;Cij �=∅

∑

j ′;Cij ′ �=∅

|Cij | · |Cij ′ |
|Ci.|

(
μ(Cij ) − μ(Cij ′ )

)2
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The Q(Γ 2) can be computed analogously, but let us follow a bit distinct path (starting
from formula (3)).

Q(Γ 2) =
∑

C.j ∈Γ 2

0.5

|C.j |
∑

x∈C.j

∑

y∈C.j

(x − y)2

=
∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝

⎛

⎝
∑

i;Cij �=∅

∑

x∈Cij

∑

y∈Cij

(x − y)2

⎞

⎠

+
⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

(x − y)2

⎞

⎠

⎞

⎠

=
∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝

⎛

⎝
∑

i;Cij �=∅
2|Cij |

∑

x∈Cij

(x − μ(Cij ))
2

⎞

⎠

+
⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

(x − y)2

⎞

⎠

⎞

⎠

=
⎛

⎝
∑

i,j ;Cij �=∅

|Cij |
|C.j |

∑

x∈Cij

(x − μ(Cij ))
2

⎞

⎠

+
∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

(x − y)2

⎞

⎠ (9)

Both summands of Q(Γ 1), that is
(∑

i,j ;Cij �=∅
∑

x∈Cij
(x − μ(Cij ))

2)
)

and
(∑

Ci.∈Γ 1
∑

j ;Cij �=∅(|Cij |(μ(Cij ) − μ(Ci.))
2
)

will decrease upon Γ1 based consistency transforma-

tion. (x − μ(Cij ))
2 decreases because the distance to each of elements of Cij decreases

as they are all in the same cluster Ci.. Each (μ(Cij ) − μ(Cij ′))2 decreases because all the
elements constituting Cij and Cij ′ belong to the same cluster Ci.. Hereby there is always
an extreme data point Pij ∈ Cij separating it from Cij ′ . As the points of both Cij and
Cij ′ get closer to Pij under Γ1 transformation, so the centers of both Cij and Cij ′ will
get closer to Pij , so that they will move closer to each other. As summands of Q(Γ 2)

are concerned, the first, equal
(∑

i,j ;Cij �=∅
|Cij |
|C.j |

∑
x∈Cij

(x − μ(Cij ))
2
)

, will also decrease

upon Γ1 transformation. But not by the same absolute value as the first one of Q(Γ 1),

that is
(∑

i,j ;Cij �=∅
∑

x∈Cij
(x − μ(Cij ))

2
)

, because always |Cij | ≤ |C.j |. But the second

summand of Q(Γ 2) , that is

∑

C.j ∈Γ 2

0.5

|C.j |

⎛

⎝
∑

i′;Ci′j �=∅

∑

i′′;i′ �=i′′,Ci′′j �=∅

∑

x∈Ci′j ,y∈Ci′′j

(x − y)2

⎞

⎠

will increase because x, y stem from different clusters of Γ 1. Therefore, if Γ 1 was the
optimal clustering for k-means cost function prior to Γ 1 transformation, it will remain so
afterward.
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A.2 Proof of Theorem 5

Proof Let A,B, C,D, E, F be points in three-dimensional space with coordinates:
A(1, 0, 0), B(33, 32, 0), C(33, −32, 0), D(−1, 0, 0), E(−33, 0, −32), F(−33, 0, 32). Let
SAB , SAC , SDE , SDF be sets of say 1000 points each randomly uniformly distributed over
line segments (except for endpoints) AB,AC,DE,EF resp. Let X = SAB ∪ SAC ∪ SDE ∪
SEF . k-means with k = 2 applied to X yields a partition Γ = {SAB ∪ SAC, SDE ∪ SDF },
as expected (see Fig. 3 left). Let us perform a Γ transformation consisting of rotating line
segments AB,AC around the point A in the plane spread by the first two coordinates (X
and Y ) towards the first coordinate axis (X xis) so that the angle between this axis and AB ′
and AC′ is say one degree. To verify that this is a Γ transformation, consider some points
P, Q, P on the line segment AB and Q on the line segment AC. Their distance amounts
to |PQ| = √|PA|2 + |AQ|2 − 2 cos(�BAC)|PA||AQ|. The images of P,Q be P ′, Q′
resp., whereby obviously |P ′A| = |PA| and |AQ′| = |AQ|, and |�B ′AC′| < |�BAC|.
Therefore

|P ′Q′| =
√

|P ′A|2 + |AQ′|2 − 2 cos(�B ′AC′)|P ′A||AQ′|
=

√

|PA|2 + |AQ|2 − 2 cos(�B ′AC′)|PA||AQ|
<

√

|PA|2 + |AQ|2 − 2 cos(�BAC)|PA||AQ| = |PQ|

as expected for Γ transformation for points of the same cluster. Let us consider a point
R on the line segment DE and the distance |RP | between points from two differ-
ent clusters. Let Rx, Px be orthogonal projections of R,P onto the X axis, resp. P,Q

lie in two orthogonal planes, spread by X, Z and X, Y axes, resp. Therefore |RP | =
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Fig. 3 Inconsistency of k-means in 3D Euclidean space. Left picture - data partition before consistency
transform. Right picture - data partition after consistency transform

524 Journal of Intelligent Information Systems (2021) 57:509–530



√|RRx |2 + |RxPx |2 + |PxP |2, whereby |RxPX| = |RxD| + |DA| + |APX|. Hence

|RP |2 =
(

|RD| sin

(
1

2
|�EDF |

))2

+
(

|RD| cos

(
1

2
|�EDF |

)

+ |DA| + |PA| cos

(
1

2
|�BAC|

))2

+
(

|PA| sin

(
1

2
|�BAC|

))2

Let P ′
x be the orthogonal projection of P ′ on the X xis. Then, after the Γ transformation,

the distance of interest |RP ′| turns out to be
|RP ′| = √|RRx |2 + |RxP ′

x |2 + |P ′
xP

′|2 that is

|RP ′|2 =
(

|RD| sin

(
1

2
|�EDF |

))2

+
(

|RD| cos

(
1

2
|�EDF |

)
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(
1

2
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))2

+
(

|P ′A| sin

(
1

2
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))2
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(

|RD| sin

(
1

2
|�EDF |

))2

+
(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)2

+2

(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)

|PA| cos

(
1

2
|�B ′AC′|

)

+
(

|PA| cos

(
1

2
|�B ′AC′|

))2

+
(

|PA| sin

(
1

2
|�B ′AC′|

))2

|RP ′|2 =
(

|RD| sin

(
1

2
|�EDF |

))2

+
(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)2

+2

(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)

|PA| cos

(
1

2
|�B ′AC′|

)

+ |PA|2

= |RP |2 − 2

(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)

|PA| cos(
1

2
|�BAC|)

+2

(

|RD| cos

(
1

2
|�EDF |

)

+ |DA|
)

|PA| cos

(
1

2
|�B ′AC′|

)

> |RP |2

as expected for Γ transformation for points of two different clusters.
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Now the k-means with k = 2 yields a different partition, splitting line segments AB ′ and
AC′ (see Fig. 3 right). 1

A.3 Proof of Theorem 9

Proof In particular, let us consider the set of k clusters Γ = {C1, . . . , Ck} of cardinalities
n1, . . . , nk and with radii of balls enclosing the clusters (with centers located at cluster
centers) r1, . . . , rk .

We are interested in a gap g between clusters such that it does not make sense to split
each cluster Ci into subclusters Ci1, . . . , Cik and to combine them into a set of new clusters
S = {S1, . . . , Sk} such that Sj = ∪k

i=1Cij .
We seek a g such that the highest possible central sum of squares combined over the

clusters Ci would be lower than the lowest conceivable combined sums of squares around
respective centers of clusters Sj . Let V ar(C) be the variance of the cluster C (average
squared distance to cluster gravity center). Let rij be the distance of the center of subcluster
Cij to the center of cluster Ci . Let vilj be the distance of the center of subcluster Cij to the
center of subcluster Clj . So the total k-means function for the set of clusters (C1, . . . , Ck)

will amount to:

Q(Γ ) =
k∑

i=1

k∑

j=1

(nijV ar(Cij ) + nij r
2
ij ) (10)

And the total k-means function for the set of clusters (S1, . . . , Sk) will amount to:

Q(S) =
k∑

j=1

⎛

⎝

(
k∑

i=1

nijV ar(Cij )

)

+
(

k∑

i=1

nij

) ⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij
∑k

i=1 nij

nlj
∑k

i=1 nij

v2
ilj

⎞

⎠

⎞

⎠

(11)
Should (C1, . . . , Ck) constitute the absolute minimum of the k-means target function,

then Q(S) ≥ Q(C) should hold, that is:

k∑

j=1

⎛

⎝

(
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nijV ar(Cij )

)

+
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nij

) ⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij
∑k

i=1 nij

nlj
∑k

i=1 nij

v2
ilj

⎞

⎠

⎞
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i=1

k∑

j=1

(nijV ar(Cij ) + nij r
2
ij )

This implies:

k∑

j=1

⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

v2
ilj

⎞

⎠ ≥
k∑

i=1

k∑

j=1

nij r
2
ij (12)

To maximize
∑k

j=1 nij r
2
ij for a single cluster Ci of enclosing ball radius ri , note that you

should set rij to ri . Let mj = arg maxj∈{1,...,k} nij . If we set rij = ri for all j except mj ,

1In a test run with 100 restarts, in the first case we got clusters of equal sizes, with cluster centers at (17,0,0)
and (-17,0,0), (between SS / total SS = 40%) whereas after rotation we got clusters of sizes 1800, 2200 with
centers at (26,0,0), (-15,0,0) (between SS / total SS = 59%)
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then the maximal rimj
is delimited by the relation

∑k
j=1;j �=mj

nij rij ≥ nimj
rimj

. So

k∑

j=1

nij r
2
ij ≤

⎛

⎝
k∑

j=1;j �=mj

nij

⎞

⎠ r2
i min

(

2, (1 +
∑k

j=1;j �=mj
nij

nimj

)

)

(13)

≤ 2

⎛

⎝
k∑

j=1;j �=mj

nij

⎞

⎠ r2
i

So if we can guarantee that the gap between cluster balls (of clusters from Γ ) amounts
to g, then surely

k∑

j=1

⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

v2
ilj

⎞

⎠ ≥ g2
k∑

j=1

⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

⎞

⎠ (14)

because in such case g ≤ vilj for all i, l, j .
By combining inequalities (12), (13) and (14) we see that the global minimum is granted

if the following holds:

g2
k∑

j=1

⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

⎞

⎠ ≥ 2
k∑

i=1

⎛

⎝
k∑

j=1;j �=mj

nij

⎞

⎠ r2
i (15)

One can distinguish two cases: either (1) there exists a cluster St containing two subclus-
ters Cpt , Cqt such that t = arg maxj |Cpj | and t = arg maxj |Cqj | (maximum cardinality
subclasses of their respective original clusters Cp,Cq ) or (2) not.

Consider the first case. Let Cp,Cq be the two clusters where Cpt and Cqt be two sub-
clusters of highest cardinality within Cp, Cq resp. This implies that npt ≥ 1

k
np, nqt ≥ 1

k
nq .

Also this implies that for i �= p, i �= q nit ≤ ni/2.

k∑

j=1

k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

≥
k−1∑

i=1

k∑

l=i+1

nitnlt
∑k

i=1 nit

≥ nptnqt
∑k

i=1 nit

≥ nptnqt

np/2 + nq/2 + ∑k
i=1 ni/2

= nptnqt

np/2 + nq/2 + n/2

≥ 1

k2

npnq

np/2 + nq/2 + n/2

Note that

2
k∑

i=1

⎛

⎝
k∑

j=1;j �=mj

nij

⎞

⎠ r2
i ≤ 2

k∑

i=1

nir
2
i

So, in order to fulfill inequality (15), it is sufficient to require that

g ≥
√
√
√
√ 2

∑k
i=1 nir

2
i

1
k2

npnq

np/2+nq/2+n/2

= k
√

np/2 + nq/2 + n/2

√
2

∑k
i=1 nir

2
i

npnq

(16)

= k
√

np + nq + n

√∑k
i=1 nir

2
i

npnq

This of course maximized over all combinations of p, q.
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Let us proceed to the second case. Here each cluster Sj contains a subcluster of maximum
cardinality of a different cluster Ci . As the relation between Sj and Ci is unique, we can
reindex Sj in such a way that actually Cj contains its maximum cardinality subcluster Cjj .
Let us rewrite the inequality (15).

g2
k∑

j=1

⎛

⎝
k−1∑

i=1

k∑

l=i+1

nij nlj
∑k

i=1 nij

⎞

⎠ − 2
k∑

i=1

⎛

⎝
k∑

j=1;j �=mj

nij

⎞

⎠ r2
i ≥ 0

This is met if

g2
k∑

j=1

⎛

⎝
j−1∑

i=1

nij njj
∑k

i=1 nij

+
k∑

l=j+1

njjnlj
∑k

i=1 nij

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

This is the same as:

g2
k∑

j=1

⎛

⎝
∑

i=1,...,j−1,j+1,...,k

nij njj
∑k

i=1 nij

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

This is fulfilled if:

g2
k∑

j=1

⎛

⎝
∑

i=1,...,j−1,j+1,...,k

nij nj /k

nj /2 + ∑k
i=1 ni/2

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

Let M be the maximum over n1, . . . , nk . The above holds if

g2
k∑

j=1

⎛

⎝
∑

i=1,...,j−1,j+1,...,k

nij nj /k

M/2 + n/2

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

Let m be the minimum over n1, . . . , nk . The above holds if

g2
k∑

j=1

⎛

⎝
∑

i=1,...,j−1,j+1,...,k

nijm/k

M/2 + n/2

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

This is the same as

g2 m/k

M/2 + n/2

⎛

⎝
k∑

j=1

∑

i=1,...,j−1,j+1,...,k

nij

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

g2 m/k

M/2 + n/2

⎛

⎝
k∑

j=1

((
k∑

i=1

nij

)

− njj

)

− 2
k∑

i=1

(ni − nii)r
2
i

⎞

⎠ ≥ 0

g2 m/k

M/2 + n/2

⎛

⎝

⎛

⎝
k∑

j=1

k∑

i=1

nij

⎞

⎠ −
⎛

⎝
k∑

j=1

njj

⎞

⎠

⎞

⎠ − 2

(
k∑

i=1

(ni − nii)r
2
i

)

≥ 0

g2 m/k

M/2 + n/2

⎛

⎝

(
k∑

i=1

ni

)

−
⎛

⎝
k∑

j=1

njj

⎞

⎠

⎞

⎠ − 2
k∑

i=1

(ni − nii)r
2
i ≥ 0

g2 m/k

M/2 + n/2

(
k∑

i=1

(ni − nii)

)

− 2
k∑

i=1

(ni − nii)r
2
i ≥ 0
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k∑

i=1

(ni − nii)

(

g2 m/k

M/2 + n/2
− 2r2

i

)

≥ 0

The above will hold, if for every i = 1, . . . , k

g ≥ ri

√
2

m/k
M/2+n/2

g ≥ ri

√

k
M + n

m
(17)

So the inequality (15) is fulfilled, if both inequality (16) and inequality (17) are held by
an appropriately chosen g. But relation (17) is identical with (7), and (16) is identical with
(6),
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