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Abstract
In low-resource domains, it is challenging to achieve good performance using existing
machine learning methods due to a lack of training data and mixed data types (numeric and
categorical). In particular, categorical variables with high cardinality pose a challenge to
machine learning tasks such as classification and regression because training requires suffi-
ciently many data points for the possible values of each variable. Since interpolation is not
possible, nothing can be learned for values not seen in the training set. This paper presents
a method that uses prior knowledge of the application domain to support machine learning
in cases with insufficient data. We propose to address this challenge by using embeddings
for categorical variables that are based on an explicit representation of domain knowledge
(KR), namely a hierarchy of concepts. Our approach is to 1. define a semantic similarity
measure between categories, based on the hierarchy—we propose a purely hierarchy-based
measure, but other similarity measures from the literature can be used—and 2. use that sim-
ilarity measure to define a modified one-hot encoding. We propose two embedding schemes
for single-valued and multi-valued categorical data. We perform experiments on three dif-
ferent use cases. We first compare existing similarity approaches with our approach on a
word pair similarity use case. This is followed by creating word embeddings using different
similarity approaches. A comparison with existing methods such as Google, Word2Vec and
GloVe embeddings on several benchmarks shows better performance on concept categori-
sation tasks when using knowledge-based embeddings. The third use case uses a medical
dataset to compare the performance of semantic-based embeddings and standard binary
encodings. Significant improvement in performance of the downstream classification tasks
is achieved by using semantic information.
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1 Introduction

In machine learning, standard tasks such as classification and clustering perform well on data-
sets that contain a large number of training samples. In complex and low-resource domains,
the datasets have low sample size and mixed features (numeric and categorical features).
Often, categorical features in such scenarios have high cardinality. The combination of these
factors makes it challenging to achieve good performance in low-resource domains. A sig-
nificant amount of prior knowledge is available in many disciplines, often codified in the
form of a hierarchy. Our goal is to improve machine learning performance in low-resource
scenarios where high-quality structured knowledge (in the form of a hierarchy) is available.
This structured knowledge can be easily mapped to the categorical data in the domain.

To process categorical features, they are converted into a vector representation. The sta-
tistical literature mostly studies datasets that have categorical variables with low cardinality,
such as gender (male, female), weather (sunny, cloudy, rainy), etc. For these datasets, a
standard solution is to use one-hot encoding (Potdar et al., 2017) for supervised learning.

One-hot encoding represents a categorical feature with d distinct values S =
{X1, . . . Xd} as d binary features xi , i = 1, . . . , d. An observation Xj is represented by
letting xj = 1 and xi = 0 for i �= j . The vectors resulting from this representation are
equidistant in R

d . In contrast, in other vector embedding schemes commonly used in nat-
ural language processing (NLP) tasks (Mikolov et al., 2013), the learning process tries to
embed the similarities/differences between concepts in the embedding space. There is no
contextual or semantic information embedded in one-hot encoding. The existing encoding
schemes (Potdar et al., 2017) are not based on the semantic similarity between different val-
ues of the categorical variable. This often leads to poor predictions, particularly in use cases
where we have a large number d of different values and a small dataset in which the train-
ing data does not adequately cover all d possible values. Therefore, such variables tend to
be omitted from the standard supervised learning process, which results in models that lack
critical information and are not reliable enough (Garchery & Granitzer, 2018).

The key idea of this paper is to use a vector representation for the categorical data that
captures part of the prior knowledge about the application domain by exploiting a given
structure on the set of categories. Our approach consists of two steps: first, we use the given
information about the concepts (typically a hierarchical classification, taken from a standard
or a domain ontology) to define a similarity measure on the set of categories S. We then
modify the one-hot encoding to take any similarity measure into account in such a way
that similar observations lead to similar encoding vectors. This re-establishes the ability to
cluster and classify text values that occur rarely or never in the training dataset. Based on
the above-mentioned framework, we introduce two embedding schemes for single-valued
and multi-valued categorical data (each data instance has multiple feature values or a subset
of S), respectively.

Various similarity measures exist in the literature that define the similarity between
two domain concepts by using prior domain knowledge. We do not restrict the proposed
embedding schemes to a particular similarity measure. Therefore, before demonstrating the
viability of the embedding approach for the prediction task, we first describe and compare
existing semantic similarity measures.

We demonstrate the viability of the proposed embedding approaches using experiments
in two different domains.

– Word Embeddings using the WordNet hierarchy: We create semantic embeddings for
words in natural language processing by using various similarity measures. Word
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embeddings are evaluated on the task of concept categorisation in NLP on benchmark
datasets.

– Patient Mortality Prediction using ICD-9 hierarchy: We take the patient’s diagnosis as
the main categorical variable in the MIMIC-iii dataset (Johnson et al., 2016) and use
ICD-9 classification of diseases as domain knowledge to create categorical encodings.

The paper is organised as follows. Section 2 reviews the state of the art for creating
numeric representations from categorical variables. Section 3 introduces the concept of
semantic similarity, followed by the definition of the proposed encoding schemes and an
overview of existing similarity measures. A comparison of different similarity measures is
performed on a standard task of word pair similarity in Section 4. Section 5 defines the
scheme for finding word embeddings and evaluation by using the concept categorisation
task. In Section 6, we describe the MIMIC dataset, preprocessing steps, and implementa-
tion framework. Section 6.6 discusses the experimental study and results for the MIMIC use
case. Section 7 discusses the conclusion and future work.

2 Literature review

A survey conducted by Potdar et al. (2017) identified the limited set of encoding schemes
available for categorical variables and their impact on machine learning algorithms, partic-
ularly neural networks. There are five main types of variable encodings used in practice:
one-hot (the most common), ordinal, binary, target, and hashing schemes. These schemes
are discussed briefly below.

One-hot encoding creates d input variables for a variable with d distinct categories. It
increases the dimensionality of the problem space, and learning rare categories is difficult.
The orthogonality of vectors created by the encoding discards any overlap of information
that may exist between different values of the categories (Cerda & Varoquaux, 2020). One-
hot is unable to assign vectors to new values that may appear in the future or in the test set,
even in cases where the test value is similar to the points in the training dataset. Furthermore,
it is difficult to interpret the semantics of the categorical variable (Hsu, 2006).

Ordinal encoding assigns a unique integer to each category, provided that the existing
categories are known, and there exists some kind of ordering between values. It does not
increase the dimensionality of the problem space. However, ordinal encoding is not suitable
for categories that do not imply any order (Von Eye & Clogg Clifford, 1996), and a com-
parative study has shown the negative impact of this encoding scheme on neural network
classification (Crone et al., 2006).

Binary encoding first creates ordinal integers and then converts each integer to the equiv-
alent binary code. Digits of binary code are split into columns. This may suit categorical
variables that have an order but not variables without inherent order. Even for variables with
an inherent order, it leads to many similar binary encodings (i.e. encodings that agree for
many of the bits) for semantically very different categorical values (Fitkov-Norris et al.,
2012).

Target encoding converts categories to numeric values by estimating the probability of
the target attribute. In a classification setting, this probability is equal to the posterior prob-
ability of the target, conditioned on the value of the categorical attribute (Micci-Barreca,
2001). This scheme does not increase the dimensionality of the problem space. However, it
leaks information from the target variable to the feature set, resulting in overfitting of the
data.
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Hashing converts strings to a fixed-length vector by using a hash function (Cerda &
Varoquaux, 2020). This is useful for high-cardinality variables as it reduces the number
of dimensions. The major disadvantage of hashing is the hash collisions, where different
categories may fall into the same bucket. If these categories are not related, it affects the
accuracy of final predictions. Any similarity or existing inherent order is lost.

Recently, hierarchical couplings-based techniques (Jian et al., 2019; Zhu et al., 2018)
have been proposed to learn distance for categorical data. Coupling refers to the interactions
between attribute values conditioned on other attributes. Couplings are calculated using con-
ditional probabilities. In data-rich scenarios, these methods perform well to capture relations
based on the co-occurrence probabilities of values in a single attribute, between different
attributes, and attribute values and target classes. However, in tasks with limited training
data and high-cardinality variables, these methods fail because the data do not encompass
all possible relationships between categories. This is the case with, for example, industrial
applications such as petroleum reservoir recommendation (Mumtaz & Giese, 2020) where
the amount of training data is severely limited by the nature of the problem.

Apart from the traditional encoding schemes described, some encoding schemes have
been suggested in the context of Natural Language Processing (NLP), based on measuring
string similarity between different pairs of categories. Cerda et al. proposed a technique to
find common strings in the labels of categories for reducing the high cardinality of dirty
nominal data (Cerda et al., 2018). Cerda and Varoquaux proposed two techniques to capture
the structural similarity of string entries (Cerda &Varoquaux, 2020). These schemes provide
low-dimensional encodings. However, concepts or categories that share common features
in a domain may not necessarily have similar string representations.

The existing literature shows the value of adding domain knowledge in various forms
to model complex tasks in different machine learning settings. Janusz et al. presented an
unsupervised model for learning a semantic similarity measure for documents (Janusz et al.,
2012). The model is composed of two main components: the semantic interpreter that maps
concepts in the documents to a knowledge base, followed by a similarity function based
on derived data. The use of a knowledge base adds predefined semantics to ambiguous
words. Marcin Szczuka et al. proposed a strategy to cluster documents based on the content,
using the DBpedia knowledge base (Szczuka & Janusz, 2013). The vector representation
of documents is improved by using content from the knowledge source, thus resulting in
improved clustering.

Domain knowledge in the form of free text can also be used as prior knowledge. Nguyen
used a rough approximation framework to add domain knowledge in the form of natural
language in classification systems with large feature spaces (Nguyen, 2003). Tarnowska and
Ras (2019) and Tarnowska et al. (2020) constructed new categorical attributes from text
using folksonomy and sentiment analysis in the business domain.

Several approaches have been suggested to incorporate domain knowledge in the form
of a formal domain ontology. E.g., Janusz (2014) investigates methods that learn a similar-
ity measure from data (in contrast to our work which takes a similarity measure as input).
The ’rule-based similarity model’ discussed by Janusz is particularly suited to deal with a
high number of interconnected features and it uses an ontology as a model of the relations
between the various features attached to a concept (again in contrast to our work which con-
centrates on the is-a hierarchy between concepts and ignores properties). A learnt similarity
measure would be a possible input to our suggested embeddings, but it is not clear whether
this would be preferable to using the data directly for a machine learning task. Also, the
learning process may still require an amount of data not available in a low-resource situation.
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A different way of incorporating an ontology in a classification task was presented by
Bazan (2008). Bazan considers learning approximations of concepts (defined through rough
set theory). In this approach, the ontology reflects the hierarchy of definitions of concepts.
E.g. the ’vague’ concept of safe driving is defined in terms of other vague concepts like keep-
ing a safe distance, careful overtaking, etc., which can ultimately be described in terms of
physical magnitudes and sensor values. This hierarchy of definitions can be used to structure
the process of learning the top-level concepts, and should help in dealing with low-resource
problems.

Also in the rough set tradition, Midelfart proposed a framework for supervised learning
using the Gene Ontology (Midelfart, 2005a, 2005b). Nguyen et al. proposed methods for
embedding domain knowledge in the layered learning process to improve the quality of
hierarchical classifiers in pattern recognition (Nguyen et al., 2013).

An approach to ontology-based similarity that takes the is-a hierarchy into account, like
we do, was proposed by d’Amato et al. (2009). While our definitions use only the is-a
hierarchy from an ontology, that work defines similarity in terms of the number individuals
that belong to a concept, meaning that it relies on the availability of enough data, similarly to
the information content based measures described later, and is less suitable in low-resource
situations.

The encodings described so far are for features where the value is one out of a given set
of possibilities. In many applications, the value of a feature is a set of categorical values.
A recent study (Jia et al., 2019) defined set-level similarity for calculating the distance
between sets of clinical taxonomic concepts to measure patient similarity. They divided the
entire population of 705 patients into four ’prototypes.’ and experimented with different
semantic-based similarity techniques to find the correct ’prototypes’ group for new patients.
This set-based approach takes into account the semantic information for sets of diagnoses.
However, it restricts performance by only considering sets of diagnoses and interactions that
are present in each ’prototypes’ group.

In our current work, we are interested in encoding single and multiple categories based
on semantics that can be utilised as input along with other numeric inputs to the existing
classification models, such as a neural network. This provides a systematic approach for
standard models to find concept interactions for larger datasets.

3 Problem formulation

We first discuss the drawbacks of the traditional encoding schemes in the supervised setting,
using the toy example given in Table 1. The table shows data from records of patients admit-
ted to a hospital. The diagnosis column contains values that are taken from a large number
N of possible diagnoses, typically more than a thousand. A standard machine learning pro-
cess will involve the conversion of the diagnosis column into N one-hot encoded columns.
This representation models all categories as mutually exclusive. However, the links between
various diagnoses are not random. For instance, patients with Angina ad patients with heart
failure have a similar set of symptoms and severity of illness and will require similar treat-
ment. Meanwhile, the symptoms of viral pneumonia are entirely different, and such patients
would require a different treatment plan.

Human experts (medical doctors) are capable of identifying these similarities by under-
standing the context and utilising their prior medical knowledge. If a doctor is presented
with a diagnosis that she has been taught is similar to one she is well acquainted with, she is
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Table 1 Toy example
Patient ID Diagnosis Temperature

1 Angina 37

2 Viral Pneumonia 40

3 Heart Failure 37

4 Acute Tonsillitis 39

5 Heart Failure 37

able to use this knowledge for predictions. We aim to utilise such prior knowledge to define
the similarity between different concepts in a domain and to improve predictions based on
domain knowledge.

Semantic similarity can be made explicit in different ways, and one of the prominent
ways is through hierarchies, which we will use in this paper. For finding the semantic simi-
larity in the toy dataset of Table 1, we can map diagnoses to taxonomy as shown in Fig. 1.
Based on the evaluation of semantic evidence observed in Fig. 1, it is evident that Heart
Failure is more similar to Angina than to Viral Pneumonia.

Motivated by this, we link the notion of similarity based on is-a relationships with the
vector representation for categorical data. We develop a framework to use is-a relationships
extracted from a concept hierarchy to quantify semantic similarity and propose a semantic
embedding technique for categorical variables. We base this on our prior work on semantic
similarity measures (Mumtaz & Giese, 2020), which we briefly review in Section 3.3.

3.1 Semantic similarity

Semantic similarity refers to similarity that is based on meaning or semantic content as
opposed to form (Smelser & Baltes, 2001). Semantic similarity measures are automated
methods for assigning a measure of similarity to a pair of concepts and can be derived
from a taxonomy of concepts arranged in is-a relationships (Pedersen et al., 2007). Sim-
ilarity computation for categorical data can improve the performance of existing machine
learning algorithms (Ahmad & Dey, 2007) and may ease the integration of heterogeneous
data (Wilson & Martinez, 2000).

Is-a relationships in a concept hierarchy encompass formal classification, properties, and
relations between concepts and data. This provides us with a common understanding of
the structure of a domain, explicit domain assumptions, and the ability to reuse of domain
knowledge. It is vital to consider this information to achieve interpretable and good quality
results in machine learning models,

Fig. 1 Hierarchical Classification for Diagnoses
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Hierarchies Our similarity measures are based on a given hierarchical structure of the value
range of categorical features. Formally, we assume that the categorical values for each fea-
ture form a finite, partially ordered set (poset). A poset is a binary relation � on a set S, that
(�, S) satisfies the following properties, for all x, y, z ∈ S,

– x � x (Reflexivity)
– If x � y and y � x, then x = y (Antisymmetry)
– If x � y and y � z, then x � z (Transitivity)

If a � b, we call b an ancestor of a, and a a descendant of b. The intention of a � b is that b
is in some way more general, broader, etc. than a. For example, for the diagnoses in Fig. 1,
Angina � Ischemic-Heart disease. A value is called a leaf value if it is not the ancestor of
any other value (e.g., in Fig. 1, Angina is a leaf value).

A closest ancestor or parent of a value a is a value a′ such that there are no values x ∈ S

with a � x � a′.
A value c ∈ S is called a common ancestor of two node values a ∈ S and b ∈ S if a � c

and b � c. c is called a lowest common ancestor of a and b, written c = a � b, if c � x for
any common ancestor x of a and b. It is well known that for general posets, two elements
do not necessarily have a least common ancestor, but if it exists, then it is unique.

We call a hierarchy a finite poset where there is an element r ∈ S, called the root, such
that x � r for all x ∈ S.

A mono-hierarchy is a hierarchy in which every value a has at most one parent. In a
mono-hierarchy, any two values have the lowest common ancestor. Hierarchies that are not
mono-hierarchies are sometimes called poly-hierarchies.

Many hierarchies used in practice are constructed as mono-hierarchies, e.g., Fig. 1, the
biological taxonomies of animals and plants, the subdivision hierarchy of geological ages,
etc. However, our results are equally valid for poly-hierarchies, and Use Case 2 in this article
(see Section 5) is based on a poly-hierarchy.

Hierarchies are easily identified with finite directed acyclic graphs, where there is an
edge from b to a if b is a parent of a. We refer to this graph when we talk about the length
of a path in the hierarchy, for instance.

In some cases, the categorical values may belong to only the leaves of the hierarchy,
while in other cases the values can be both leaves and internal nodes.

3.2 Proposed framework

We formulate two techniques to define semantic embeddings for single-valued and multi-
valued categorical variables. A single-valued variable contains only one category for each
instance occurring in the dataset, while a multi-valued categorical feature may have multiple
categories for each data instance.

3.2.1 Semantic embeddings for single-valued categorical features

We have a set of values S = {X1, X2, . . .} that represents unique values occurring for the
categorical variable in the data. We assume that these values form a hierarchy1 (�, S) and
a similarity measure between these values based on hierarchy (see the previous section).
Fig. 2 shows one such example.

1The hierarchy can be a mono-hierarchy or a poly-hierarchy with a root node.
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Fig. 2 Embedding Flow

In Fig. 2, X1 and X2 are placed close together in the given hierarchy while Y2 belongs to
a different part of the hierarchy. Our key objective is to define embeddings in such a manner
that categorical values that are close in the hierarchy and share many similar characteristics,
are also close in the embedding space. If e(X1), e(X2) are the embedding vectors of X1 and
X2 respectively, then the key intuition is,

– sim(�,S)(X1, X2) ≈ sim(e(X1), e(X2))

– sim(e(X1), e(X2)) > sim(e(X1), e(Y1))

For creating semantic embeddings, we calculate the similarity between the given value
and all other values in the hierarchy. For a pair of values that are identical, the similarity is
defined as 1 (representing maximum similarity). For cases where i �= j , sim(i, j) represents
any similarity function that quantifies semantic similarity and should be in range (0, 1).
Formally, semantic embedding for a value i is defined as the n dimensional vector with
components

ej (i) = sim(i, j) for i, j ∈ {1, . . . , n}, (1)

where n represents number of values for the categorical variable. In Section 3.3, we discuss
hierarchy-based semantic similarity functions that can be used for sim in this embedding.
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3.2.2 Semantic embeddings for multi-valued categorical features

Embeddings for categorical features into a low-dimensional vector space are not easily
adapted to multi-valued categorical features. Our embedding supports multiple values in a
straightforward way. For a multi-valued categorical variable, we calculate the embedding
vector for each category first by using (1). These vectors are then aggregated to get a single
vector for the multiple categories. The aggregation operation can be performed in different
ways: minimum, maximum, or sum of all the vectors.

In the one-hot encoding, aggregation is performed by placing one for the categories
present and zero for the remaining values. In our current setting, we want to have non-zero
values for the multiple categories. If the minimum values are selected for combining all the
vectors, similarity scores will always be zero, as shown in Fig. 3

The summation option for aggregation is also not suitable in the current setting, as it
may lead to similarity scores of greater than one or of one in all dimensions. To aggregate
embeddings for all categories, we take the maximum value in each dimension. The maxi-
mum operation ensures that the final vector retains maximum similarity for all neighboring
values in the hierarchy. Given a set I ⊆ S of categorical values, we define the n-dimensional
embedding vector as follows:

ēj (I ) = max
i∈I

(ej (i)) for j ∈ {1, . . . , n}, (2)

where
ej (i) is the j -the component of the embedding for the single value i.

3.3 Similarity measures based on hierarchy

In this section, we discuss various semantic-based similarity measures that can be used in
(1) for calculating the similarity between two values based on domain hierarchy.

3.3.1 Semantic-basedmeasures

The existing semantic similarity measures are classified into the following categories
(Harispe et al., 2015).

– Information-theoretic Approaches: These measures use the relative frequency of val-
ues in a corpus in combination with the knowledge source to calculate the semantic
similarity.

– Structural Approaches: These measures only utilise the structure of the graph or
taxonomy to calculate the semantic similarity between two terms.

Fig. 3 Similarity for multiple categories
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3.3.2 Information-theoretic approaches

These approaches are based on the idea of a) measuring the similarity between two con-
cepts in terms of commonalities and differences defined in terms of the information content
(Harispe et al., 2015), and b) quantifying the information content based on Shannon’s infor-
mation theory. Information content (IC) specifies the amount of information embedded in
each concept and is based on the idea that abstract concepts will contain less information
than specific/concrete entities. The IC of a concept c in this setting is calculated by taking
the probability p(c) of instances belonging to c in a text corpus and is formally defined as

IC = − logp(c) (3)

where p(c) is estimated by the occurrence of c or instances belonging to c in the text corpus.
Below, we state some of the existing information-theoretic measures.

– Resnik’s Similarity Measure: Resnik defined the similarity between two conceps x and
y as the IC of their lowest common ancestor in the hierarchy: Resnik (1999),

SimRes(x, y) = IC(x � y) (4)

– Lin’s Similarity Measure: Lin also uses the idea of IC with the lowest common ancestor,
but in a different way, and defines similarity as Lin (1998),

SimLin(x, y) = 2IC(x � y)

IC(x) + Ix(y)
(5)

– Jiang & Conrath’s Similarity Measure (JCH): This approach defines dissimilarity
between two terms as Jiang and Conrath (1997)

Dis(x, y) = IC(x) + IC(y) − (2IC(x � y)) (6)

For poly-hierarchy, where there can be several lowest common ancestors, these measures
are modified to consider the lowest common ancestor with the highest information content
for similarity calculation.

3.3.3 Structural approaches

Structural approaches rely only on the knowledge source, such as a graph or hierarchy,
to define the similarity between two concepts. These approaches do not use any text cor-
pus. The focus is the interconnection between concepts in the hierarchy when estimating
the similarity (Harispe et al., 2015). Below, we give an overview of the existing structural
approaches that we use in our experiments.

– Shortest Path Similarity: This strategy defines similarity based on the shortest path
distance between two concepts:

Simsp = 1

1 + sp(x, y)
(7)

where the shortest path (sp) between two nodes or concepts in the hierarchy is calcu-
lated by taking into account the ancestor that can be reached by both concepts using the
minimum number of traversals (Harispe et al., 2015).
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– Wu and Palmer: This measure defines the similarity between two concepts based on
their depth in the hierarchy and that of their lowest common ancestor (Harispe et al.,
2015). It is defined as

SimWUP = 2depth(x � y)

2depth(x � y) + sp(x, (x � y)) + sp(y, (x � y))
(8)

– Leacock & Chodorow (LCH): This measure defines similarity based on the shortest
path between two concepts and scales it by the maximum depth of the taxonomy (Lea-
cock & Chodorow, 1998). To avoid taking the logarithm of 0 in the LCH measure, 1 is
added to the shortest path. The same formulation is used by the standard NLTK library2

used in our experiments.

SimLCH (x, y) = − log
sp(x, y) + 1

2Maxdepth

(9)

In our prior work (Mumtaz & Giese, 2020), we developed a simple method to calculate
semantic similarity between two given categorical values belonging to a mono-hierarchy (�
, S). As part of the experiments, we extend the same idea and propose a semantic similarity
for poly-hierarchy. Below, we give a short overview of the existing measure for mono-
hierarchy, followed by the new measure.

3.3.4 Poly-hierarchy semantic similarity (PS)

Semantic similarity between two nodes in the hierarchy is defined as the common infor-
mation shared between them (Resnik, 1995). Lin quantifies this common information as
the lowest common ancestor that subsumes both values in the hierarchy (Lin, 1998). As
mentioned earlier, this is based on the idea that any two values having the lowest common
ancestor close to leaf nodes, should have high similarity as they share many common char-
acteristics. If the lowest common ancestor is close to the root node, fewer commonalities
exist between a given pair of values.

Based on the above idea, hierarchy-based semantic similarity (Mumtaz & Giese, 2020)
defines similarity between two values x and y by considering the level of their lowest
common ancestor in the hierarchy and is defined as

δ(x, y) =
{
1 if x = y

λd−level(x�y) if x �= y
(10)

where x � y denotes the lowest common ancestor of x and y, 0 < λ < 1 is a fixed
decay parameter, level(n) is the distance of node n from the root in the hierarchy, and
d = maxn∈X level(n) is the maximum depth of the hierarchy. As the level of the lowest
common ancestor moves up in the hierarchy (close to the root node), the similarity between
nodes decreases.

Equation (10) performs well when all the categorical values can be mapped to the leaf
nodes in the hierarchy, and all these leaves are at the same level. It also requires that (�, S)

forms a mono-hierarchy.
However, in use cases where the categories are not defined at the same granularity level

or some values represent more generic concepts in the hierarchy, (10) may lead to similarity

2https://www.nltk.org
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values that contradict the actual similarity in the hierarchy. We modify (10) and propose a
new similarity measure between two nodes:

δ+(x, y) =
{
1 if x = y

λd(x,y) if x �= y
(11)

where d(x, y) represents the distance between nodes in the hierarchy. There are several
ways to define distance between nodes in a poly-hierarchy. We define d(x, y) based on the
set of common ancestors in the hierarchy as

d(x, y) = min
x,y�z

1

2
(l̄z(x) + l̄z(y)) (12)

where l̄z(x) = level(x) − level(z) is the number of directed edges between node x and
the common ancestor z of the nodes x and y. If there is a common ancestor with a small
number of edges to the nodes x and y, then a higher similarity value is assigned. For nodes
that belong to different parts and different depths in the hierarchy, first we compute edges
from both nodes to all the lowest common ancestors separately and then we calculate the
average for each common ancestor. The minimum distance is selected for the final similarity
calculation. This ensures lower similarity values for node pairs that do not have immediate
lowest common ancestors in the hierarchy.

4 Comparison between existing semantic similarity measures

Before utilising semantic similarity measures in embeddings, we compare existing similar-
ity measures. The focus is to analyse the difference between the performance of semantic
similarity measures by using a data-based approach as opposed to only the knowledge
source (more precisely, the hierarchy).

The assessment of the above-mentioned semantic similarity measures is based on
datasets formed by human judgment. These datasets are composed of pairs of words and
their similarity scores assigned by human experts. Below, we give an overview of some
standard datasets.

4.1 Benchmark datasets andWordNet hierarchy

– RG-65: Rubenstein and Goodenough composed a dataset of 65 pairs of nouns (Ruben-
stein & Goodenough, 1965), and 51 human subjects were asked to rate words on a scale
of 0.0–4.0 according to the similarity of meaning. The final dataset contains the aver-
age similarity of scores provided by all the participants in the study. The RG65 dataset
is largely used for the evaluation of semantic similarity measures.

– MC-30: Miller and Charles’ benchmark is composed of 30 pairs of nouns extracted
from RG65 datasets and the similarity judgments from 38 participants (Miller &
Charles, 1991).

– Wordsim353: The original dataset is composed of 353 word pairs, and participants
rated similarity between pairs on a scale of 0–10 (Finkelstein et al., 2002).

– RW: The RW dataset consists of 2034 pairs of rare words rated on a scale of 0–10
(Luong et al., 2013).

– Card-660: The Cambridge rare word dataset is composed of 166 pairs of words, rated
on a scale of 0–4 (Pilehvar et al., 2018). It covers a wide range of rare words from
different domains, including IT, entertainment, politics, medicine, etc.
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4.2 WordNet hierarchy

Any knowledge base that encodes relationships such as is-a between words can be utilised
for defining word similarity for the datasets mentioned above. In this work, we use Word-
Net3 to define word similarity and for conducting experiments. WordNet groups nouns,
verbs, adjectives, and adverbs into sets of cognitive synonyms (synsets), each expressing a
distinct concept.4 These distinct concepts are interlinked by means of conceptual-semantic
and lexical relations. WordNet lists all the concepts associated with a word based on the
most common uses of a word.

There is a slight complication, since the same word can have several meanings, and
thus occur in several synsets. For example, the word ’tiger’ can designate a large feline
or an audacious person, which are quite different concepts, situated in different locations
in WordNet’s synset hierarchy. Whether ’tiger’ is more similar to ’lion’ than to ’winner’
depends on the intended meaning.

Since we are aiming at a word pair similarity (and not a synset similarity), we have to
resolve this ambiguity when computing the similarity between two words. The information
available in our case study does not allow us to use, e.g. the word’s context. Our approach
is to take into account different combinations of synsets of the two words. There could be
many synsets per word in general, and we anticipated that the less frequent synsets would
have little influence on the outcome of experiments. We ran an initial set of experiments by
only considering the top three synsets versus all synsets to confirm this. The initial results
suggest that there is little to be gained from including many synsets in the disambigua-
tion. For a fair comparison, we consider the first three synsets for all the datasets in our
experiments.

Given a word w, we write concept(i,w) for the i-th most common synset for w. Given
two words word1 and word2, for both words, we first compute the similarities

δ+(concept(i,word1), concept(j,word2)) i, j ∈ {1 . . . k}
between the pairs of top three synsets using (11). We then aggregate these by picking
a maximum strategy (the same approach found in the existing literature Ahu & Iglesias,
2015).

The definition is as follows:

sim(w1, w2) = max
i,j=1...3

δ+(concept(i,word1), concept(j,word2)) (13)

4.2.1 Evaluation strategy

The performance of semantic similarity measures is evaluated by using correlation coef-
ficients to find a correlation with the judgment provided by human experts for different
datasets. There are two commonly used correlation coefficients for this task: the Pearson
correlation coefficient and the Spearman correlation coefficient.

The Pearson correlation coefficient, represented as r , measures how well any semantic
similarity measure relates to human similarity scores (Harispe et al., 2015). A score of 1

3https://wordnet.princeton.edu/
4For our experiments, we only consider word pairs that belong to noun synsets in the WordNet hierarchy.
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indicates the perfect correlation between human and measure score, whereas 0 means no
correlation. It is defined as

r = n(
∑

xiyi) − ∑
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(14)

where xi refers to the i-th score in the list of human judgment and yi refers to the corre-
sponding element in the list of any semantic similarity measure. n corresponds to the total
number of word pairs.

The Spearman rank-order coefficient ρ compares the word pair rankings between human
judgment and the similarity measures (Spearman, 1987). Like the Pearson correlation coef-
ficient, 1 indicates perfect correlation, while 0 represents no correlation. Given di the
difference between the ranks of xi and yi , ρ is defined as

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
. (15)

A high Pearson correlation requires a linear relationship between the similarity mea-
surements, while a high ρ indicates that measures agree in the ranking of which inputs are
more similar or less similar. Since the scale of human assessment of similarity is somewhat
arbitrary, the qualitative approach of the Spearman coefficient makes sense.

4.3 Experiments and results

We perform a set of experiments by using our proposed poly-hierarchy similarity measure
(PS), along with the existing similarity measures described in Section 3.3. As some of the
existing measures such as Lin and Resnik are based on the IC of the given words, we use
three different text corpora:

– Brown: an electronic collection of text samples of American English containing 1.15
million words. This corpus provided the base for the first set of scientific studies for
the frequency and distribution of words in everyday language use (Kucera & Francis,
1969).

– Semcor: an English corpus with semantically annotated texts. It is a subset of the Brown
corpus consisting of 360,000 words (Landes et al., 1998).

– Genesis: It consists of 200,000 words.

These corpora are used to calculate the IC and similarity of words by using a standard
NLP python package, ’NLTK’.5

Table 2 shows the results of applying the Resnik, Lin, and JCN measures by using the
Brown and Semcor corpora. Table 3 lists the results for Resnik, Lin, and JCN on the Gen-
esis corpus along with structural approaches (WUP, Path, LCH, and PS). Both tables list
Spearman and Pearson coefficient values for different datasets. Among IC-based methods,
Resnik and Lin show good linear correlation as compared to JCN on the standard datasets
(RG-65, MC-30, and WordSim) using all three corpora. However, there is a decrease in per-
formance for Spearman rank correlation on Semcor and Genesis datasets. In addition, there
is low coverage for datasets with rare words, particularly for RW datasets with significantly
low r and ρ values. This shows that given good quality datasets containing enough repre-
sentation of word occurrences, Lin and Resnik show the best performance. However, for

5https://www.nltk.org
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Table 2 Correlation coefficient values for Semantic similarity task using Brown and Semcor corpus

IC-based (Brown Corpus) IC-based (Semcor Corpus)

Dataset coffiecient Resnik Lin JCN Resnik Lin JCN

MC-30 r 0.71 0.70 0.49 0.73 0.65 0.65

MC-30 ρ 0.73 0.76 0.47 0.25 0.71 0.47

RG65 r 0.70 0.69 0.48 0.68 0.55 0.52

RG65 ρ 0.80 0.80 0.48 0.19 0.68 0.52

WordSim r 0.65 0.63 0.31 0.65 0.49 0.46

WordSim ρ 0.70 0.68 0.31 0.11 0.58 0.31

Card-660 r 0.37 0.56 0.64 0.63 0.60 0.59

Card-660 ρ 0.36 0.63 0.61 0.43 0.63 0.61

RW r 0.08 0.19 0.18 0.30 0.16 0.14

RW ρ 0.07 0.18 0.16 0.07 0.20 0.16

rare words, the occurrence frequencies are too low to give an accurate estimate of informa-
tion quality, which makes it difficult to quantify semantic similarity by using Resnik or Lin.
In particular, there is a great degree of fluctuation in rankings (ρ) when moving to Semcor
or Genesis data.

All the structural approaches (WUP, Path, LCH, and PS) show equally good performance
when using only hierarchy as opposed to IC. Both r and ρ values are consistent for the
standard datasets (RG-65, MC-30, andWordSim). Our poly-hierarchy based measure shows
performance that is comparable to existing measures and, in some cases, slightly better. In
addition, the structural approaches show a significant increase in correlation for rare word
datasets (RW and Card-660), except for the Pearson correlation with Resnik on RW, where
0.29 is still better than any of the others.

The initial experiments suggest that given a large corpus and therefore having a good
estimate of IC, the information-theoretic approaches (Lin, Resnik) perform well. For sce-
narios with an insufficient amount of data (low-resource domains, here rare words), the
approaches that do not use IC perform better than IC-based approaches.

5 Use case 2: Semantic embeddings for words

Natural Language Processing (NLP) techniques provide embeddings that represent words
as dense vectors of real numbers in an embedding space. This vector representation is
created by embedding semantic and syntactic similarity by using a large corpus. Existing
common methods such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) create embeddings based on the co-occurrences of words and utilise this as a context
of a given word. These methods perform well for text datasets that have sufficient co-
occurrences. However, their performance is poor for domain-specific terms where domain
texts are sparse, or where many important concepts do not frequently occur, such as ’cyber-
security,’ ’biomedical,’ etc. Roy et al. (2017). Training on a large corpus also requires more
resources in terms of time and memory.

We follow an alternate approach for creating word embeddings. We use different sim-
ilarity measures along with (1) to create word embeddings. Following a similar approach
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Table 3 Correlation coefficient values for Semantic similarity task using Genesis corpus and Hierarchy-
based Measures

IC-based (Genesis) Structural

Dataset coffiecient Resnik Lin JCN Path WUP LC Poly-Hierarchy

MC-30 r 0.76 0.72 0.77 0. 61 0.66 0.61 0.70

MC-30 ρ 0.22 0.77 0.54 0.68 0.70 0.69 0.69

RG65 r 0.68 0.60 0.62 0.67 0.66 0.66 0.76

RG65 ρ 0.35 0.72 0.59 0.72 0.71 0.75 0.78

WordSim r 0.64 0.33 0.26 0.60 0.65 0.60 0.59

WordSim ρ 0.24 0.47 0.36 0.59 0.65 0.64 0.61

Card-660 r 0.63 0.65 0.64 0.69 0.66 0.69 0.66

Card-660 ρ 0.53 0.64 0.64 0.72 0.63 0.72 0.69

RW r 0.29 0.19 0.18 0.28 0.26 0.28 0.25

RW ρ 0.19 0.22 0.21 0.29 0.25 0.27 0.27

to Section 4.2, the WordNet hierarchy is used in combination with Brown, Semcor, and
Genesis datasets to first calculate the similarity between words using information-theoretic
approaches and then create embeddings. We also create embeddings using measures based
only on the hierarchy (WUP, LCH, Path, and PS).

We choose the task of concept categorisation in NLP for the evaluation of word
embeddings on four benchmark datasets. Detailed experiments are discussed below.

5.1 Concept categorisation

Concept categorisation is often used in NLP for evaluating the performance of different
embedding schemes. Concept learning involves the process of assigning concepts/words to
one or more relevant categories and is also known as concept categorisation (Wang et al.,
2019). For instance, given the words {milk, tea, bread, cake}, the model should group
them into two categories.

5.2 Benchmark datasets and evaluation

We use four benchmark datasets for evaluating the task of concept categorisation. Each
dataset consists of a list of words and associated categories for each word. The AP dataset
consists of 402 words that are divided into 21 categories (Almuhareb, 2006). The BLESS
(Baroni & Lenci, 2011) dataset contains 200 words that are assigned to 17 classes. The BM
dataset is the largest one, containing 5321 words grouped into 56 categories (Baroni et al.,
2010). It contains a large number of duplicate words that belong to more than one category.
The clustering task, by definition, requires unique words in each category. In order to make
the benchmark fit the clustering task at hand, we have deleted all duplicate words from
the input data in this evaluation. The ESSLLI dataset consists of 44 nouns, divided into
six semantic categories.6 All four datasets contain only noun concepts; therefore, we only
consider noun hierarchies in the WordNet.

6http://www.wordspace.collocations.de/doku.php/data:esslli2008:concrete nouns categorisation
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For evaluating the task of concept categorisation, first, vector embeddings are created
for words in each dataset. Words are then placed into n different clusters by using any
clustering algorithm. We use k-means clustering in our experiments and specify k equal to
the original number of clusters in each dataset. Clustering purity is used as a performance
evaluation measure. Purity is a measure of the extent to which clusters contain a single
class (Manning et al., 2008). It shows the percent of the total number of data points that
are classified correctly. A purity score of 100% means that all data points are placed in the
correct clusters.

Feature compression For datasets that have high cardinality embeddings, compression
can be used to get a low-dimensional feature map. We use autoencoders to compress the
high-dimensional embedding for the BM dataset into a low 300-dimensional representa-
tion. The autoencoder is a deep neural network consisting of encoder and decoder parts.
The encoder reduces the input into low-dimension vectors, and the decoder reconstructs
the input. Supervised learning is performed to minimise the difference (loss) between the
input and output (Yildirim et al., 2018). In our experiments, the purity achieved with feature
compression was as good as with the high-dimensional encodings.

5.3 Experiment and results

For each dataset, different embeddings are created based on the WordNet hierarchy using
the similarity measures in Section 3.3.1. For comparison, we use vectors for words based
on Google’s word2vec and GloVe. Google provides vectors for 3 million words pretrained
on the Google news dataset (about 100 billion words).7 For each dataset, we extract 300-
dimensional vectors for given words from the existing Google pretrained vectors. Similarly,
embeddings pretrained on wikipedia2014 for GloVe (Pennington et al., 2014) were down-
loaded from the online repository.8 Our evaluation compares the performance of different
existing embeddings on general clustering tasks. An optimisation by further training of the
embeddings specifically for these tasks would not be sensible in this context.

Tables 4 and 5 show the purity score for the word2vec (Google), GloVe, and hierarchy-
based embeddings. For all the datasets, the purity score of hierarchy-based embeddings is
much higher than what is achieved by the Google word2vec and GloVe embeddings.

Among IC-based similarity measures, Resnik shows the best performance by using the
Brown Corpus for the word embeddings. However, there is around 20% decrease in clus-
tering purity for Resnik and Lin when embeddings are created using IC from Semcor and
Genesis datasets. For clustering tasks, JCN shows some stability in performance even with
the change of data corpus. Embeddings based on purely structural approaches (WUP, Path,
LCH, and PH) show an equally good purity score.

The experimental results for the task of concept categorisation conform with the results
in the previous section of comparing word pair similarities with human judgments. It is
observed in both cases that given high-quality data, IC-based measures are good in quan-
tifying semantic similarity; however, for low-resource domains, the structural approaches
based only on hierarchy quantify the semantic similarities correctly.

7https://code.google.com/archive/p/word2vec/
8https://nlp.stanford.edu/projects/glove/
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Table 4 Clustering purity in % for word embeddings

Corpus-based Hierarchy-based

Dataset Google GloVe WUP Path LCH PH

AP 79.50 69.42 97 100 99 100

Bless 97.42 85.64 96 96 100 100

BM 88.90 80.04 84 93 92 77

ESSLLI 84.09 75.00 100 100 100 100

6 Use case 2: mortality prediction usingMIMIC dataset

In order to evaluate the categorical encoding schemes, we use a mixed-variable real-life
dataset containing a prediction task and one high cardinality categorical variable.We convert
the categorical variable to an equivalent semantic encoding by using the relevant domain
hierarchy. These encodings are combined with numeric features, followed by a standard pre-
diction pipeline, and the results are compared with the one-hot encoding for the prediction
task.

6.1 Data description

Mortality prediction of patients admitted in an intensive care unit (ICU) is important for
timely intervention to adapt treatments and policies. We aim at predicting the mortality of
such patients. We consider mortality as a binary classification task where label 1 represents
the death event of a patient. We use MIMIC-iii, a publicly available database (Johnson
et al., 2016). This database consists of 53,423 adult patients and 7,870 neonates admitted
to the ICU at the Beth Israel Deaconess Medical center in Boston between 2001 and 2012.
The database includes information about demographics, diagnosis, vital sign measurements
(numeric features), procedures, medications, and mortality. For experiments conducted in
this research, we consider diagnosis as the main high cardinality categorical feature and vital
signs as numeric features for each patient. The hospital expiry flag acts as a target variable,
representing two classes: 1 for expired patients and 0 for alive patients.

For the MIMIC dataset, we observe that for the main categorical variable ’Diagnosis,’
70% of the unique diagnoses occur fewer than 10 times in the dataset. Only 4% of diagnoses
frequently appear in the dataset with a frequency of greater than 100. Mostly, the categorical
variables follow a long-tail distribution, with some categories being more frequent than
others. As observed in the previous two sections, the estimate of IC based on occurrence

Table 5 Clustering purity % for word embeddings (brown and semcor corpus)

Brown Semcor Genesis

Dataset Resnik Lin JCN Resnik Lin JCN Resnik Lin JCN

AP 100 90 100 84 81 96 80 76 93

Bless 100 98 97 83 86 93 80 75 86

BM 97 73 95 84 68 95 77 69 89

ESSLLI 100 95 100 100 93 100 90 79 90
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Fig. 4 International Classification of Diseases (ICD9)

probability is not suitable for estimating semantic similarity. Therefore, for the mortality
prediction task, we use only structural similarity measures (WUP, LCH, and PS) to create
embeddings.

In the next section, we explain how we link ’diagnosis’ with the associated diagnosis
hierarchy.

6.2 Hierarchy for categorical feature

The diagnosis icd table consists of patients’ identifiers and associated diagnosis codes for
each patient. These codes are based on a standard disease ontology called the International
Classification of Diseases (ICD-9).9 ICD-9 contains a description of all known diseases and
injuries. Each disease is detailed based on diagnostic characteristics and assigned a unique
identifier called the ICD-9 code. ICD-9 contains a standardised classification of around
12000 diseases. All diseases are classified into 17 high-level major disease groups as shown
in Fig. 4. Within each major group, further classification of diseases is performed based on
similar characteristics.

The MIMIC dataset only contains numeric codes for each diagnosis, but the information
regarding the classification of each diagnosis is missing. For mapping the diagnosis column
to the ICD-9 ontology, we scraped the ICD-9 ontology from BioPortal and organised each
diagnosis with a short title, long title, and associated parents in the hierarchy, as shown in
Fig. 5. ICD-9 codes from the ontology contain a decimal point in each numeric code. For
instance, the numbers 280 and 28.0 represent two different diagnosis codes. However, the
diagnosis codes present in the MIMIC database do not contain decimal points. This cre-
ates an ambiguity in matching codes with the BioPortal codes, which have the possibility
of having decimal points at several positions. To resolve this issue, we first joined the diag-
noses icd table with the d icd diagnoses table. The latter contains diagnosis codes along
with their short and long titles. We matched short titles with the BioPortal titles in order

9https://bioportal.bioontology.org/ontologies/ICD-9CM/?p=summary
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Fig. 5 Example diseases and associated ancestors in ICD-9

to find the correct ICD-9 codes and associated parents in the hierarchy. All codes with no
matching short titles were discarded from our experiments.

6.3 Pre-processing for numeric features

For each patient having age≥ 15, only the first admission is considered for analysis, and later
admissions are discarded. We extract and clean 18 numeric features for the first 24 hours
of a patient’s stay by using the benchmark code provided by Purushotham et al. (2017).10

The features heartrate max, heartrate min, sysbp max, sysbp min, tempc max, tempc min,
and urineoutput are taken from the table chartevents, whereas the table labevents con-
tains bun min, bun max, wbc min, wbc max, potassium min, potassium max, sodium min,
sodium max, bicarbonate min, bicarbonate max, and mingcs. The dataset contains mea-
surements for these features in different units. Only data points with the unit used in ≥90%
of the data are kept; the others are discarded. For features that have multiple recordings at
the same time, the average is taken as the final value. For value ranges, the median of the
range is used in the analysis. After all the preprocessing and cleaning steps, the cleaned data
consists of a total of 25,531 data points, out of which 3114 patients died in the hospital.

6.4 Data imbalance and data augmentation

A dataset is called imbalanced if all classification categories are not equally represented.
After preprocessing of the dataset, there are only 3,114 patients who expired in the ICU.
This shows a high imbalance in the dataset, and the majority of the instances belong to class
0 (alive patients). Learning classifiers from imbalanced datasets is a difficult task and usu-
ally results in labeling all the cases as the majority class (Kotsiantis et al., 2005). A number
of solutions have been proposed to handle imbalanced datasets. These techniques include
random oversampling with replacement, random undersampling, and oversampling with the
generation of new samples. The main drawback of undersampling is that it discards poten-
tially useful data, while oversampling may lead to over-fitting as it replicates the minority
class.11 To avoid drawbacks associated with random over- and undersampling, we perform
sampling using the Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla et al.,
2002). SMOTE is a data augmentation technique for the minority class that synthesises new
points from the minority class.

6.4.1 Sampling train and test set based on the hierarchy

In order to see the effect of domain information for predicting unseen categories, we split
our dataset into train and test based on the information from the hierarchy. We grouped

10https://github.com/USC-Melady/Benchmarking DL MIMICIII
11Oversampling and undersampling did not yield good results in our experiments.
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all diagnoses based on level 5 in the hierarchy. For each diagnosis group, one diagnosis is
selected, and all data points with that diagnosis are chosen for the test data, while data points
with all other diagnoses in the group go into the training data. This ensures that only unique
diagnoses codes are present in the test set, which the model has not seen during the training
phase. After splitting the dataset into training and testing based on diagnosis, we apply the
SMOTE strategy only to the numerical features of the training dataset, avoiding information
leakage from training into the testing dataset. Further, to see the effect of embedding on
the prediction, we do not alter the embeddings using the SMOTE sampling. For the multi-
valued attribute, as each patient has multiple diagnoses, the split is performed using the
standard sklearn train test split utility, followed by SMOTE sampling on only the numeric
features of the training dataset.

6.5 Prediction algorithm

In this section, we describe the prediction algorithm and the scoring system used for evalu-
ating the proposed measures. We choose to use the deep learning model for prediction as it
provides an automated way of extracting complex data representations (Bengio et al., 2012).
The main advantage of the deep learning model is its ability to learn feature representations
from raw data and allow generalisation to new combinations of values not seen in the orig-
inal training dataset (Purushotham et al., 2017). As we are choosing maximum dimensions
in our embeddings to encode similarity, the deep learning model fits our need to learn inter-
mediate compressed representations of embeddings along with training for the prediction
task.

6.5.1 Bimodal feed forward network

We started our investigation with a set of experiments based on a single neural network
architecture without using data augmentation. For single-valued categorical data, the net-
work performance was poor with correct identification of only 15% of expired patients on
the test set. Addressing the imbalanced data by means of augmentation (SMOTE) improved
the performance to 40%, which is still not satisfactory. The remaining experiments were
performed using the augmented training data and a bimodal network which, as the results
will show, leads to a significant additional improvement.

We use a bimodal deep learning model to learn shared representations from two differ-
ent modalities: numeric features and semantic embeddings from the categorical variable.
Figure 6 shows an illustration of our bimodal framework.

The key idea here is to first use hidden layers to capture the correlation within each
modality separately. For the high-dimensional embeddings, hidden layers also act as a
compression component, and only low-dimensional features go into the shared layers.
The shared layers then capture the correlation between modalities, which is beneficial in
complex datasets. The latent shared representations are learned for the prediction task.

6.5.2 Implementation details

Embeddings We use the Python package networkx to create embeddings for each diag-
nosis. First, a tree hierarchy is created from the ontology database (Fig. 5). Each ICD-9 code
is represented as a node in the graph, and we compute its level, i.e. its distance from the
root. For each pair of nodes x, y, we calculate x �y and store level(x �y). In order to create
vector embeddings for all unique nodes, we create a matrix where each column represents

633Journal of Intelligent Information Systems (2022) 58:613–640



Fig. 6 Bimodal Deep Learning Architecture

a unique diagnosis and each row represents the embedding for one diagnosis by calculating
the similarity using (11).

Bimodal deep learning We implement a bimodal network using the Python library keras
(functional API) and keras-tuner for trying different network architectures. For all pre-
diction tasks, we have divided the dataset into three parts: train, validation, and test dataset.
We experiment with different optimisers during the training phase and the Adam optimiser
with a learning rate 0.001 performs best in our experiments. The batch size is chosen as
256, and the max epoch is 100. Early stopping with a neuron drop rate of 0.2 % is per-
formed during the training phase. The final model uses two hidden layers in total: the first
hidden layer learns the compressed representation for embeddings, which is then combined
with vital measurements. This is further passed through a second hidden layer, followed
by the output layer. The goal of our experiments is to compare our embeddings to one-hot
under similar conditions rather than tuning the architecture for the best possible perfor-
mance for each embedding. Therefore, we use the same model architecture for training
one-hot encoded data and semantic-based encoded data to compare all methods’ perfor-
mance in a fair way. The final evaluation is performed on the models that achieve minimum
validation loss during the training phase. These experiments’ key focus is to show that a
performance improvement can be achieved using prior knowledge in limited experimen-
tal settings. Therefore, we did not perform an exhaustive optimisation of bimodal network
architecture in terms of increasing the depth of architecture.

6.6 Experiments

We perform two sets of experiments for single-valued and multi-valued embeddings, respec-
tively. The MIMIC dataset contains multiple diagnoses per patient, along with a priority
number for each diagnosis. In order to evaluate single-valued embeddings, we consider
only one diagnosis for each patient, namely the one with the highest priority number in the
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dataset. For multi-valued embeddings, we consider all diagnoses related to a patient in the
database.

For performance comparison, pre-trained embeddings based on NLP techniques such as
GloVe or word2Vec can be used. We downloaded pre-trained embeddings from a Google
news dataset that contains 300-dimensional vectors for 3 million words12 and GloVe-based
pre-trained embeddings by Stanford.13 The vocabulary present in both datasets does not
contain the diagnosis concepts present in the MIMIC dataset. This is justifiable as both the
datasets are trained on the documents containing only words used in day-to-day vocabulary.
Pubmed contains documents in the biomedical scientific literature, and word2vec-based
embeddings for PubMed articles are provided by the NLP lab.14 However, these embeddings
also do not cover all the concepts present in the MIMIC dataset. Therefore, we do not use
any of these pre-trained embeddings in our experiments.

We compare the performance of the proposed embedding scheme with the standard one-
hot encoding technique.

Below, we explain the evaluation metrics, followed by results reported in Section 6.7.

6.6.1 Performance evaluation

We use recall score and Area under the ROC curve (AUC-ROC) to evaluate the perfor-
mance of our prediction models. Recall specifies the model’s ability to find all positive
cases (patients who died) in the dataset. For our use case, we are more interested in pre-
dicting critical patients correctly; hence we focus on recall score as compared to the overall
accuracy of the models. The recall is calculated as

Recall = True Positives

True Positives + False Negatives
(16)

True positives is the patients who died in ICU and were predicted to die, while false
negatives are patients that died although the model predicted they would survive.

For evaluating the overall performance of models, we also use the AUC (Area Under
The Curve) ROC (Receiver Operating Characteristics) curve. It is used to measure the per-
formance in a classification setting, and it specifies how good a model is in distinguishing
between different classes. Higher values show that a model is good at predicting 0s as 0s
and 1s as 1s.

6.7 Results

Table 6 shows the results for mortality prediction for one-hot and semantic-based schemes.
We observe that semantic-based embedding schemes for categorical variables perform bet-
ter than the traditional one-hot encoding of high-dimensional categorical variables in both
settings: single-valued and multi-valued encodings. The highest recall score of 79% is
achieved for single-valued embeddings using the PS technique, which is significantly better
than one-hot.15 The one-hot model has a recall of 31% and 51% for both settings, which
shows that the model is randomly classifying data and is unable to learn the relationship

12https://code.google.com/archive/p/word2vec/
13https://nlp.stanford.edu/projects/glove/
14https://bio.nlplab.org/
15The results are based on (11) with λ = 0.7 and (12) for calculating d(x, y). We manually tune different
values of λ, and the final value reported here is based on the best results achieved.
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Table 6 Results for multi-valued embeddings

Similarity-based

Variable type Evaluation measure One-Hot WUP LCH PS

Single-valued Recall% 31 67 65 67

AUC-ROC% 65 79 79 79

Multi-valued Recall% 51 75 81 84

AUC-ROC% 80 80 89 89

between data points. For single-valued embeddings, the test data does not contain the same
categories that occur in the training set; instead, it is based on siblings of the categories
occurring in the hierarchy. The results show that the trained model is able to learn corre-
lations based on semantics and performs well for unseen categories in the test set. In this
case, it is also clearly not so important which similarity measure is chosen as the basis for
the embedding: the crucial factor is to include the semantics in the embedding, not the exact
way of doing so.

For multiple diagnoses, hierarchy-based embeddings outperform all other schemes by
achieving the highest recall of 84% and AUC-ROC score of 89%. We surmise that the
improvement in the performance for multiple diagnoses depends on the hierarchy-based
similarity measure. The final embeddings are aggregated in such a way that each dimen-
sion picks up the maximum similarity score based on (2). The hierarchy-based similarity
measures favor the idea that for similar diagnoses, the respective dimensions will have
high similarity and vice versa. This enables the network to learn better representations and
perform better.

7 Conclusion and future work

It is common practice in Data Science and Machine Learning processes to accommodate
non-numeric data by means of vector space embeddings. Such embeddings are either pre-
trained or trained for the task at hand, using large volumes of data. This approach fails if
not enough data are available to train the embeddings. On the other hand, in many areas of
human endeavor, there is ample domain knowledge available that could be used to improve
or abbreviate the data-based generation of embeddings.

In this work, we suggest an approach for encoding high-dimensional categorical vari-
ables based on domain knowledge in the form of hierarchies using semantic similarity. First,
we compare the performance of existing semantic-based similarity measures using differ-
ent datasets of word pairs. The results suggest that semantic similarity measures based on
notions of information content (IC) depend on the training dataset for IC calculation. Given
large amounts of training data, IC-based measures performed better than purely hierarchy-
based measures in our experiments. Overall, Resnik’s similarity measure (which is based on
IC and hierarchy) achieves better performance on most of the example use-cases. For cases
where we do not have enough training data, as in the low-resource cases we are targeting,
purely hierarchy-based similarity measures achieve better performance in our experiments.

In our concept categorisation experiment, we compare our approach of defining an
embedding from a hierarchy to existing data-based methods and show that the hierarchy-
based embedding outperforms the data-based ones in most cases we considered. In
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particular, the clustering task is dependent on the semantic similarity of the words. In such
scenarios, hierarchy-based similarity and embeddings explicitly specify the semantic sim-
ilarity, resulting in improved performance. The data-based methods (Google and Glove)
encode the co-occurrence statistics of the training corpus, which do not necessarily capture
the concepts’ semantic relatedness. Such methods are more suitable for tasks that rely on
the context of a given word. For instance, in sentiment classification, all words occurring
in the same context have great significance in the final performance. Therefore, our results
confirm our intuition that tasks that depend on semantic similarity can be performed better
using a hierarchy, while for context-dependent tasks, data-based methods are more suitable.

The experimental results show that for the MIMIC use case with an imbalanced dataset,
the proposed embedding schemes can aid the learning process and enhance the model per-
formance. The model is able to classify categories that do not occur in the training set. The
semantic embeddings calculated using any hierarchy-based similarity measure outperform
the traditional one-hot encodings.

We should point out that the approach has limitations: intuitively adding relevant domain
knowledge, e.g. in the form of a hierarchy, should improve the performance of ML tasks, as
seen in our experiments. However, if the hierarchy is not relevant to task, and the grouping
does not correspond to a notion of similarity that is useful for this task, there will not be any
improvement. The addition of irrelevant domain information may even lead to worse results.

In the case where no relevant domain information is readily available, and it first needs
to be generated, the approach is also less interesting, since the effort to construct a good
hierarchy may be considerable. E.g. the disease hierarchy used in our study is based on
centuries of medical science.

For future research, it would be interesting to combine context and semantic similarity-
based embeddings to evaluate the performance in NLP tasks. The idea of semantic similarity
can be extended to knowledge sources in the form of complex graphs that contain multi-
ple relations for nodes in the graph. Also, our work concentrates on single (single-valued
or multi-valued) categorical features, which can be embedded in isolation; incorporating
domain knowledge about the connections between features, e.g. along the lines of Janusz
(2014) might be very effective. Following this direction, using domain knowledge to under-
stand the numeric variables and creating a unified framework for handling both numeric and
categorical data in low-resource domains would be an interesting future direction.
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Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning with dirty categorical variables.
Machine Learning, 107.

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. (JAIR), 16, 321–357.

Crone, S. F., Lessmann, S., & Stahlbock, R. (2006). The impact of preprocessing on data mining: an eval-
uation of classifier sensitivity in direct marketing. European Journal of Operational Research, 173(3),
781–800.

d’Amato, C., Fanizzi, N., & Esposito, F. (2009). A semantic similarity measure for expressive description
logics. CoRR arXiv:0911.5043.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2002).
Placing search in context: The concept revisited. ACM Trans. Information Systems, 20(1), 116–131.
https://doi.org/10.1145/503104.503110.

Fitkov-Norris, E., Vahid, S., & Hand, C. (2012). Evaluating the impact of categorical data encoding and scal-
ing on neural network classification performance: The case of repeat consumption of identical cultural
goods. Communications in Computer and Information Science, 311, 343–352.

Garchery, M., & Granitzer, M. (2018). On the influence of categorical features in ranking anomalies using
mixed data. Procedia Computer Science, 126, 77–86.

Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J. (2015). Semantic similarity from natural language and
ontology analysis. Morgan and Claypool Publishers.

Hsu, C. C. (2006). Generalizing self-organizing map for categorical data. IEEE Transactions on Neural
Networks, 17, 294–304.

Janusz, A. (2014). Algorithms for similarity relation learning from high dimensional data. In Transactions
on Rough Sets XVII (pp. 174–292). Berlin: Springer. https://doi.org/10.1007/978-3-642-54756-0 7.

Janusz, A., Slezak, D., & Nguyen, H. S. (2012). Unsupervised similarity learning from textual data.
Fundamenta Informaticae, 119, 319–336.

Jia, Z., Lu, X., Duan, H., & Li, H. (2019). Using the distance between sets of hierarchical taxonomic clinical
concepts to measure patient similarity. BMC Medical Informatics and Decision Making, 19, 91.

Jian, S., Pang, G., Cao, L., Lu, K., & Gao, H. (2019). Cure flexible categorical data representation by
hierarchical coupling learning. IEEE Transactions on Knowledge and Data Engineering, 31, 853–866.

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In
Proceedings of the 10th Research on Computational Linguistics International Conference (pp. 19–33).

638 Journal of Intelligent Information Systems (2022) 58:613–640

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/j.1551-6709.2009.01068.x
https://doi.org/10.1111/j.1551-6709.2009.01068.x
https://doi.org/10.1007/978-3-540-89876-4_26
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/0911.5043
https://doi.org/10.1145/503104.503110
https://doi.org/10.1007/978-3-642-54756-0_7


Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. w. H., Feng, M., Ghassemi, M., Moody, B., Szolovits,
P., Celi, L. A., & Mark, R.G. (2016). MIMIC-III, a freely accessible critical care database. Scientific
Data, 3, 160035.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2005). Handling imbalanced datasets: a review. GESTS. Int.
Transactions on Computer Science and Engineering, 30, 25–36.

Kucera, H., & Francis, W. N. (1969). Computational analysis of present-day american english. International
Journal of American Linguistics, 35.

Landes, S., Leecock, C., & Tengi, R. I. (1998). Building semantic concordances. In C. Fellbaum (Ed.)
Wordnet: an electronic lexical database (pp. 197–216). MIT press.

Leacock, C., & Chodorow, M. (1998). Combining local context and wordnet similarity for word sense iden-
tification. In C. Fellbaum (Ed.) Wordnet: an electronic lexical database., chap. 13 (pp. 265–283). MIT
press.

Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of the Fifteenth International
Conference on Machine Learning, ICML ’98 (pp. 296-304). USA: Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

Luong, M. T., Socher, R., & Manning, C. D. (2013). Better word representations with recursive neural
networks for morphology. CoNLL.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge
University Press.

Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality categorical attributes in classification
and prediction problems. SIGKDD, 3, 27–32.

Midelfart, H. (2005). Supervised learning in the gene ontology part I: a rough set framework. In Transactions
on rough sets IV (pp. 69–97). Berlin: Springer.

Midelfart, H. (2005). Supervised learning in the gene ontology part II: a bottom-up algorithm. In Transactions
on rough sets IV (pp. 98–124). Springer.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector
space.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. Advances in Neural Information Processing Systems, 26.

Miller, G., & Charles, W. (1991). Contextual correlates of semantic similarity. Language and Cognitive
Processes, 6, 1–28.

Mumtaz, S., & Giese, M. (2020). Frequency-based vs. knowledge-based similarity measures for categori-
cal data. In Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and
Knowledge Engineering in Practice, AAAI-MAKE 2020, CEUR Workshop Proceedings, Vol. 2600.
CEUR-WS.org. http://ceur-ws.org/Vol-2600/paper16.pdf.

Nguyen, S. H., Nguyen, T. T., Szczuka, M., & Nguyen, H. S. (2013). An approach to pattern recognition
based on hierarchical granular computing. Fundamenta Informaticae, 127(1–4), 369–384.

Nguyen, T. T. (2003). Rough set approach to domain knowledge approximation. Fundam. Inf., 59(2–3),
261–270.

Pedersen, T., Pakhomov, S. V., Patwardhan, S., & Chute, C. G. (2007). Measures of semantic similarity and
relatedness in the biomedical domain. Journal of Biomedical Informatics, 40(3), 288–299.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014 (pp. 1532–1543). ACL. https://doi.org/10.3115/v1/d14-1162.

Pilehvar, M. T., Kartsaklis, D., Prokhorov, V., & Collier, N. (2018). Card-660: Cambridge rare word dataset -
a reliable benchmark for infrequent word representation models. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (pp. 1391–1401). Association for Computational
Linguistics.

Potdar, K., Pardawala, T., & Pai, C. (2017). A comparative study of categorical variable encoding techniques
for neural network classifiers. International Journal of Computer Applications, 175, 7–9.

Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2017). Benchmark of deep learning models on large
healthcare mimic datasets. Journal of Biomedical Informatics, 83.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’95 (pp. 448–453).

Resnik, P. (1999). Semantic similarity in a taxonomy: an information-based measure and its application to
problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11, 95–130.

Roy, A., Park, Y., & Pan, S. (2017). Learning domain-specific word embeddings from sparse cybersecurity
texts. CoRR arXiv:1709.07470.

Rubenstein, H., & Goodenough, J. B. (1965). Contextual correlates of synonymy. Communications of the
ACM, 8(10), 627–633. https://doi.org/10.1145/365628.365657.

639Journal of Intelligent Information Systems (2022) 58:613–640

http://ceur-ws.org/Vol-2600/paper16.pdf
https://doi.org/10.3115/v1/d14-1162
http://arxiv.org/abs/1709.07470
https://doi.org/10.1145/365628.365657


Smelser, N. J., & Baltes, P. B. (2001). International encyclopedia of the social & behavioral sciences.
Elsevier.

Spearman, C. (1987). The proof and measurement of association between two things. The American Journal
of Psychology, 100, 441–471.

Szczuka, M., & Janusz, A. (2013). Semantic Clustering of Scientific Articles Using Explicit Semantic
Analysis, 83–102.

Tarnowska, K., & Ras, Z. W. (2019). Sentiment analysis of customer data. Web Intelligence Journal, 17,
343–363.

Tarnowska, K., Ras, Z. W., & Lynn, D. (2020). Recommender System for Improving Customer Loyalty
Vol. 55. Berlin: Springer.

Von Eye, A., & Clogg Clifford, C. (1996). Categorical variables in developmental research: Methods of
analysis. Elsevier Science.

Wang, B., Wang, A., Chen, F., Wang, Y., & Jay Kuo, C. C. (2019). Evaluating word embedding models:
methods and experimental results. APSIPA Transactions on Signal and Information Processing, 8.

Wilson, D., & Martinez, T. (2000). Improved heterogeneous distance functions. Journal of Artificial
Intelligence Research, 6.

Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep
convolutional autoencoders. Cognitive Systems Research, 52, 198–211.

Zhu, C., Cao, L., Liu, Q., Yin, J., & Kumar, V. (2018). Heterogeneous metric learning of categorical data
with hierarchical couplings. IEEE Transactions on Knowledge and Data Engineering, 30, 1254–1267.

Zhu, G., & Iglesias, C. A. (2015). Sematch semantic entity search from knowledge graph. In Joint Proceed-
ings of the 1st International Workshop on Summarizing and Presenting Entities and Ontologies and the
3rd International Workshop on Human Semantic Web Interfaces (SumPre 2015, HSWI 2015) co-located
with the 12th Extended Semantic Web Conference (ESWC 2015), Vol. 1556. Portoroz: CEUR Workshop
Proceedings, CEUR-WS.org.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

640 Journal of Intelligent Information Systems (2022) 58:613–640


	Hierarchy-based semantic embeddings for single-valued & multi-valued categorical variables
	Abstract
	Introduction
	Literature review
	Problem formulation
	Semantic similarity
	Hierarchies

	Proposed framework
	Semantic embeddings for single-valued categorical features
	Semantic embeddings for multi-valued categorical features

	Similarity measures based on hierarchy
	Semantic-based measures
	Information-theoretic approaches
	Structural approaches
	Poly-hierarchy semantic similarity (PS)


	Comparison between existing semantic similarity measures
	Benchmark datasets and WordNet hierarchy
	WordNet hierarchy
	Evaluation strategy

	Experiments and results

	Use case 2: Semantic embeddings for words
	Concept categorisation
	Benchmark datasets and evaluation
	Feature compression

	Experiment and results

	Use case 2: mortality prediction using MIMIC dataset
	Data description
	Hierarchy for categorical feature
	Pre-processing for numeric features
	Data imbalance and data augmentation
	Sampling train and test set based on the hierarchy

	Prediction algorithm
	Bimodal feed forward network
	Implementation details
	Embeddings
	Bimodal deep learning


	Experiments
	Performance evaluation

	Results

	Conclusion and future work
	References


