Skip to main content
Log in

A hybrid approach for identification of concurrent control chart patterns

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Control chart patterns (CCPs) are widely used to identify the potential process problems in modern manufacturing industries. The earliest statistical techniques, including \({\bar{\rm X}}\) chart and R chart, are respectively used for monitoring process mean and process variance. Recently, pattern recognition techniques based on artificial neural network (ANN) are very popular to be applied to recognize unnatural CCPs. However, most of them are limited to recognize simple CCPs arising from single type of unnatural variation. In other words, they are incapable to handle the problem of concurrent CCPs where two types of unnatural variation exist together within the manufacturing process. To facilitate the research gap, this paper presents a hybrid approach based on independent component analysis (ICA) and decision tree (DT) to identify concurrent CCPs. Without loss of generality, six types of concurrent CCPs are used to validate the proposed method. Experimental results show that the proposed approach is very successful to handle most of the concurrent CCPs. The proposed method has two limitations in real application: it needs at least two concurrent CCPs to reconstruct their source patterns and it may be incapable to handle the concurrent pattern incurred by two correlated process (“upward trend” and “upward shift”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AI-Ghanim A.M., Ludeman L.C. (1997) Automated unnatural pattern recognition on control charts using correlation analysis techniques. Computers & Industrial Engineering 32(3): 679–690. doi:10.1016/S0360-8352(96)00214-8

    Article  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth.

  • Chen J., Liu J. (2001) Derivation of function space analysis based PCA control charts for batch process monitoring. Chemical Engineering Science 56: 3289–3304. doi:10.1016/S0009-2509(01)00004-5

    Article  Google Scholar 

  • Chen Z., Lu S., Lam S. (2007) A hybrid system for SPC concurrent pattern recognition. Advanced Engineering Informatics 21: 303–310. doi:10.1016/j.aei.2007.03.002

    Article  Google Scholar 

  • Cheng C.S. (1997) A neural network approach for the analysis of control chart patterns. International Journal of Production Research 35(3): 667–697. doi:10.1080/002075497195650

    Article  Google Scholar 

  • Chiu C.C., Shao Y.E., Lee T.S., Lee K.M. (2003) Identification of process disturbance using SPC/EPC and neural networks. Journal of Intelligent Manufacturing 14: 379–388. doi:10.1023/A:1024657911399

    Article  Google Scholar 

  • Cook D.F., Chiu C.C. (1998) Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions 30: 227–234

    Google Scholar 

  • Gauri S.K., Chakraborty S. (2006) Feature based recognition of control chart patterns. Computers & Industrial Engineering 51: 726–742. doi:10.1016/j.cie.2006.07.013

    Article  Google Scholar 

  • Gauri S.K., Chakraborty S. (2007) A study on the various features for effective control chart pattern recognition. International Journal of Advanced Manufacturing Technology 34(3): 385–398. doi:10.1007/s00170-006-0591-6

    Article  Google Scholar 

  • Graupe, D., Zhong, Y., & Graupe, M. H. (2007). Extracting fetal from maternal ECG for early diagnosis: Theoretical problems and solutions—BAF and ICA. In Proceeding of the International Conference on Biomedical Engineering (pp. 352–356). Innsbruck, Austria.

  • Guh R.S. (2005) A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers & Industrial Engineering 49: 35–62. doi:10.1016/j.cie.2005.03.002

    Article  Google Scholar 

  • Guh R.S., Hsieh Y.C. (1999) A neural network based model for abnormal pattern recognition of control charts. Computers & Industrial Engineering 36: 97–108. doi:10.1016/S0360-8352(99)00004-2

    Article  Google Scholar 

  • Guh R.S., Shiue Y.R. (2005) On-line identification of control chart patterns using self-organized approaches. International Journal of Production Research 43(5): 1225–1254. doi:10.1080/0020754042000268884

    Article  Google Scholar 

  • Guh R.S., Tannock J.D.T. (1999) A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing 10: 449–462. doi:10.1023/A:1008975131304

    Article  Google Scholar 

  • Guh R.S., Tannock J.D.T. (1999b) Recognition of control chart concurrent patterns using a neural network approach. International Journal of Production Research 37(8): 1743–1765

    Article  Google Scholar 

  • Hassan A., Shariff M.N.B., Shaharoun A.M., Jamaludin H. (2003) Improved SPC chart pattern recognition using statistical features. International Journal of Production Research 41(7): 1587–1603. doi:10.1080/0020754021000049844

    Article  Google Scholar 

  • Hyvärinen A., Karhunen J., Oja E. (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  • Hyvärinen A., Oja E. (1997) A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7): 1483–1492. doi:10.1162/neco.1997.9.7.1483

    Article  Google Scholar 

  • Hyvärinen A., Oja E. (2000) Independent component analysis: Algorithms and applications. Neural Networks 13: 411–430. doi:10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  • Jin J., Shi J. (2001) Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. Journal of Intelligent Manufacturing 12: 257–268. doi:10.1023/A:1011248925750

    Article  Google Scholar 

  • Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. (2003) Monitoring independent components for fault detection. Journal of American Institute Chemical Engineering 49(4): 969–976

    Google Scholar 

  • Kass G.V. (1980) An exploratory technique for investigating large quantities of categorical data. Applied Statistics 29: 119–127. doi:10.2307/2986296

    Article  Google Scholar 

  • Kiviluoto, K., & Oja, E. (1998). Independent component analysis for parallel financial time series. In Proceeding of the International Conference on Neural Information Processing (Vol. 2, pp. 895–898). Tokyo, Japan.

  • Lee J.M., Yoo C.K., Lee I.B. (2004) Statistical process monitoring with independent component analysis. Journal of Process Control 14: 467–485. doi:10.1016/j.jprocont.2003.09.004

    Article  Google Scholar 

  • Lu C.J., Wu C.M., Keng C.J., Chiu C.C. (2008) Integrated application of SPC/EPC/ICA and neural networks. International Journal of Production Research 46(4): 873–893

    Article  Google Scholar 

  • Pacella M., Semeraro Q., Anglani A. (2004) Adaptive resonance theory-based neural algorithms for manufacturing process quality control. International Journal of Production Research 42(21): 4581–4607. doi:10.1080/00207540410001715706

    Article  Google Scholar 

  • Pham D.T., Oztemel E. (1994) Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research 32(3): 721–729. doi:10.1080/00207549408956963

    Article  Google Scholar 

  • Pham D.T., Wani M.A. (1997) Feature-based control chart recognition. International Journal of Production Research, 35(7): 1875–1890. doi:10.1080/002075497194967

    Article  Google Scholar 

  • Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess endgames. Machine Learning.

  • Quinlan J.R. (1986) Induction of decision trees. Machine Learning 1: 81–106

    Google Scholar 

  • Quinlan J.R. (1993) C4.5: Programs for machine learning. Morgan Kaufmann, Los Altos, CA

    Google Scholar 

  • Wang C.H., Kuo W., Qi H. (2007) An integrated approach for process monitoring using wavelet analysis and competitive neural network. International Journal of Production Research 45(1): 227–244. doi:10.1080/00207540500442393

    Article  Google Scholar 

  • Wang C.H., Kuo W. (2007) Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing 18: 343–350. doi:10.1007/s10845-007-0028-6

    Article  Google Scholar 

  • Wang, C. H., Guo, R. S., Chiang, M. H., & Wong, J. Y. (2008). Decision tree based control chart pattern recognition. International Journal of Production Research (in press).

  • Wong M.L.D., Jack L.B., Nandi A.K. (2006) Modified self-organizing map for automated novelty detection applied to vibration signal monitoring. Mechanical Systems and Signal Processing 20: 593–610. doi:10.1016/j.ymssp.2005.01.008

    Article  Google Scholar 

  • Yang M.S., Yang J.H. (2002) A fuzzy-soft learning vector quantization for control chart pattern recognition. International Journal of Production Research 40(12): 2721–2731. doi:10.1080/00207540210137639

    Article  Google Scholar 

  • Yang J.H., Yang M.S. (2005) A control chart pattern recognition scheme using a statistical correlation coefficient method. Computers & Industrial Engineering 48: 205–221. doi:10.1016/j.cie.2005.01.008

    Article  Google Scholar 

  • Yoon S., MacGregor J.F. (2004) Principal component analysis of multivariate data for process monitoring and fault diagnosis. Journal of American Institute Chemical Engineering 50(11): 2891–2903

    Google Scholar 

  • Yousef A.A. (2004) Recognition of control chart patterns using multi-resolution wavelets analysis and neural networks. Computers & Industrial Engineering 47: 17–29. doi:10.1016/j.cie.2004.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hsuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CH., Dong, TP. & Kuo, W. A hybrid approach for identification of concurrent control chart patterns. J Intell Manuf 20, 409–419 (2009). https://doi.org/10.1007/s10845-008-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-008-0115-3

Keywords

Navigation