Skip to main content
Log in

Metaheuristic based control of a flow rack automated storage retrieval system

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents two metaheuristic algorithms, namely taboo search and simulated annealing, applied to the control of a flow rack automated storage retrieval system (AS/RS). These metaheuristic algorithms are developed to control the retrieval machine of the AS/RS in order to minimize the retrieval cycle time. Results of these metaheuristic algorithms are compared to classical heuristics and analytical models found in literature (Gaouar et al. in MOSIM 2006, Rabat, Maroc, avril 2006; Sari et al. in Int J Adv Manuf Technol 25:979–987, 2005; Ghomri & Sari in Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre 2009). These heuristics were developed to control the storage and retrieval of items in the AS/RS. On the other hand, analytical models were conceived to bring a bottom line for comparison of different control techniques. To carry out this comparative study, simulations were performed on a wide range of system configurations. In order to validate metaheuristics results, a sensitive study on their parameters was achieved, and the best parameters were selected for comparative study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen S. L. (1992) A selection guide to AS/R systems. Industrial Engineering 24: 28–31

    Google Scholar 

  • Ashayeri J., Heuts R. M. (2002) A geometrical approach to computing expected cycle times for zone-based storage layouts in AS/RS. International Journal of Production Research 40: 4467–4483

    Article  Google Scholar 

  • Ashayeri J., Heuts R. M., Valkenburg M. W. T., Veraart M. R., Wilhelm H. C. (2002) A geometrical approach to computing expected cycle times for zonebased storage layouts in AS/RS. International Journal of Production Research 40(17): 4467–4483

    Article  Google Scholar 

  • Barrett, B. G. (1977). An empirical comparison of high-rise warehouse policies for operator-controlled stacker cranes. Rochester, NY: Logistics Research and Analysis, Eastman Kodak Company.

  • Bianchi L., Dorigo M., Gambardella L. M., & Gutjahr W. J. (2006) Metaheuristics in Stochastic Combinatorial Optimization: A survey. IDSIA—Dalle Molle Institute for Artificial Intelligence Via Cantonale, Galleria 2, 6928 Manno Switzerland.

  • Blum C., Roli A. (2003) Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3): 268–308

    Article  Google Scholar 

  • Bozer Y. A., & White, J. A. (1980). Optimum designs of automated storage/retrieval systems. In Proceedings of the TIMS/ORSA Joint National Meeting. Washington, DC.

  • Bozer Y. A., White J. A. (1984) Travel-time models for automated storage/retrieval systems. IIE Transactions 16: 329–338

    Article  Google Scholar 

  • Chang S. H., Egbelu P. J. (1997) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval systems to minimize maximum system response time. IIE Transactions 29: 303–312

    Google Scholar 

  • Chang D. T., Wen U. P., Lin J. T. (1995) The impact of acceleration/deceleration on travel-time models for automated storage/retrieval systems. IIE Transactions 27: 108–111

    Article  Google Scholar 

  • Chang D. T., Wen U. P. (1997) The impact of rack configuration on the speed profile of the storage and retrieval machine. IIE Transactions 29: 525–531

    Google Scholar 

  • Chang S. H., Egbelu P. J. (1997) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval systems to minimize expected system response time. IIE Transactions 29: 313–322

    Google Scholar 

  • Dallari F., Marchet G., Ruggeri R. (2000) Optimisation of man-on-board automated storage/retrieval systems. Integrated Manufacturing Systems 11: 87–93

    Article  Google Scholar 

  • de KosterM. B. M., Le-Anh T., Yu Y. (2006) Optimal storage rack design for a 3-dimensional compact AS/RS. International Journal of Production Research 46(6): 1495–1514

    Article  Google Scholar 

  • Egbelu P. J., Wu C. T. (1993) A comparison of dwell point rules in automated storage/retrieval systems. International Journal of Production Research 31: 2515–2530

    Article  Google Scholar 

  • Egbelu P. J. (1991) Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system. International Journal of Production Research 29: 17–37

    Article  Google Scholar 

  • Gaouar, N., Sari, Z., & Ghouali, N. (2006) Modélisation et implémentation d’une heuristique de stockage/déstockage pour un AS/RS à convoyeur gravitationnel dans l’environnement ARENA. MOSIM 2006, Rabat, Maroc, avril

  • Ghomri, L., & Sari, Z. (2009). Modèle mathématique du temps de déstockage pour les AS/RS à convoyeur gravitationnel. Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre.

  • Glover F. (1986) Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13: 533–549

    Article  Google Scholar 

  • Graves S. C., Hausman W. H., Schwarz L. B. (1977) Storage retrieval interleaving in automatic warehousing systems. Management Science 23: 935–945

    Article  Google Scholar 

  • Hausman W. H., Schwarz L. B., Graves S. C. (1976) Optimal storage assignment in automatic warehousing systems. Management Science 22(6): 629–638

    Article  Google Scholar 

  • Hwang H., Lim J. M. (1993) Deriving an optimal dwell point of the storage/retrieval machine in an automated storage/retrieval system. International Journal of Production Research 31: 2591–2602

    Article  Google Scholar 

  • Hwang H., Lee S. B. (1990) Travel-time models considering the operating characteristics of the storage and retrieval machine. International Journal of Production Research 28(10): 1779–1789

    Article  Google Scholar 

  • Karaswa Y., Nakayama H., Dohi S. (1980) Trade-off analysis for optimal design automated warehouses. International Journal of Systems Sciences 11: 567–576

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983) Optimization by simulated annealing. Science 220(4598): 671–680

    Article  Google Scholar 

  • Koenig J. (1980) Design and model the total system. Industrial Engineering 12: 22–27

    Google Scholar 

  • Kouloughli, S., Sari, Z., & Sari, T. (2008). Optimisation des dimensions d’un AS/RS multi allées pour un temps de simple cycle minimale. In Proceedings of MOSIM’08, Paris, France. ISBN. 978-2—7430-1057-7.

  • Kouloughli S., Sari Z., Sari T. (2010) Optimisation des dimensions d’un AS/RS multi-allée basée sur un modèle analytique du temps de simple cycle. Journal Européen Des Systèmes Automatisés (JESA) 44(2): 135–159

    Article  Google Scholar 

  • Kouvelis P., Papanicolaou V. (1995) Expected travel time and optimal boundary formulas for a two-class-based automated storage/retrieval system. International Journal of Production Research 33: 2889–2905

    Article  Google Scholar 

  • Kulturel S., Ozdemirel N. E. (1999) Experimental investigation of shared storage assignment policies in automated storage/retrieval systems. IIE Transactions 31: 739–749

    Google Scholar 

  • Lee H. F. (1997) Performance analysis for automated storage and retrieval systems. IIE Transactions 29(1): 15–28

    Article  Google Scholar 

  • Luke, S. (2010). Essentials of Metaheuristics. Zeroth Edition.

  • Mansuri M. (1997) Cycle-time computation, and dedicated storage assignment, for AS/R systems. Computers & Industrial Engineering 33: 307–310

    Article  Google Scholar 

  • Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 1087–1091

    Article  Google Scholar 

  • MHI. (1977). Considerations for planning and installing an automated storage/retrieval systems, Material Handling Institute, Inc., AS/RS Document-100 7M.

  • Osman I. H., Laporte G. (1996) Metaheuristics: A bibliography. Annals of Operations Research 63: 513–623

    Article  Google Scholar 

  • Park B. C. (2001) An optimal dwell point for automated storage/retrieval systems with uniformly distributed, rectangular racks. International Journal of Production Research 39: 1469–1480

    Article  Google Scholar 

  • Park B. C. (2006) Performance of automated storage/retrieval systems with non-square-in-time racks and two-class storage. International Journal of Production Research 44: 1107–1123

    Article  Google Scholar 

  • Park B. C., Foley R. D., Frazelle E. H. (2006) Performance of miniload systems with two-class storage. European Journal of Operational Research 170: 144–155

    Article  Google Scholar 

  • Peters B. A., Smith J. S., Hale T. S. (1996) Closed form models for determining the optimal dwell point location in automated storage and retrieval systems. International Journal of Production Research 34: 1757–1771

    Article  Google Scholar 

  • Roodbergen K. J., Vis Iris F. A. (2009) A survey of literature on automated storage and retrieval systems. European Journal of Operational Research 194: 343–362

    Article  Google Scholar 

  • Sand G. M. (1976) Stacker crane product handling systems. Eastman Kodak Company

  • Sari, Z. (2003). Modélisation, Analyse et Evaluation des Performances d’un AS/RS à Convoyeur Gravitationnel. PhD Thesis, Tlemcen University, Algeria.

  • Sari, Z. (2009). Performance evaluation of flow-rack and unit load automated storage & retrieval systems. Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre.

  • Sari Z., Saygin C., Ghouali N. (2005) Travel time models for flow-rack automated storage and retrieval systems. International Journal of Advanced Manufacturing Technology 25(9–10): 979–987

    Article  Google Scholar 

  • Sarker B. R., Babu P. S. (1995) Travel time models in automated storage/retrieval systems: A critical review. International Journal of Production Economics 40: 173–184

    Article  Google Scholar 

  • Schwarz L. B., Graves S. C., Hausman W. H. (1978) Scheduling policies for automatic warehousing systems: Simulation results. AIIE Transactions 10: 260–270

    Article  Google Scholar 

  • van Den Berg J. P., Gademann A. J. R. M. (2000) Simulation study of an automated storage/retrieval system. International Journal of Production Research 38: 1339–1356

    Article  Google Scholar 

  • Wen U. P., Chang D., Chen S. P. (2001) The impact of acceleration/deceleration on travel-time models in class-based automated S/R systems. IIE Transactions 33: 599–608

    Google Scholar 

  • Yu Y., de Koster M. B. M. (2009) Designing an optimal turnover-based storage rack for a 3D compact automated storage and retrieval system. International Journal of Production Research 47(6): 1551–1571

    Article  Google Scholar 

  • Zollinger, H. A. (1975). Planning, evaluating and estimating storage systems. In Proceedings of the Advanced Material Handling Seminar, Purdue University, IN.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki Sari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessenouci, H.N., Sari, Z. & Ghomri, L. Metaheuristic based control of a flow rack automated storage retrieval system. J Intell Manuf 23, 1157–1166 (2012). https://doi.org/10.1007/s10845-010-0432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0432-1

Keywords

Navigation