Skip to main content
Log in

An e-Learning tool considering similarity measures for manufacturing cell formation

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Manufacturing cell formation is the first step in the design of cellular manufacturing system. The primary objective of this step is to cluster machines into machine cells and parts into part families so that the minimum of intercell trips will be achieved. This paper will be focused on the configuration of machine cells considering three types of initial machine-part matrix: binary (zero-one) matrix, production volume matrix, and operation time matrix. The similarity measure uses only information from these types of matrix. A pure combinatorial programming formulation will be developed to maximize the sum of similarity coefficients between machine/part pairs. An e-Learning tool/application to help industrial students and engineers for enhancing their cell formation capability is proposed. This tool is designed to include a novel similarity coefficient-based heuristic algorithm for solving the cell formation problem. To determine the performance of the proposed tool, comparison is made with a well-known tool along a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arvindh, B.,& Irani, S. A. (1994). Cell formation: The need for integrated solution of the subproblems. International Journal of Production Research, 32(5), 1197–1218.

    Article  Google Scholar 

  • Bhandwale, A.,& Kesavadas, T. (2008). A methodology to incorporate product mix variations in cellular manufacturing. Journal of Intelligent Manufacturing, 19, 71–85.

    Article  Google Scholar 

  • Bortolini, M., Manzini, R., Accorsi, R.,& Mora, C. (2011). An hybrid procedure for machine duplication in cellular manufacturing systems. International Journal of Advanced Manufacturing Technology, 57, 1155–1173.

    Article  Google Scholar 

  • Boulif, M.,& Atif, K. (2008). A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. International Journal of Approximate Reasoning, 47(2), 141–165.

    Article  Google Scholar 

  • Burbidge, J. L. (1971). Production flow analysis. Production Engineer, 50, 139–152.

    Article  Google Scholar 

  • Burbidge, J. L. (1977). A manual method for production flow analysis. Production Engineer, 56, 34–38.

    Article  Google Scholar 

  • Chan, H. M.,& Milner, D. A. (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing Systems, 1(1), 65–75.

    Article  Google Scholar 

  • Chandrasekharan, M. P.,& Rajagopalan, R. (1986). MODROC: An extension of rank order clustering for group technology. International Journal of Production Research, 24, 1221–1233.

    Article  Google Scholar 

  • Choobineh, F. (1988). A framework for the design of cellular manufacturing systems. International Journal of Production Research, 26(7), 1161–1172.

    Article  Google Scholar 

  • Ertay, T. (1998). Simulation approach in comparison of a pull system in a cell production system with a push system in a conventional production system according to flexible cost: A case study. International Journal of Production Economics, 56–57, 145–155.

    Article  Google Scholar 

  • Ertay, T.,& Satoglu, S. I. (2012). System parameter selection with information axiom for the new product introduction to the hybrid manufacturing systems under dual-resource constraint. International Journal of Production Research, 50(7), 1825–1839.

    Article  Google Scholar 

  • Fazakerly, G. (1976). Research report on the human aspects of group technology and cellular manufacturing. International Journal of Production Research, 14, 123–135.

    Article  Google Scholar 

  • Ferreira Ribeiro, J. F.,& Pradin, B. (1993). A methodology for cellular manufacturing design. International Journal of Production Research, 31(1), 235–250.

    Article  Google Scholar 

  • Garbie, I. H., Parsaei, H. R.,& Leep, H. R. (2008). Machine cell formation based on a new similarity coefficient. Journal of Industrial and Systems Engineering, 1(4), 318–344.

    Google Scholar 

  • Ghezavati, V.,& Saidi-Mehrabad, M. (2010). Designing integrated cellular manufacturing systems with scheduling considering stochastic processing time. International Journal of Advanced Manufacturing Technology, 48, 701–717.

    Article  Google Scholar 

  • Gupta, T. (1993). Design of manufacturing cell for flexible environment considering alternative routings. International Journal of Production Research, 31(6), 1259–1273.

    Article  Google Scholar 

  • Gupta, T.,& Seifoddini, H. (1990). Production data based similarity coefficient for machine-component grouping decision in the design of a cellular manufacturing system. International Journal of Production Research, 28(7), 1247–1269.

    Article  Google Scholar 

  • Hachicha, W., Masmoudi, F.,& Haddar, M. (2008). Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach. International Journal of Advanced Manufacturing Technology, 36, 1157–1169.

    Article  Google Scholar 

  • Huber, V. L.,& Hyer, N. L. (1985). The human factor in cellular manufacturing. Journal of Operations Management, 5(2), 213–228.

    Article  Google Scholar 

  • Ilić, O. (1994). Analysis of the number of automated guided vehicles required in flexible manufacturing systems. International Journal of Advanced Manufacturing Technology, 9, 382–389.

    Article  Google Scholar 

  • Ilić, O. (2003). Computer integrated manufacturing. Belgrade: Faculty of Management Sciences, University of Belgrade. (In Serbian).

  • Irani, S. A.,& Huang, H. (2005). Hybrid cellular layouts: New ideas for design of flexible and lean layouts for jobshops. Columbus: Department of industrial, welding and systems engineering, The Ohio State University.

    Google Scholar 

  • Irani, S. A.,& Huang, H. (2006). Cascading flowlines and layout modules: Practical strategies for machine duplication in facility layouts. International Journal of Flexible Manufacturing Systems, 17, 119–149.

    Article  Google Scholar 

  • Jabal-Ameli, M. S.,& Akart, J. (2008). Cell formation with alternative process routings and machine reliability consideration. International Journal of Advanced Manufacturing Technology, 35, 761– 768.

    Article  Google Scholar 

  • Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin Société Vaudoise des Sciences Naturelles, 44, 223–270. (In French).

    Google Scholar 

  • Jayakrishnan Nair, G.,& Narendran, T. T. (1999). ACCORD: A bicriterion algorithm for cell formation using ordinal and ratio-level data. International Journal of Production Research, 37(3), 539– 556.

    Article  Google Scholar 

  • Khilwani, N., Ulutas, B. H., Islier, A. A.,& Tiwari, M. K. (2011). A methodology to design virtual cellular manufacturing systems. Journal of Intelligent Manufacturing, 22, 533–544.

    Article  Google Scholar 

  • King, J. R. (1980). Machine-component grouping in production flow analysis: An approach using rank order clustering algorithm. International Journal of Production Research, 18, 213–232.

    Article  Google Scholar 

  • Kitaoka, M., Nakamura, R., Serizawa, S.,& Usuki, J. (1999). Multivariate analysis model for machine-part cell formation problem in group technology. International Journal of Production Economics, 60, 433–438.

    Article  Google Scholar 

  • Kusiak, A.,& Chow, W. S. (1987). An algorithm for cluster identification. IEEE Transactions on Systems, Man and Cybernetics, 17(4), 696–699.

    Article  Google Scholar 

  • Li, X., Baki, M. F.,& Aneja, Y. P. (2010). An ant colony optimization metaheuristic for machine-part cell formation problem. Computers& Operations Research, 37, 2071–2081.

    Article  Google Scholar 

  • Liu, C. G., Yin, Y., Yasuda, K.,& Lian, J. (2010). A heuristic algorithm for cell formation problems with consideration of multiple production factors. International Journal of Advanced Manufacturing Technology, 46, 1201–1213.

    Article  Google Scholar 

  • Luo, J.,& Tang, L. (2009). A hybrid approach of ordinal optimization and iterated local search for manufacturing cell formation. International Journal of Advanced Manufacturing Technology, 40, 362–372.

    Article  Google Scholar 

  • Manzini, R., Bindi, F.,& Pareschi, A. (2010). The threshold value of group similarity in the formation of cellular manufacturing systems. International Journal of Production Research, 48(10), 3029–3060.

    Article  Google Scholar 

  • McAuley, J. (1972). Machine grouping for efficient production. Production Engineer, 51, 53–57.

    Article  Google Scholar 

  • Mosier, C. T. (1989). An experiment investigating the application of clustering procedures and similarity coefficient in the GT machine cell formation problem. International Journal of Production Research, 27, 1811–1835.

    Article  Google Scholar 

  • Oliveira, S., Ribeiro, J. F. F.,& Seok, S. C. (2008). A comparative study of similarity measures for manufacturing cell formation. Journal of Manufacturing Systems, 27(1), 19–25.

    Article  Google Scholar 

  • Pailla, A., Trindade, A. R., Parada, V.,& Ochi, L. S. (2010). A numerical comparison between simulated annealing and evolutionary approaches to the cell formation problem. Expert Systems with Applications, 37(7), 5476–5483.

    Article  Google Scholar 

  • Papaioannou, G.,& Wilson, J. M. (2010). The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research. European Journal of Operational Research, 206(3), 509–521.

    Article  Google Scholar 

  • Pattanaik, I. N.,& Sharma, B. P. (2009). Implementing lean manufacturing with cellular layout: A case study. International Journal of Advanced Manufacturing Technology, 42, 772–779.

    Article  Google Scholar 

  • Purcheck, G. (1975). A mathematical classification as a basis for the design of group technology production cells. Production Engineer, 54, 35–48.

    Article  Google Scholar 

  • Rafiee, K., Rabbani, M., Rafiei, H.,& Rahimi-Vahed, A. (2011). A new approach towards integrated cell formation and inventory lot sizing in an unreliable cellular manufacturing system. Applied Mathematical Modelling, 35, 1810–1819.

    Article  Google Scholar 

  • Reisman, A., Kumar, A., Motwani, J.,& Cheng, C. (1997). Cellular manufacturing: A statistical review of the literature. Operations Research, 45, 508–520.

    Article  Google Scholar 

  • Romesburg, H. C. (1984). Cluster analysis for researchers. Belmont: Lifetime learning publications, Wadsworth, Inc.

    Google Scholar 

  • Safaei, N., Mehrabad, M. S.,& Babakhani, M. (2007). Designing cellular manufacturing systems under dynamic and uncertain conditions. Journal of Intelligent Manufacturing, 18, 383–399.

    Google Scholar 

  • Saraç, T.,& Ozcelik, F. (2012). A genetic algorithm with proper parameters for manufacturing cell formation problems. Journal of Intelligent Manufacturing, 23, 1047–1061.

    Google Scholar 

  • Satoglu, S. I., Durmusoglu, M. B.,& Ertay, T. (2010). A mathematical model and a heuristic approach for design of the hybrid manufacturing systems to facilitate one-piece flow. International Journal of Production Research, 48(17), 5195–5220.

    Article  Google Scholar 

  • Seifoddini, H.,& Wolfe, P. M. (1986). Application of similarity coefficient method in GT. IIE Transactions, 18, 271–277.

    Article  Google Scholar 

  • Selim, H. M., Askin, R. G.,& Vakharia, A. J. (1998). Cell formation in group technology: Review evaluation and directions for future research. Computers& Industrial Engineering, 34, 3–20.

    Article  Google Scholar 

  • Singh, N. (1993). Design of cellular manufacturing systems: An invited review. European Journal of Operational Research, 69, 284–291.

    Article  Google Scholar 

  • Singh, N. (1996). System approach to computer-integrated design and manufacturing. New York: Wiley.

    Google Scholar 

  • Sneath, S. H. A.,& Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stawowy, A. (2006). Evolutionary strategy for manufacturing cell design. Omega, 34(1), 1–18.

    Article  Google Scholar 

  • Steudel, H. J.,& Ballakur, A. (1987). A dynamic programming based heuristic for machine grouping in manufacturing cell formation. Computers& Industrial Engineering, 12(3), 215–222.

    Article  Google Scholar 

  • Vin, E., De Lit, P.,& Delchambre, A. (2005). A multiple-objective grouping genetic algorithm for the cell formation problem with alternative routings. Journal of Intelligent Manufacturing, 16, 189–205.

    Article  Google Scholar 

  • Waghodekar, P. H.,& Sahu, S. (1984). Machine-component cell formation in group technology: MACE. International Journal of Production Research, 22(6), 937–948.

    Article  Google Scholar 

  • Wei, N. C.,& Mejabi, O. O. (2008). A clustering approach for minimizing intercell trips in cell formation. Journal of Intelligent Manufacturing, 19, 13–20.

    Article  Google Scholar 

  • Wemmerlov, U.,& Hyer, N. L. (1986). Procedures for the part family/machine group identification problem in cellular manufacturing. Journal of Operations Management, 6(2), 125–147.

    Article  Google Scholar 

  • Wemmerlov, U.,& Hyer, N. L. (1987). Research issues in cellular manufacturing. International Journal of Production Research, 25, 413–431.

    Article  Google Scholar 

  • Wu, X., Chu, C. H., Wang, Y.,& Yue, D. (2007). Genetic algorithms for integrating cell formation with machine layout and scheduling. Computers& Industrial Engineering, 53(2), 277–289.

    Article  Google Scholar 

  • Yin, Y.,& Yasuda, K. (2006). Similarity coefficient methods applied to the cell formation problem: A taxonomy and review. International Journal of Production Economics, 101, 329–352.

    Article  Google Scholar 

  • Yin, Y., Yasuda, K.,& Hu, L. (2005). Formation of manufacturing cells based on material flows. International Journal of Advanced Manufacturing Technology, 27, 159–165.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Integrated and Interdisciplinary Research Grant (47003) from The Serbian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver R. Ilić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilić, O.R. An e-Learning tool considering similarity measures for manufacturing cell formation. J Intell Manuf 25, 617–628 (2014). https://doi.org/10.1007/s10845-012-0709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0709-7

Keywords

Navigation