Skip to main content

Advertisement

Log in

Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Energy efficiency has become an important factor that should be included in Intelligent Manufacturing due to the increasingly rising energy price and severe energy shortage issues. Energy demand modeling method is the foundation of improving the energy efficiency of manufacturing; therefore, an energy demand modeling methodology for machining processes is proposed. In this method, machining processes are divided into a series of activities, and Therblig, as one of the basic concepts of Motion study, is introduced to represent the basic energy demand unit. Moreover, a mathematical model of energy demand of machining processes is established by linking the activity and Therblig with machining state. Finally, case studies are performed to illustrate the validity and feasibility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a_p\) :

Cutting depth (mm)

\(ATR\) :

Activity-Therblig relation matrix

\(d\) :

Diameter of cutting tool (mm)

\(E\) :

Energy consumption of the machining process (kJ)

\(E_j\) :

Energy consumption of Therblig in the whole machining process (kJ)

\(f\) :

Feed speed (mm/rv)

\(f_z\) :

Feed per tooth (mm/tooth)

\(F_c\) :

Cutting force (kN)

\(K_p\) :

Property of materials (\(\text{ kJ/cm}^{3}\))

\(L\) :

Cutting length (mm)

\(L_C \) :

Length cutter from the workpiece (mm)

\(MRR\) :

Material removal rate (cm3/s)

\(n\) :

Spindle rotation speed (r/min)

\(N\) :

Number of measurement points

\(P\) :

Cutting power (kW)

\(P_{e-in}\) :

Electrical power in (kW)

\(p_{ij}\) :

Power of Therblig \(j\) in activity \(i\) (kW)

\(P_{m-out} \) :

Mechanical power out (kW)

\(P_n\) :

Nominal power (kW)

\(P_{wl}\) :

Windage loss (kW)

\(P_{fl} \) :

Friction loss (kW)

\(P_{cl} \) :

Copper loss (kW)

\(P_{il} \) :

Iron loss (kW)

\(P_{sl} \) :

Stray loss (kW)

\(P_{sn} \) :

Unloaded spindle power (kW)

\(P_f^{r}\) :

Power of rapid positioning (kW)

\(P_x^{r}\) :

Power of x-axis feed motor during rapid positioning (kW)

\(P_y^{r}\) :

Power of y-axis feed motor during rapid positioning (kW)

\(P_z^{r}\) :

Power of z-axis feed motor during rapid positioning (kW)

\(P_f^{c}\) :

Power of cutting feed (kW)

\(P_x^c\) :

Power of x-axis motor at the speed of \(\text{ v}_{x}\) (kW)

\(P_y^c\) :

Power of y-axis motor at the speed of \(\text{ v}_{y}\) (kW)

\(P_z^c\) :

Power of z-axis motor at the speed of \(\text{ v}_{z}\) (kW)

\(P_{BM, i} \) :

Measured power of Therblig-BM of measurement point \(i\) (kW)

\(P_{Cut} \) :

Actual cutting power (kW)

\(P_{Tip-cutting} \) :

Cutting power of tool tip (kW)

\(s_{ij} \) :

Execution state of Therblig \(i\) in activity \(j\)

\(SEC\) :

Specific energy consumption (\(\text{ kJ/cm}^{3}\))

\(T\) :

Time matrix of activity of CNC machine tools

\(TP\) :

Power matrix of Therblig of CNC machine tools

\(TT\) :

Time matrix of Therblig of CNC machine tools

\(t\) :

Machining time (s)

\(t_{cutting} \) :

Cutting time (s)

\(t_i \) :

Execute time of activity \(i\)

\(v\) :

Cutting speed (m/min)

\(v_f \) :

Feed speed (m/min)

\(v_x \) :

X-axis feed speed (m/min)

\(v_y \) :

Y-axis feed speed (m/min)

\(v_z \) :

Z-axis feed speed (m/min)

\(V_m \) :

Volume of removal material (\(\text{ cm}^{3}\))

\(w\) :

Cutting width (mm)

\(z\) :

Number of teeth of cutter

\(\alpha \) :

Power loss coefficient

\(\eta \) :

Motor efficiency

\(\ell \) :

Motor load

\(\Delta X\) :

Move distances in X-axis (mm)

\(\Delta Y\) :

Move distances in Y-axis (mm)

\(\Delta X_f \) :

Feed distances in X-axis (mm)

\(\Delta Y_f \) :

Feed distances in Y-axis (mm)

References

  • Alexopoulos, K., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2010). A method for comparing flexibility performance for the lifecycle of manufacturing systems under capacity planning constraints. International Journal of Production Research, 49(11), 3307–3317.

    Article  Google Scholar 

  • Anderberg, S. E., Kara, S., & Beno, T. (2010). Impact of energy efficiency on computer numerically controlled machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(4), 531–541.

    Article  Google Scholar 

  • Avram, O. I., & Xirouchakis, P. (2011). Evaluating the use phase energy requirements of a machine tool system. Journal of Cleaner Production, 19(6–7), 699–711.

    Article  Google Scholar 

  • Barnes, M. (2003). Practical Variable Speed Drives and Power Electronics (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Chryssolouris, G., & Lee, M. (1992). An assessment of flexibility in manufacturing systems. Manufacturing Review, 5(2), 105–116.

    Google Scholar 

  • Chryssolouris, G., Papakostas, N., & Mavrikios, D. (2008). A perspective on manufacturing strategy: Produce more with less. CIRP Journal of Manufacturing Science and Technology, 1(1), 45–52.

    Article  Google Scholar 

  • CK6153i series. (2000). Manual specification of CK6153i series CNC lathe. Jinan First Machine Tool Group Co., Ltd. of China.

  • Dahmus, J., & Gutowski, T. (2004). An environmental analysis of machining.//2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, United states: ASME:643–652.

  • Dietmair, A., & Verl, A. (2009a). A generic energy consumption model for decision making and energy efficiency optimization in manufacturing. International Journal of Sustainable Engineering, 2(2), 123–133.

    Article  Google Scholar 

  • Dietmair, A., & Verl, A. (2009b). Energy Consumption Forecasting and Optimization for Tool Machines. Modern Machinery Science Journal, 3, 62–67.

    Google Scholar 

  • Gilbreth, F. B., & Gilbreth, L. M. (1919). Applied Motion Study. London: George Routledge and Sons.

    Google Scholar 

  • Gilbreth, F. B. (1972). Motion study: A method for increasing the efficiency of the workman. Hive Pub. Co. (Easton Pa).

  • Gupta, D. P. (2005). Energy-sensitive machining parameter optimization model. Ph.D. Thesis, West Virginia University.

  • Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., et al. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13(1), 1–17.

    Article  Google Scholar 

  • Hatamura, Y., Nagao, T., Mitsuishi, M., Nakagawa, G., Sugishita, H., & Kramer, B. (1992). A fundamental structure for intelligent manufacturing and its applications to a machining center. IFIP Transactions B-Applications in Technology, 3, 131–143.

    Google Scholar 

  • He, Y., Liu, F., Wu, T., Zhong, F. P., & Peng, B. (2011). Analysis and estimation of energy consumption for numerical control machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(2), 255–266.

    Article  Google Scholar 

  • Iqbal, A., Dar, N. U., He, N., Hammouda, M. M. I., & Li, L. A. (2010). Self-developing fuzzy expert system: A novel learning approach, fitting for manufacturing domain. Journal of Intelligent Manufacturing, 21(6), 761–776.

    Article  Google Scholar 

  • International Energy Agency (IEA). (2007). Tracking Industrial Energy Efficiency and \(\text{ CO}_{2}\) Emission. Paris: OECD/IEA.

  • Jedrzejewski, J., & Kwasny, W. (1998). An approach to integrating intelligent diagnostics and supervision of machine tools. Journal of Intelligent Manufacturing, 9(4), 295–302.

    Article  Google Scholar 

  • Jordan, H. E. (1994). Energy Efficient Electric Motors and Their Applications. Second Edition.

  • Kalla, D., Twomey, J., & Overcash, M. (2009). Unit process life cycle inventory: Turning Process.

  • Kara, S., & Ibbotson, S. (2011). Embodied energy of manufacturing supply chains. CIRP Journal of Manufacturing Science and Technology, 4(3), 317–323.

    Article  Google Scholar 

  • Kima, H. S., & Ehmannb, K. F. (1993). A cutting force model for face milling operations. International Journal of Machine Tools and Manufacture, 33(5), 651–673.

    Article  Google Scholar 

  • Kong, D., Choi, S., Yasui, Y., Pavanaskar, S., Dornfeld, D., & Wright, P. (2011). Software-based tool path evaluation for environmental sustainability. Journal of Manufacturing Systems, 30(4), 241–247.

    Google Scholar 

  • Kordonowy, D. N. (2002). A Power Assessment of Machining Tools, Bachelor of Science Thesis in Mechanical Engineering. Cambridge, Massachusetts: Massachusetts Institute of Technology.

    Google Scholar 

  • Li, W., & Kara, S. (2011). An empirical model for predicting energy consumption of manufacturing processes:A case of turning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1636–1646.

    Article  Google Scholar 

  • Lin, W. S., Lee, B. Y., & Wu, C. L. (2001). Modeling the surface roughness and cutting force for turning. Journal of Materials Processing Technology, 108(3), 286–293.

    Article  Google Scholar 

  • Liu, F., Xu, Z. J., & Dan, B. (1995). Energy Characteristics of Machining System and its application. Beijing: China Machine Press.

    Google Scholar 

  • Manav, C., Bank, H. S., & Lazoglu, I. (2011). Intelligent toolpath selection via multi-criteria optimization in complex sculptured surface milling. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0596-3.

  • Mativenga, P. T., & Rajemi, M. F. (2011). Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Annals Manufacturing Technology, 60(1), 149–152.

    Article  Google Scholar 

  • Pusavec, F., Krajnik, P., & Kopac, J. (2010). Transitioning to sustainable production—Part I: Application on technologies. Journal of Cleaner Production, 18(2), 174–184.

    Article  Google Scholar 

  • Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), 607–617.

    Article  Google Scholar 

  • Rahimifard, S., Seow, Y., & Childs, T. (2010). Minimising embodied product energy to support energy efficient manufacturing. CIRP Annals Manufacturing Technology, 59(1), 25–28.

    Article  Google Scholar 

  • Salvendy, G. (2001). Handbook of Industrial Engineering (3rd ed., Vol. 3). New York: Wiley.

    Book  Google Scholar 

  • Shao, G., Kibira, D., & Lyons, K. (2010). A virtual machining model for sustainability analysis. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference.

  • Sharma, V. S., Dhiman, S., Sehgal, R., & Sharma, S. K. (2008). Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing, 19(4), 473–483.

    Article  Google Scholar 

  • Stute, H., & Limed, E. V. D. (1955). Transmissions and efficiencies for machine tools. Industrial indicator.

  • Sun, M. D. (2004). Direct programming technology of milling process of CNC machine tools. Beijing: China Machine Press.

    Google Scholar 

  • Yang, L., Deuse, J., & Jiang, P. (2012). Multi-objective optimization of facility planning for energy intensive companies. Journal of Intelligent Manufacturing. doi:10.1007/s10845-012-0637-6.

  • Zeroudi, N., Fontaine, M., & Necib, K. (2010). Prediction of cutting forces in 3-axes milling of sculptured surfaces directly from CAM tool path. Journal of Intelligent Manufacturing, 23(5), 1573–1587.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully thank all the anonymous reviewers for their valuable suggestions on the improvement of our paper and acknowledge the National Natural Science Foundation, China (No.51175464), and the Ningbo Science and Technology Innovation Team for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Tang, R. & Lv, J. Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing. J Intell Manuf 25, 913–931 (2014). https://doi.org/10.1007/s10845-012-0723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0723-9

Keywords

Navigation