Skip to main content

Advertisement

Log in

An adaptive genetic algorithm for the time dependent inventory routing problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper we propose an adaptive genetic algorithm that produces good quality solutions to the time dependent inventory routing problem (TDIRP) in which inventory control and time dependent vehicle routing decisions for a set of retailers are made simultaneously over a specific planning horizon. This work is motivated by the effect of dynamic traffic conditions in an urban context and the resulting inventory and transportation costs. We provide a mixed integer programming formulation for TDIRP. Since finding the optimal solutions for TDIRP is a NP-hard problem, an adaptive genetic algorithm is applied. We develop new genetic representation and design suitable crossover and mutation operators for the improvement phase. We use adaptive genetic operator proposed by Yun and Gen (Fuzzy Optim Decis Mak 2(2):161–175, 2003) for the automatic setting of the genetic parameter values. The comparison of results shows the significance of the designed AGA and demonstrates the capability of reaching solutions within 0.5 % of the optimum on sets of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(N\) :

Number of retailers including depot

\(T\) :

Number of time periods

\(K\) :

Number of available vehicles during each period

\(M\) :

Number of time intervals considered for each link

\(t\) :

The starting time from the depot node 1

\(b_k \) :

Volume capacity of vehicle \(k\)

\(C_i \) :

Retailer’s own capacity to hold inventory

\(d_{it} \) :

Amount of demand at node \(i\) during period \(t\)

\(c_{ij}^{tm} \) :

Travel time from node \(i\) to \(j\) if starting at \(i\) during time interval \(m\) at period \(t\); \(c_{ii}^{tm} =\infty \) for all \(i, m\)

\(s_{it} \) :

Service time at node \(i\) at period \(t\)

\(T_{ij}^{tm} \) :

Upper bound for time interval \(m\) for link \(\left( {i, j} \right)\) at period \(t\)

\(h_i^+ \) :

Holding cost per unit at node \(i\)

\(h_i^- \) :

Backorder cost per unit at node \(i\)

\(c\) :

Variable routing cost per hour

\(f_t \) :

Fixed cost per vehicle at period \(t\)

\(B\) :

Max\(_{k}b_k = \) capacity of largest vehicle

\(x_{ij}^{tm}\) :

\(\left\{ {{\begin{array}{ll} 1&\quad \text{ if} \text{ any} \text{ vehicle} \text{ travels} \text{ directly} \text{ from} \text{ node}\\&\quad i \text{ to} \text{ node} j \text{ starting} \text{ from} i \text{ during} \text{ time}\\&\quad \text{ interval} m \text{ at} \text{ period} t \\ 0&\quad \text{ otherwise} \\ \end{array} }} \right.\)

\(y_{ij}^{tm} \) :

Amount transported on that trip for time interval \(m\) for link \(\left( {i, j} \right)\) at period \(t\)

\(I_{it}\) :

Inventory levels at node \(i\) at period \(t\)

\(B_{it}\) :

Inventory stock-outs at node \(i\) at period \(t\)

\(t_{it}\) :

Departure time of any vehicle from node \(i\) at period \(t\)

References

  • Abdelmaguid, T. F., & Dessouky, M. M. (2006). A genetic algorithm approach to the integrated inventory-distribution problem. International Journal of Production Research, 44(21), 4445–4464.

    Article  Google Scholar 

  • Abdelmaguid, T. F., Dessouky, M. M., & Ordonez, F. (2009). Heuristic approaches for the inventory-routing problem with backlogging. Computers & Industrial Engineering, 56(4), 1519–1534.

    Article  Google Scholar 

  • Atamturk, A., & Savelsbergh, M. W. P. (2005). Integer-programming software systems. Annals of Operations Research, 140(1), 67–124.

    Article  Google Scholar 

  • Baita, F., Ukovich, W., Pesenti, R., & Favaretto, D. (1998). Dynamic routing and inventory problems: A review. Transportation Research Part A, 32(8), 585–598.

    Google Scholar 

  • Balseiro, S. R., Loiseau, I., & Ramonet, J. (2011). An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Computers & Operations Research, 38(6), 954–966.

    Article  Google Scholar 

  • Bertazzi, L., Palettta, G., & Speranza, M. (2002). Deterministic order-up-to level policies in an inventory routing problem. Transportation Science, 36(1), 119–132.

    Article  Google Scholar 

  • Bell, W., Dalberto, M., Fisher, M., Greenfield, A., & Jaikuma, R. (1983). Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interface, 13(6), 4–23.

    Article  Google Scholar 

  • Campbell, A., Clarke, L., & Savelsbergh, M. (2002). Inventory routing in practice. In D. Toth & D. Vigo (Eds.), The Vehicle Routing Problem (pp. 309–330). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2005). An adaptive genetic algorithm with dominated genes for distributed scheduling problems. Expert Systems with Applications, 29(2), 364–371.

    Article  Google Scholar 

  • Chan, F. T. S., Wong, T. C., & Chan, L. Y. (2009). The application of genetic algorithms to lot streaming in job-shop scheduling problem. International Journal of Production Research, 47(12), 3387–3412.

    Article  Google Scholar 

  • Chen, H. K., Hsueh, C. F., & Chang, M. S. (2006). The real-time time dependent vehicle routing problem. Transportation Research Part E, 42(5), 383–408.

    Article  Google Scholar 

  • Chung, S. H., Chan, F. T. S., & Chan, H. K. (2009). A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling. Engineering Applications of Artificial Intelligence, 22(7), 1005–1014.

    Article  Google Scholar 

  • Donati, V., Montemanni, R., Casagrande, N., Rizzoli, A. E., & Gambardella, L. M. (2008). Time dependent vehicle routing problem with a multi ant colony system. European Journal of Operational Research, 185(3), 1174–1191.

    Article  Google Scholar 

  • Dror, M., & Ball, M. (1987). Inventory/routing: Reduction from an annual to a short-period problem. Naval Research Logistics, 34(6), 891–905.

    Article  Google Scholar 

  • Fogel, D. B., Fogel, G. B., & Ohkura, K. (2001). Multiple-vector self-adaptation in evolutionary algorithms. BioSystems, 61, 155–162.

    Article  Google Scholar 

  • Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.

    Google Scholar 

  • Hill, A. V., & Benton, W. C. (1992). Modeling intra-city time-dependent travel speeds for vehicle scheduling problems. Journal of the Operational Research Society, 43(4), 343–351.

    Article  Google Scholar 

  • Ichoua, A., Gendreau, M., & Potvin, J. Y. (2003). Vehicle dispatching with time dependent travel times. European Journal of Operational Research, 144(2), 379–396.

    Article  Google Scholar 

  • Kamrani, A. K., & Gonzalez, R. (2003). A genetic algorithm-based solution methodology for modular design. Journal of Intelligent Manufacturing, 14(6), 599–616.

    Article  Google Scholar 

  • Kuo, Y., Wang, C. C., & Chuang, P. Y. (2009). Optimizing goods assignment and the vehicle routing problem with time-dependent travel speeds. Computers & Industrial Engineering, 57(4), 1385–1392.

    Article  Google Scholar 

  • Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 59(1), 157–165.

    Article  Google Scholar 

  • Liu, S. C., & Chung, C. H. (2009). A heuristic method for the vehicle routing problem with backhauls and inventory. Journal of Intelligent Manufacturing, 20(1), 29–42.

    Article  Google Scholar 

  • Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185–200.

    Article  Google Scholar 

  • Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd ed.). New York: Springer.

    Book  Google Scholar 

  • Moin, N. H., & Salhi, S. (2007). Inventory routing problems: A logistical overview. Journal of the Operational Research Society, 58(9), 1185–1194.

    Article  Google Scholar 

  • Moin, N. H., Salhi, S., & Aziz, N. A. B. (2011). An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. International Journal of Production Economics, 133(1), 334–343.

    Article  Google Scholar 

  • Moon, C. U., Seo, Y. H., Yun, Y. S., & Gen, M. (2006). Adaptive genetic algorithm for advanced planning in manufacturing supply chain. Journal of Intelligent Manufacturing, 17(4), 509–522.

    Article  Google Scholar 

  • Onwubolu, G. C., & Mutingi, M. (2003). A genetic algorithm approach for the cutting stock problem. Journal of Intelligent Manufacturing, 14(2), 209–218.

    Article  Google Scholar 

  • Potvin, J. Y., Xu, Y., & Benyahia, I. (2006). Vehicle routing and scheduling with dynamic travel times. Computers & Operations Research, 33(4), 1129–1137.

    Article  Google Scholar 

  • Richard, L., Perregaard, M., Tavares, G., Tipi, H., & Vazacopoulos, A. (2009). Solving hard-integer programming problems with Xpress-MP: A MIPLIB 2003 Case Study. INFORMS Journal on Computing, 21(2), 304–313.

    Article  Google Scholar 

  • Tang, L., & Liu, J. (2002). A modified genetic algorithm for the flow shop sequencing problem to minimize mean flow time. Journal of Intelligent Manufacturing, 13(1), 61–67.

    Article  Google Scholar 

  • Yang, W., Chan, F. T. S., & Kumar, V. (2012). Optimizing replenishment polices using genetic algorithm for single-warehouse multi-retailer system. Expert Systems with Applications, 39(3), 3081–3086.

    Google Scholar 

  • Yun, Y. S. (2002). Genetic algorithm with fuzzy logic controller for preemptive and non-preemptive job shop scheduling problems. Computers and Industrial Engineering, 43(3), 623–644.

    Article  Google Scholar 

  • Yun, Y. S., & Gen, M. (2003). Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics. Fuzzy Optimization and Decision Making, 2(2), 161–175.

    Article  Google Scholar 

  • Zandieh, M., Mozaffari, E., & Gholami, M. (2010). A robust genetic algorithm for scheduling realistic hybrid flexible flow line problems. Journal of Intelligent Manufacturing, 21(6), 731–743.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-2011-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, D.W., Lee, Y.H., Lee, T.Y. et al. An adaptive genetic algorithm for the time dependent inventory routing problem. J Intell Manuf 25, 1025–1042 (2014). https://doi.org/10.1007/s10845-012-0727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0727-5

Keywords

Navigation