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Abstract In the past, the process capability index (PCI)
was the only method used in on-line quality management.
Recently however, attempts have been made to extend the
on-line application to off-line applications, such as product
design or process planning. Because the conventional PCI
index, Cp;, does not truly represent the measurement score,
alternatives cannot be differentiated during off-line appli-
cations. Hence, a new process capability index, Cpye, was
developed to reflect the differences among alternatives for
easy decision making at the product design and process plan-
ning stages; however, the deterministic approach in using this
new process capability index has the disadvantage of deal-
ing with uncertainties during the product design and process
planning activities. Quality engineering often employs an
effective way of ensuring that high product quality and low
production cost result from robust design, particularly in
terms of its application in an uncertain environment. The
new PCI was the score mainly used for off-line applications;
thus, there is motivation for using new PCI values, C ., as
the observed levels in the course of robust design implemen-
tation. The associated statistical method, response surface
methodology, will be adopted for robust design in this study.
Then, for robustness, the mean and tolerance values can be
determined appropriately, as well as a measurement score
for reasonable comparison and selection among candidates.
Consequently, an economical and quality product design and
process planning can be achieved statistically for the off-line
applications.
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Introduction

Since the manufacturing industry is currently facing intensive
competition, both cost and quality have become important
concerns of management. Thus, producers strive to provide
economical processes which are also capable of meeting cus-
tomers’ quality requirement. In recent years, as the concept of
concurrent engineering has become widely accepted, design
engineers have hoped to achieve simultaneous product design
and process planning, side by side, at an early stage of product
development (Carter and Baker 1992; Bare and Cox 2008;
Marshall and Jordan 2008; Michel et al. 2010; Mohsen et al.
2010). The goals are to shorten the time span required for
introducing the new product onto the market, while attain-
ing the lowest production cost coupled with premium prod-
uct quality. Hence, what is needed is a way to measure the
degree to which the producer’s process capability satisfies
customers’ quality requirement. More importantly, a grow-
ing number of producers include this measurement value in
their purchase contracts with customers, as a documentation
requirement. One such measurement is the process capability
index (PCI).

The PCI is a value that reflects real-time quality sta-
tus. The PCI acts as a reference for real-time monitoring;
it enables process controllers to acquire a better grasp of
the quality of on site processes (Kotz and Johnson 1993;
Kotz and Lovelace 1998). Although the PCI is one of
the quality measurements employed during on-line qual-
ity management, several authors have pointed out that the
PCI should be addressed at the beginning of the design
stage rather than at the production stage, where process
capability analysis is typically done. Thus, Jeang recently
developed a PCI expression, Cpue, extended from Cpy
for an off-line application (Jeang and Chung 2009; Jeang
2009).
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The statistical approach combines robust design with
experimental design methods (Hussain et al. 2011). The
purpose of the statistical approach is to determine which com-
ponents significantly affect the quality, functionality and cost
of a product or manufacturing process. One of the experimen-
tal design methods, RSM, is adopted for analyzing the mea-
surement scores, the process capability index (Cpx) (Lee et
al. 2010). To continue examining robust design with process
capability index, C . values are used for process planning
and product design in this study. RSM is an effective method
of exploring the relationship between controllable variables
and response values, and indicates the critical controllable
variables, while mathematically searching for the optimal
values and statistically analyzing problems (Montgomery
1991). Another important feature of RSM is that it requires
fewer experimental runs than the factorial design of exper-
iments (DOEs) as attested in the literature. In this study, a
Box-Behnken Design (BBD) was used because it allows the
efficient estimation of the first and second order coefficients
of regression functions.

This paper is organized as follows: Sect. 1 presents the
introduction, Sects. 2 and 3 contain information relevant
to the background. Section 2 discusses why the statistical
design via statistical method is necessary for uncertain envi-
ronments. Section 3 introduces the statistical method, RSM,
which is adopted in this research. Section 4 introduces the
new PCI which will be used for statistical analysis. Section 5
provides an application showing the proposed approach.
Finally, a summary is given in Sect. 6.

Robust design for uncertainty

There are a few shortcomings in a design that uses the
deterministic approach. Models that represent the interac-
tion between the variables and their relationship to the end
product’s performance are virtually unknown. Convention-
ally, the approach in determining quality values (design val-
ues) of controllable variables according to the expected prod-
uct performance is often an iterative process. Namely, it is
possible to go back and assign new component design val-
ues to produce different product performance until a satis-
factory yield has been achieved. The trial used in assigning
new quality value (design value) of the controllable variable
is inefficient because of possible dependence among vari-
ous controllable variables. In addition, the approach cannot
suggest which component is important and what the exact
variable quality values should be, particularly when depen-
dence is present. Hence, moving trials forward and backward
becomes a very time consuming and tedious task; it slows
down the pace of product development. Moreover, designers
prefer to have as many feasible designs as possible in order
to allow for changes when they encounter complexities. This
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tendency makes the above discussions even more problem-
atic. For design activities, besides optimal solutions, a statis-
tical view of the analysis of the design problem is also neces-
sary, particularly under uncertain design conditions (Jeang
and Chang 2002). Quality engineering often employs the
statistical method for robust design; it improves product or
process quality by reducing the effects of variation in order
to facilitate product functionality (Phadke 1989; Taguchi and
Wu 1985; Du et al. 2012; Sibalija and Majstorovic 2012). The
effectiveness of robust design can be achieved by using a sta-
tistical method such as DOE (Montgomery 1991). Usually,
product or process engineers utilize DOE to reduce the effects
of variation by suggesting a proper direction for design or
process improvements. The purpose of the DOE is to deter-
mine which of the design variables significantly affect the
response values. This feature, in determining critical design
variables, is very important, particularly when new products
or processes are developed. The statistical method, response
surface methodology (RSM), will be adopted in this study
(Montgomery 1991).

Experimental designs with RSM

Usually, the relationship between the dependent variable and
the independent variable is extremely complex or unknown;
however, RSM provides a procedure that solves this problem
(Montgomery 1991). Assume that the designer is concerned
with a system involving some response values R, which
depend on input variables X;. For convenience, these input
variables are also called design variables in later discussion.
It is also assumed that X; is continuous and controllable. The
functional relationship between the response and the levels
of n inputs can be written as:

o Xn) ey

This determines whether a mechanistic model for such
a relationship exists. Thus, the first step in RSM is to find a
suitable approximation for f(.) using alow-order polynomial
in some region of the independent variables. If the approxi-
mated function has linear variables, a first-order polynomial
can be used and written in terms of the design variables:

R = f(X1, X2, ..

R=ay+a1 X1 +aX;+ - +a, X, )

Otherwise, a second-order polynomial can be used:

n n n n
R=ao+ Y aiXi+ D biX]+ > > cijXiX; 3)
i=1 i=1

i=1 j=1

The frequent use of second-order polynomial models is jus-
tified by the fact that they reflect the nonlinear behavior of
the system. Experimental designs for fitting a second-order
response surface must involve at least three levels of each



J Intell Manuf (2015) 26:459-470

461

variable so that the coefficients in the model can be esti-
mated. A rotability property is desirable for response surface
models because the orientation of the design with respect
to its surface is unknown. This study uses a Box-Behnken
design because it allows efficient estimation of the first and
second order coefficients. Using this experimental design,
the levels of each input factor are assumed to be equally
spaced. A least squares estimate is used to estimate the coef-
ficients in approximating the polynomials. The response sur-
face analysis then proceeds in terms of the fitted surface. If
the fitted surface is an adequate estimation of the true func-
tional relationship, then the analysis of the fitted response
will be nearly equivalent to the analysis of the studied
problem.

Process capability index as response values for
statistical analysis

The PCI expression in Eq. (4), Cpy, is able to simultaneously
reflect the influences of process deviation and process vari-
ance (Boyle 1991; Chan et al. 1989). This is only legitimate
at the post-production stage due to the fact that U and ¢ are
realized values which are not controllable for design:

_ USL-LSL
T 6/Klo2+ (U —T)7]

USL and LSL are the upper and lower limits, respectively.
However, when Cp,;, is used as a measurement scale in the
pre-production stage under the assumption thato is t/P, U
and ¢ become controllable variables. Then, it is possible that
various combinations of U and ¢ will result in the same C),,
value. Thus, it is difficult to make a distinction among alter-
natives in seeking to make a correct choice from among them.
For example, the curve shown in Fig. 1 represents all possi-
ble combinations of U and ¢ which have C,, as 1.2 without
differentiation.

Additionally, when C,, is used as a measurement scale
in the pre-production stage, the designers would most likely
establish the process mean U as close as possible to the design
target 7', within the process feasibility range, and attempt to
decrease the process variance as much as possible, within
the process capability limits, in order to attain a higher PCI
value. It is known that cutting down process variance with
small process tolerance ¢ normally results in high tolerance
cost (production cost). In other words, with the exclusive use
of the process mean and process variance as the determinants
of conventional PCI, Cp,,, regardless of the cost impact on
customer and production, there is a tendency for designers
to position the process mean as close to the target value 7 as
possible, and cut down the process tolerance to lower capa-
bility limit in order to increase the PCI value. Apparently,
the found PCI value is erroneous. This unhelpful result will

“
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Fig. 1 Feasible range for various combination of U and r with T = 30,
LSL =29.95,USL =30.05,0 =t/P, P =3,when Cp, =12

prevent the conventional C ,, from being a suitable index for
possible alternatives during product design or process plan-
ning.

To overcome the above weaknesses, the lack of consid-
ering cost influence on deviation and variability should be
avoided. It is known that the cost in representing the magni-
tude of deviation and variability is formed as a function of
controllable variables, which contain process mean U and
process tolerance t. In this regard, a new PCI expression
is developed by having the non-cost expression E(X), like
Eq. (5), replaced with the quality and production related cost
expression C(X) as Eq. (6):

E(X) =024+ (U —T)? ®)
C(X) = K[o? + (U —T)* 1+ Cu (1) (©6)

The first term of Eq. (6) is “quality related cost” which is also
referred to as “loss function” (Phadke 1989; Taguchi and Wu
1985). The second term of Eq. (6) is “production related cost”
which is also called “tolerance cost function” (Chase et al.
1990). These two terms are needed to balance economical
and quality considerations. They are depicted in Figs. 2 and
3 correspondingly. A narrower o2 can result in small quality
related cost; however, the narrower one may lead to a greater
production cost because of contracted tolerance . Thus, we
usually try to locate process mean U as close to design target
T as possible before involving competitive process variance
o2 and process tolerance .

The sum of two cost terms is the total cost representing
the quality level of a product or process (Jeang 1994). Conse-
quently, the cost effectiveness and quality achievement PCI
score becomes capable of evaluating and distinguishing alter-
native product designs or process planning. This PCI expres-
sion, Cppc, is shown as follows:
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Fig. 3 Tolerance cost function

USL — LSL
6(VK[o2 4+ (U — T)21+ Cu(1;))

(N

Cpmc =

where o is 1/ P and C (1) is given value or a + be ™ (Jeang
1994, 1995), K is C4/S>.

Because the process capability is a production process’s
capability of producing a product according to the desired
expectation of customers, the advantage in adopting Cpp.
as the observed response for process design is that the
designed parameter and tolerance values must represent the
capability of producing a quality and cost-effective prod-
uct. Then, by following the designed values, the production
processes have the capability of producing products meeting
customers’ expectations. Thus, instead of other responses
used in previous works, the C,, value is considered as
observed responses in the present research.
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Fig. 4 The wheel mounting assembly drawing

The application for product design and process
planning

Example 1 Assembly is the process by which the various
parts and subassemblies are brought together to form a com-
pleted assembly or product which is designed to fulfill a cer-
tain mechanical function. Since assembly in the manufactur-
ing process consists of putting together all the component
parts and subassemblies of a given product, a proper alloca-
tion and analysis of tolerances among the assembly compo-
nents is important to ensure that the functionality and quality
of the design requirement are met. However, from the preced-
ing discussion, in addition to tolerance design, the element
of component dimensions (parameter values) should also be
considered in an assembly design.

Figure 4 is a wheel mounting assembly, which consists of
components X1, X», X3, X4 and X5. They are linked with
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Table 1 Three levels, U; and

t;, for each component and Component j Lower level Middle level Upper level
tolerance cost Cy (t;)
U, 4.9654 mm 5.0000 mm 5.0346 mm
U, 8.4740 mm 8.5000 mm 8.5260 mm
Us 3.9654 mm 4.0000 mm 4.0346 mm
Uy 8.3311 mm 8.3600 mm 8.3889 mm
Us 17.6740 mm 17.7000 mm 17.7260 mm
f $10.7702 (0.03 mm) $10.7653 (0.06 mm) $10.7543 (0.09 mm)
%) $12.7705 (0.02 mm) $12.7618 (0.04 mm) $12.7437 (0.06 mm)
8] $10.7702 (0.03 mm) $10.7653 (0.06 mm) $10.7543 (0.09 mm)
4 $5.7009 (0.04 mm) $5.6971 (0.06 mm) $5.6879 (0.08 mm)

15

$7.1243 (0.03 mm)

$7.1227 (0.05 mm)

$7.1185 (0.07 mm)

two interrelated tolerance and dimension chains. The assem-
bly functions for representing these two dimension chains
are:

Yi=X0— X4 (8)
Yo=-X1— X2 — X3+ X5 ©)

The associated component dimensions and tolerances,
Uy, Uy, Us, Uy and Us, 11, 12, 13, 14 and t5, must be deter-
mined simultaneously (Jeang and Chang 2002). The target
values 71 and 7> are 0.14 and 0.20mm, respectively. The
matching quality loss coefficients K| and K3 are 250 and 350.
The design tolerances (specifications) S1 and S, are 0.12 and
0.16 mm, respectively. Obviously, USL-LSL for Y and Y> is
2 Sy and 2 S, correspondingly. For the purpose of demonstra-
tion in an off-line application, the PCI expression C p, will
be used as an index in measuring quality characteristics Y]
and Y5. The high, middle, low tolerance levels and the asso-
ciated tolerance cost are illustrated in Table 3. The feasible
ranges for parameter U; and the process capability limits for
t; are the extreme values connected with high and low levels
in Table 1. Certainly, rooted in the discussion in Sect. 5, the
formulation must contain decision variables, which are com-
ponent parameters, U;, Ua, Uz, Us and Us, and tolerances,
11, o, 13, t4 and t5. They must be determined simultaneously
to ensure Cp¢ is maximized (Jeang and Chang 2002). The
Monte Carlo Simulation is performed with the various level
combinations of U; and t;, as suggested in “Appendix A”. The
normality assumption, X;_N (U;, o (¢;)), is used to generate
random values X, X7, X3, X4 and X5 in eth experimental
run where o (#;)is defined in Eq. (10).

o () = (%) (10)

These random values are plugged into the above Egs. (8)
and (9) to have one set of Y1, and Y,correspondingly. Each
level combination of U; and #; will be repeated 30 times
in the e experimental run to ensure the accuracy of the

normality assumption. Then, the outputs, Uy, and oy;, can
be obtained in the e experimental run, where r is 1 and
2. The response values, Cppe1 and Cpper are found from
Eq. (7). Then, having C . as the response value, the RSM
optimization technique is used for problem analysis. C . is
defined in the following equation:

Cpmcl + Cpch

> (1)

Cpmc =

The optimal solutions are #; = 0.0439, 5 = 0.0600,
3 =0.0439, 17 =0.0759, 15 =0.0446, U =4.9654, Uy =
8.5260, Uy = 3.9825, Uy = 8.3860, Uy = 17.6740
and C7,,. = 0.0069. A second-order model Cpp pre-
dicting equation is: 0.4739 — 0.0083U; — 0.0095 U, —
0.0124 U3 —0.0201 U4—0.0336 U5—0.0101 U12—0.0215 U
U,—0.0371 U22—0.0217 U,U3—-0.0219 U,U3—0.0101 U32+
0.0551 U>,U4—0.0268 Uf+0.02144 U1Us+0.0212 U, Us+
0.0219 UsUs — 0.0097 U52 + 0.0002 Uyt + 0.0002 Uzt —
0.0001 Ust; —0.0005 17 —0.0049 £5 — 0.0048 13 —0.0082 13
t4—0.0117 tf +0.0082 1315 +0.0186 1415 —0.0092 t52. Table 2
shows that the R? value is 0.9979. The fact that the R? value
is greater than 0.95 indicates that the second order model pro-
vides an excellent fit. For statistical analysis, as completed
by the computer programs, SAS (SAS Institute 2001), the
contour and surface of the response of Cpyc is plotted in
Figs. 5 and 6 to illustrate its 3D shape. Each contour repre-
sents a specific response value for combinations of the levels
of factors. Various level combinations will be examined so
that design feasibility and restrictions are satisfied. In addi-
tion, the F-ratio and F-ordering for all inputs U; and ¢; are
listed in Table 3. F-ratio and F-ordering indicate that U,, U3
and U; should be closely controlled. If design improvement
is needed, component 2 is to be given first priority.

For the purpose of comparison with other optimization
methods, Example 1 is formulated with the mathematical
programming as given in “Appendix B”. The optimal solu-
tions found from “Appendix B” are very close to the values
obtained in the proposed approach. The solution closeness
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Table 2 Statistical analysis for
C pme of Example 1

Response surface for variable C e

Response mean 0.006908
Root MSE 0.000000181
R-square 0.9979
Coefficient of variation 0.4648
Regression DF SS R-Square F value Pr>F
Linear 10 4.8437E—9 0.0424 14865.9 <0.0001
Quadratic 10 3.1978E—8 0.2797 98144.2 <0.0001
Crossproduct 45 7.74886E—8 0.6779 52848.7 <0.0001
Total Model 65 0.000000114 1.0000 53973.7 <0.0001
Factor Degrees of Sum of squares Mean square Prob > F
freedom
U 11 2.6443291E—8 2.4039356E—9 <0.0001
U, 11 4.3891891E—8 3.9901719E—9 <0.0001
Us 11 3.2048017E—8 2.913456E—9 <0.0001
Uy 11 2.8242178E—8 2.5674708E—9 <0.0001
Us 11 2.3253698E—8 2.1139726E—9 <0.0001
I3 11 1.170191E—10 1.06381E—11 <0.0001
1) 11 3.1594869E—9 2.872261E—10 <0.0001
1 11 1.233381E—10 1.121255E—-11 <0.0001
14 11 7.152263E—10 6.502057E—11 <0.0001
ts 11 2.986217E—11 2.714743E—12 <0.0001
Fig. 5 Response surface Come
0.50
0.17

-0.50
-0.83
117
150 |— g;'/-//
13.00 1083 g7 .

433 2.17

167633
oo 467

—-13.00

0 1133
8.00 267

4

may be because of this particular example. However, there
are still some advantages with the proposed approach. They
are: (1) Other than determining the optimal solutions, the pro-
posed approach also provided the important ranking listed in
Table 3 as a reference for design improvement. (2) Because
“Appendix B” shows a deterministic approach, design func-
tions, Egs. (8-9), tolerance cost functions, a +b - e 7, need
to be well defined in advance. However, sometimes design
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functions are unknown, and tolerance cost Cy;(¢) from tol-
erance function a + b - e~ and the quality loss coefficient
K from C4/S? are stochastic in nature. These facets render
the deterministic approach in “Appendix B” infeasible. Con-
versely, the proposed approach is well adapted for design in
an uncertain environment. When the constraints of Eqs. (33—
42) on decision variables appear in nonlinear forms, the pro-
posed approach becomes infeasible.
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Fig. 6 Contour plot of C . for process mean Uz and Uy

Table 3 F-ratio and F-ranking

50 55

60 65 70 75 80 85 9.0 95
Us

B/P dimensions. It covers the DC, DC vector, design tol-
erance S,, design target 7, and quality loss coefficient K,
whereris1,2,3...5. As mentioned in the preceding discus-
sion, the associated process means and process tolerances are
Uiy, Uy, Us, Uy and Us, 11, 1, t3, t4 and t5. These values
must be determined simultaneously so that all B/P dimension
values fall within their own specification limits. By referring

Factors F-ratio F-ranking
Ui 73778.80 3
U 122462.00 1
Us 89416.40 2
Uy 78797.80 4
Us 64879.60 5
1 326.49 9
5] 8815.21 6
&) 344.12 8
14 1995.54 7
ts 83.32 10

to dimension chain DC vector, A,., in Table 5, the design

functions are formed as follows:

Yi = X5+ X4 (12)
Yo = X3 — X, (13)
Yi=X3—-Xp (14)
Yy = X4 — X3 (15)
Ys = X5 (16)

Example 2 A practical example of manufacturing process
planning is introduced to illustrate how the presented
approach is applied to machining operations. Figure 7 is
a drawing of the work piece. The various combinations of
component dimension values X1, X2, X3, X4 and X5 from
each cutting operation result in five B/P dimension val-
ues, Y1, Y2, Y3, Y4 and Y5. Table 4 shows the procedures
for the manufacturing process, which include the working
machine, the reference surface, the processed surface, and
the process capability range allowed in the manufacturing
process. Table 5 is the related information concerning the

If we let the optimal solutions, U* and t*, found from
Cpme as an objective function, be substituted into the C
expression to have Cém, the values C ,/,m, 1.2756, still fall
above the acceptable limit for general application. Accord-
ingly, the optimal solutions U* and ¢* not only maximize the
C pme expression, but also ensure that the C),,,; value is at a
satisfactory level.

The low, middle and high levels for input factors U;, and
t; and associated tolerance costs are shown in Table 6. The
Monte Carlo Simulation is performed with the various level
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Fig. 7 The Part for the
presented machining process

Table 4 The operations
involved in the manufacturing
process

Table 5 Related information on
the work piece diagram

Table 6 Three levels, U;and £,
for each operation and tolerance
cost Cp(t)

@ Springer

200+0.25

«— 40+0.26 —>|

€ 25+0.26

A B C D E F
Operation Working Reference Processed Lower process Upper process
number machine surface surface capability capability
i f1; (mm) fy; (mm)
1 Turret lathe F E 0.04 0.14
2 Turret lathe F D 0.04 0.14
3 Turret lathe F C 0.05 0.13
4 Turret lathe F B 0.05 0.13
5 Turret lathe B A 0.05 0.13
r Blueprint Dimension Dimensions Design Target Quality

dimensions chain chain vector tolerance value loss coef.
r Are ) T, K,

1 A-F 5-4 [1,1] 0.25 200 6,000
2 C-E 3-1 [1,—1] 0.26 41 10,500
3 C-D 3-2 [1,—1] 0.26 25 9,000
4 B-C 4-3 [1,—1] 0.12 79 1,500
5 A-B 5 [1] 0.24 42 10,500
Operation i Lower level Middle level Upper level
U 38 mm 39mm 40 mm
Uy 55mm 56 mm 57 mm
Us 79 mm 81 mm 82mm
Uy 157 mm 160 mm 163 mm
Us 42 mm 43 mm 44 mm
f $93.0028 (0.04) mm $71.1156 (0.09) mm $63.0939 (0.14) mm
t $93.7241 (0.04) mm $71.3709 (0.09) mm $63.0717 (0.14) mm
13 $78.5737 (0.05) mm $56.9872 (0.09) mm $50.5266 (0.13) mm
t4 $79.4912 (0.05) mm $57.2412 (0.09) mm $50.5153 (0.13) mm
ts $79.4991 (0.05) mm $57.2688 (0.09) mm $50.5201 (0.13) mm




J Intell Manuf (2015) 26:459-470 467

’gil:nl: 7 Statistical analysis for Response surface for variable C ¢
Response mean 0.007992
Root MSE 0.001249
R? 0.9624
Coefficient of variation 15.6241
Regression DF SS R-square F value Pr>F
Linear 10 0.000584 0.1356 37.47 <0.0001
Quadratic 10 0.003526 0.8183 226.14 <0.0001
Crossproduct 45 0.0000363 0.0084 0.52 0.9927
Total Model 65 0.004147 0.9624 40.91 <0.0001
Factors Degrees of Sum of squares Mean square Prob > F

freedom

U 11 0.000010044 0.000000913 0.8368
Us 11 0.000015449 0.000001404 0.5425
Uz 11 0.000127 0.000011517 <0.0001
Uy 11 0.000276 0.000025111 <0.0001
Us 11 0.000010136 0.000000921 0.8325
n 11 0.000001496 0.000000136 1.0000
1) 11 0.000002247 0.000000204 0.9996
&) 11 0.000013530 0.000001230 0.6506
14 11 0.000042951 0.000003905 0.0078
ts 11 0.000094262 0.000008569 <0.0001

combinations of U; and #;, as suggested in “Appendix A. The
normality assumption, X;_N (U;, o (¢;)), is used to generate
experimental values X1, X», X3, X4 and X5 randomly in eth
experimental run. These experimental values are plugged into
the above Egs. (12)—(16) to have one set of Y1, Y2, Y3, ¥4
and Y5, correspondingly. Each level combination of U; and t;
will be repeated 30 times in e experimental run to ensure the
accuracy of the normality assumption. Then, Uy, and oy, are
obtained from 30 sets of Yy, Y», Y3, Y4and Ys, where ris 1,
2,3,4and 5. The values, Cpnct, Cpme2, Cpmess Cpmes and
C pmes, can be found from Eq. (7) with the eth experimental
outputs, Uy, and oy,. Then, the response value is the sum of
Comels Come2s Cpmess Cpmea and Cppyes, which is consid-
ered as the response value for RSM analysis. A second-order
model C ), predicting equation is: —24.8924+4-0.4539U3 +
0.0923U4 +0.0005U, U3 — 0.0031U3 — 0.0003U2 +0.0002
UsUs—3.5787t7 —4.0503t7 . Table 7 indicates that the coeffi-
cient of determination R? is 0.9624, and that a good fit exists.
The optimal solutions are ;" = 0.0908, 5 = 0.0898, 5 =
0.0904, #; = 0.0892, 1 = 0.0891, U = 38.9456, Uy =
56.0464, Uy = 80.5716, U} = 158.8937, Us = 42.8089,
Cc*..=0.01712 and C{,m = 1.3972. For statistical analy-

pmc
sis as completed by the computer programs, SAS (SAS
Institute 2001), the contour and surface of the response of

Cpme 1s plotted in Figs. 8 and 9 to illustrate its 3D shape.

In addition, the F-ratio and F-ordering for all inputs U;
and #; are listed in Table 8. F-ratio and F-ordering indi-
cate that U3, Uy, t4 and 5 should be closely controlled. If
process improvement is needed, operation 4 is to be given
first priority.

Summary

The present research uses the PCI measurement, Cpye, via
RSM for robustness in process capability analysis to ensure
that, at the initial blueprint stage, a lower production cost
and a high quality product can be achieved. A time frame
is developed for the off-line applications during product and
process design. Prior to production, design engineers can
establish process mean and process tolerance based on the
optimized mean and tolerance values, and make use of the
listed ranking as a reference for possible design improve-
ment. As expected, the produced quality values after the
production process must be distributed with statistical val-
ues as the established process mean and process tolerance
before the production process. As a result, an effective PCI
for a product’s life cycle becomes actualized. Two exam-
ples: product design and process planning, are introduced
for demonstrating the present approach. The results, in terms
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Fig. 8 Response surface CPC‘
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Fig. 9 Contour plot of C ;. for process mean Uz and Uy

of statistical sense, provide not only the optimal solutions
but also the important ranking. Because previous works con-
sidered the tolerance costs and quality losses as determin-
istic values in product and process design, there is a need
to relax the assumptions of deterministic values in future
research. The present approach considers product specifica-
tions USL and LSL as given conditions; there is a need to

relax this given assumption in future studies, by consider-
ing USL and LSL as additional decision variables. Most of
the time, during design and planning stages, design func-
tions such as Egs. (8-9) and (12-16) are unknown. Utilizing
advanced computer software, such as Computer-Aided Engi-
neering (CAE), can help engineers at the product design and
process planning stage, to surmount design problems that
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Table 8 F-ratio and F-ranking Appendix A: Table of Box-Behnken Design
Factors F-ratio F-ranking (Factors = 10, blocks = 2, runs = 170)
U, 0.59 7
ZZ (7’28 ; 0 410 0 0 41 #1 0 0 =1
3 ' +1 410 0 1 0 0 0 0 =1
Us 16.10 : 0 +1 10 0 0 =1 10 0
Us 0-59 8 0 10 £10 £10 0 =£1 0
i 0.09 10 £10 0 0 0 0 0 =1 &1 I
f 0.13 0 0 0 +1 +1 41 0 0 0 0 =+l
f3 0.79 6 +1 0 0 41 0 0 41 £1 0 0
4 250 4 0 0 41 0 £1 0 10 =1 0
s 5.50 3 +£1 0 £ 0 0 £1 0 0 %1 0
0O 0 O #£1 £1 £1 0 £1 0 0
have unknown design functions. As a result, an economi- O 0O O O O O O o0 o0 o
cal and quality process capability analysis for product and
process design becomes possible at an earlier time in the
design stage. The following itemizes and explains the steps
involved: Appendix B: Presented problem formulated with
mathematical programming
Step 1: Provide the design functions (see Egs. 8-9 and
12-16) and the design-related information (see Tables 4,
5). Offer LSL, USL, C 4, tolerance cost functions or tol- Max Come = Cpmey + Cpme, (17)
erance costs. 2
Step 2: Choose an appropriate design experimental s.t.
matrix (see “Appendix A”) for the various levels of inputs,
U and ¢ (see Tables 1, 6). yi=n+1 (18)
Step 3: Use the combined levels of inputs, U and ¢, as the lyp=t+b+13+15 (19)

arrangement of an experimental design matrix to find: a)
K02+ (U —T)*],0% = (t/P)*, normally P = 3, K is
Ca/S%,b) Cpr (1) is a+be <" ortolerance cost with given
tolerance level (see Table 1 or Table 6). Then have the
results from items a and b fed into Eq. (7) to find Cpc.
Step 4: Perform RSM with SAS software to obtain the
best values of U and ¢ for the maximization of C . and
to find Cpmc prediction functions by regression analy-
sis. See second-order model C . predicting equation in
Examples 1 and 2. Then, employ ANOVA to rank the
important parameters (see Tables 3, 8).

Step 5: Employ ANOVA to rank the important parame-
ters (see Tables 3, 8).

Step 6: If improvement is needed, then the above steps
can be repeated based on the suggestions made in Step 5.
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2 2
oy1 = (%) +(%‘) 20)
2 2 2 2
1 15 13 15
o= / (?) +(;) +(;) +(;) D

Uy) =Uy — Uy 22)

Uyr =-U1 —Uy - U3+ Us 23)

Cu(ty)) =ax+by-e 22 +ag+by-e” ™ (24
Cu(ty2) =ai+bi-e V" +ay+by- e "2

+az+bs e B 4 as + bs-e”S5B (25)

USL,—LSL;
Cpmcl =
6,/ K1 [(Ur1 —T1)2+ 03, ]+ Cr (iv1)
(26)
USL>—LSL»
Cpmc2 =
6,/ K2 [(Uya—T2)+03,]+Cr (172)
(27
USL, — LSL,
Cpmcl = (28)
6,/(Uy — T + 0,
USL, — LSL»
Cpch = (29)

6,/(Uyz — T2)? + 02,
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Cpmcl + Cpch

Cpme = 5 (30)

Ty =S +ty1 Uy =T + 81— ty1 (31)

=S+t <Un<hh+S%—1tn (32)

49654 < Uy <5.0346 33)

8.4740 < U, < 8.5260 (34)

3.9654 < Us < 4.0346 (35)

8.3311 < Uy < 8.3889 (36)

17.6740 < Us < 17.7260 37

0.03 < 1, < 0.09 (38)

0.02 <1 <0.06 39)

0.03 < 13 < 0.09 (40)

0.04 < 1 < 0.08 (41)

0.03 < t5 <0.07 42)
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